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Deep-Learning based Global and Semantic Feature
Fusion for Indoor Scene Classification
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Abstract—This paper focuses on the task of RGB indoor scene
classification. A single scene may contain various configurations
and points of view, but there are a small number of objects that
can characterize the scene. In this paper we propose a deep-
learning based Global and Semantic Feature Fusion Approach
(GSF2App) with two branches. In the first branch (top branch),
a CNN model is trained to extract global features from RGB
images, taking leverage from the ImageNet pre-trained model
to initialize our CNN’s weights. In the second branch (bottom
branch), we develop a semantic feature vector that represents the
objects in the image, which are detected and classified through
the COCO dataset pre-trained YOLOv3 model. Then, both global
and semantic features are combined in an intermediate feature
fusion stage. The proposed approach was evaluated on the SUN
RGB-D Dataset and NYU Depth Dataset V2 achieving state-of-
the-art results on both datasets.

Index Terms—Indoor Scene Classification, Deep Learning,
RGB, Semantic Features

I. INTRODUCTION

Indoor scene classification remains a challenging task in
the machine learning and robotics communities. Due to the
various configurations that a single scene may have, it becomes
difficult to obtain a robust model for indoor scene classification
tasks. On the other hand, a successful scene categorization
could be very important for mobile robotics tasks [1][2], e.g.
building maps, improve localization, and navigation.

Deep learning feature extraction layers have been achieving
good performances in the object classification field. However,
the results achieved in scene classification tasks need to be
improved [3][4]. This weak performance may happen due to
the lack of labeled datasets that comprise multiple scenes in
different conditions (and points of view).

Several methods [5]–[7] have been proposed for classifying
RGB-D scene images using local and global features. These
works are based on CNN architectures to extract features
from two distinct modalities, RGB and Depth, from which the
relationships between local and global features were exploited.
Their reported results showed that local features provide
important information about the scene, making them very
useful to improve the achieved results in scene classification.
To recognize a scene, people focus on the objects present in
the scene and also on correlations between objects [3]. As
illustrated in Fig. 1, the bedroom class has various configura-
tions and viewpoints. However, all images contain the same
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(a) Bedroom sample 1. (b) Bedroom sample 2.

(c) Bedroom sample 3. (d) Bedroom sample 4.

Fig. 1. Different configurations from the bedroom class. Sample images are
from the NYU Depth Dataset V2 [8].

types of objects that allow to classify the scene as bedroom
(e.g. bed object). In order to further exploit the global features
and the correlations between objects present in the scene,
we developed a fusion approach to learn how objects can be
related to the indoor scene.

In this work, a deep learning based Global and Semantic
Feature Fusion Approach (GSF2App) with two branches,
shown in Fig. 2, is proposed for RGB indoor scene classifica-
tion. Semantic features represent the objects recognized in the
image along with the number of times that the same object
appears in the image. The proposed architecture, consists
of two branches operating on global and semantic features
respectively, which are combined in an intermediate feature
fusion model. The top branch uses the VGG16 [9] Convo-
lutional Neural Network (CNN) to automatically learn and
extract global features from the RGB modality. The bottom
branch consists of recognizing objects present in the image
and encode them into a Semantic Feature Vector (SFV) that
feds two fully connected layers. Then, both branches output
features undergo a fusion stage for a class prediction. To
recognize objects in the RGB image, the COCO dataset pre-
trained YOLOv3 model [10] is used. The proposed approach
was evaluated on the SUN RGB-D Dataset [11] and the NYU
Depth Dataset V2 [8].
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Fig. 2. An overview of the proposed GSF2App (in FC6, NC represents the output number of classes). The top branch (green) uses the VGG16 network to
extract global features. The bottom branch (blue) uses the YOLOv3 model to recognize the objects present in the scene, which are encoded into a Semantic
Feature Vector. Both branches converge in two fully connected layers (yellow).

The main contributions of this work are:
• The development of an indoor scene recognition model

based on the fusion of global and semantic features.
• Based on the achieved results, there is empirical evidence

that semantics is able to improve indoor scene recognition
models. The proposed GSF2App achieves state-of-the-
art results on both SUN RGB-D Dataset [11] and NYU
Depth Dataset V2 [8].

II. RELATED WORK

Scene Classification

Indoor scene classification methods have been researched
over the past years. Gupta et al. [12] proposed an object-
based pipeline to classify the indoor scene. They applied a
semantic segmentation method to classify the objects present
in a scene, which were encoded into a spatial pyramid (SPM),
that contains the average presence of each semantic class,
and is used as input feature of the SVM classifier. George
et al. [13] argues that some objects are only available in
one particular scene, while other objects can be identified in
different indoor scenes. With this, they proposed a semantic
scene descriptor based on the patterns of occurrence of objects
in scenes to build small semantic clusters.

In the last years, due to the success of feature extraction
layers, deep learning methods have been outperforming the
state-of-the-art results in classification tasks. Inspired by the
success of CNNs in image classification and object detection
tasks, a large-scale scene recognition dataset, Places-CNN,
was produced by Zhou et al. [4]. Places-CNN dataset has 365
scenes categories with at most 5000 images per category. As

expected, [4] concludes that object-centric and scene-centric
neural networks achieve different results. Therefore, they made
available some pre-trained CNN models, which are ideal to use
as starting point in small datasets.

Despite the CNNs success, full-image global CNN features
are not enough to represent an indoor scene [6]. In an
attempt to get more information about the scene, encoding
methods such as Fisher Vector [5][14] or Vector of Locally
Aggregated Descriptors [15] to encode local CNN features
were proposed. Wang et al. [5] proposed a local and global
CNN feature fusion method. They used an object proposal
extractor method to generate Regions-of-Interest (RoI) from
each RGB-D image, representing each RoI by local CNN
features. For each modality, the Fisher Vector method was
used to encode RoIs which were, in a final step, combined
with full-image CNN features.

With the emergence of low-cost RGB-D sensors (e.g.
Microsoft’s Kinect and Intel’s RealSense) that are able to
synchronously record both RGB and depth images, a new
perspective for feature extraction from images was introduced.
RGB data is only able to provide information about appearance
and texture while depth data contain distances between the
camera’s position and its environment. With depth data, it
is possible to extract additional information such as objects
distances and their shape [16]. Methods operating on RGB-
D data were proposed for object recognition [16][17], and
scene recognition [6][18]. Gutpa et al. [19] proposed to encode
depth data into three channels (Horizontal disparity, Height
above ground, Angle with gravity) to extract depth features
more efficiently. This kind of encoding methods (depth data
to three channels) have become very popular and useful in
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the machine learning community [16][19]. On the other hand,
encoding depth data into three channels allows to apply pre-
trained CNN models on the depth-images, which requires three
channels as input. In the object classification field, Color Map
and Surface Normals encoding methods were also proposed
to extract depth features [17].

The majority of the aforementioned works simply concate-
nate local and global RGB-D features, expecting that the
model can be able to learn the necessary correlations without
any extra information. Recent methods [3][5][6][20] were able
to improve the achieved results by proposing architectures that
were not limited to exploiting local and global features, but
were also able to incorporate additional information (features).
Song et al. [20] proposed a multi-modal multi-feature scene
recognition pipeline that is able to combine global and local
RGB-D features with the spatial layout. Li et al. [3] aimed
to learn correlative and distinctive features of each RGB-D
modality. Xiong et al. [6] proposed an end-to-end multi-model
feature learning framework, which is able to select important
local region features from the high-semantic level CNN feature
maps, concatenating, in a final step, both local and global
features.

Object Recognition

Deep learning techniques have achieved cutting edge results
in object recognition field. Some methods have been proposed,
however, YOLO [10][21], Single Shot Detector (SSD) [22],
and Faster R-CNN [23] remain the most popular end-to-end
frameworks able to perform object recognition. Among these,
Faster R-CNN and SSD achieved better results for the average
precision metric on the VOC dataset, while YOLO is the
fastest architecture. Joseph Redmon [21] argues that YOLO
is less likely to predict false positives on background than any
other state-of-the-art method.

III. METHODOLOGY

An overview of the proposed GSF2App is presented in
Fig. 2. Our approach consists of two branches processing
RGB data (top branch) and semantic features (bottom branch)
respectively, which are combined in an intermediate feature
fusion model. This approach is also trained in two steps, the
first learns global features from RGB images, while the second
step, learns how to combine semantic features with global
features.

A. RGB Global-CNN Features

The top branch of the proposed approach uses the VGG16
[9] CNN to process and extract full-image features. It consists
of thirteen convolutional layers (with max-pooling after the
second, fourth, seventh, tenth, and thirteenth convolutional
layers) followed by two fully-connected layers and a soft-
max classification layer. Unless the final layer, all the others
used Rectified Linear Units (ReLU) as activation function.
The VGG16 weights’ model is initialized by copying the
parameters of the ImageNet pre-trained model. Then, we fine-
tuned the parameters of the VGG16 model for classification of

2
1
1

Fig. 3. Example of how YOLOv3’s output object class predictions are
encoded into a Semantic Feature Vector. Sample indoor scene image taken
from the NYU Depth Dataset V2 [8].

the target data. Although the model has been pre-trained for
object classification instead of scene classification, preliminary
results showed that this initialization has significant influence
on the model’s convergence.

In order to use pre-trained models, the size of input images
must be the same as that of the pre-trained model. So, all RGB
images were resized to 224× 224.

B. Semantic Features

In this work, semantic features represent the objects recog-
nized in the RGB scene image along with the number of times
that the same object appears in the same RGB scene image.
More specifically, we use the publicly COCO dataset pre-
trained YOLOv3 [10] model to recognize the objects present
in RGB scene images. For each image, the YOLOv3’s output
object class predictions are encoded into a Semantic Feature
Vector (SFV) (as shown in Fig. 3) which is processed by two
fully connected layers in the bottom branch of the proposed
approach. The particular COCO dataset pre-trained YOLOv3
model is able to recognize eighty different objects (e.g. sofa,
oven, bed, and refrigerator), so the proposed SFV has 80 rows
per column (image). It should be noted that, for any scene
image, each object is always encoded in the same row as
follows:

SFV =




O1,1(Person)
O2,1(Bicycle)

...
O80,1(Toothbrush)




To further exploit semantic features, for the same scene im-
age, nine SFVs are created changing the YOLOv3’s confidence
threshold (c = 0.1, c = 0.2, ..., c = 0.9). Figure 4 presents
the objects recognized using different YOLOv3’s confidence
thresholds in two distinguished indoor scenes. As expected, as
the threshold decreases, more objects are recognized, leading
to an increase in the number of semantic features that can
characterize the indoor scene, however, the number of false
positives also increased.
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(a) Scene 1 (c=0.2). (b) Scene 1 (c=0.4). (c) Scene 1 (c=0.6). (d) Scene 1 (c=0.8).

(e) Scene 2 (c=0.2). (f) Scene 2 (c=0.4). (g) Scene 2 (c=0.6). (h) Scene 2 (c=0.8).

Fig. 4. Object recognition using different YOLOv3’s confidence thresholds. Sample indoor scene images taken from the NYU Depth Dataset V2 [8].
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Fig. 5. Two-step learning of the GSF2App.

C. Global and Semantic Feature Fusion

To explore the correlation between the RGB image and se-
mantic features while simultaneously retain the distinctiveness
in the RGB modality, we propose a feature fusion approach
with two-step learning, as shown in Fig. 5. In the first step,
only the VGG16 CNN is trained, originating a RGB-only
base model. After that, the last layer of the VGG16 CNN
is discarded, since its output is a scene class prediction and
not a feature map. Then, in the second learning step, the
model learns how to combine global and semantic features.
For this, global features are extracted through the trained
VGG16 model (in Fig. 5: the cascade composed by the VGG16
convolutional layers, FC1, and FC2), without any fine-tuning
of its weights, while semantic features are processed in two
fully connected layers (FC4 and FC5). Then, both global
and semantic feature maps, FC2 and FC5 respectively, are
concatenated feeding a fully connected layer, FC-fus (with 256
feature map output dimension). The last layer, FC6, outputs the
scene class prediction. In summary, in the second learning step,

only FC4, FC5, FC-fus, and FC6 weights are trained. After
the conclusion of the second learning step, a single model
for indoor scene classification tasks is obtained. Note that, the
proposed GSF2App expects an RGB image and its associated
SFV as inputs. In the presented evaluation, a YOLOv3 model
was used, however, other object recognition methods/pipelines
could be employed.

IV. EXPERIMENTS

The proposed approach was evaluated on two popular scene
classification datasets: SUN RGB-D [11] and NYU Depth
Dataset V2 [8]. In order to compare with state-of-the-art works
[3][5][6][12][18][20], mean-class accuracy is used as the eval-
uation metric, which is calculated by averaging precision of
all the categories as follows:

MeanAcc =
1

C

C∑

c=1

Correctc
Totalc

where Correctc is the number of correctly predicted samples
of class c, Totalc is the total number of samples of class c,
and C is the total number of classes.

Additionally, an ablation study on both SUN RGB-D and
NYU Depth datasets was conducted for more comprehensive
evaluations of the proposed approach.

A. Datasets

SUN RGB-D Dataset: It contains 10,355 RGB and Depth
image pairs captured from different cameras (Kinect v2,
RealSense, Kinect v1, and Asus Xtion). It contains 10,335
RGB-D images distributed into 40 scene categories. Following
the public split in [11], only 19 scene categories were selected
for scene recognition evaluation, distributed in 4,845 images
for training and 4,659 images for testing.
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TABLE I
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

THE SUN RGB-D DATASET.

Method Accuracy (%)
RGB RGB-D

Li et al. [3] 46.3 54.6
Wang et al. [5] - 48.1
Xiong et al. [6] - 55.9
Du et al. [18] 42.6 53.3

Song et al. [20] - 54.0
GSF2App (ours) 55.3 -

NYU Depth Dataset v2: It has available 1449 images
distributed into 27 scene categories. However, only a few of
them are well represented. According to Gupta et al. [12], the
original 27 scene categories must be reorganized into 10 scene
categories (9 most common and ”other”). Following [12], the
dataset was split into 795 training and 654 test images.

B. Implementation Details

All experiments were performed using the publicly available
PyTorch framework (version 1.0.1). In the first learning step,
as mentioned, the VGG16 network was used as the base archi-
tecture and its parameters were initialized using the ImageNet
pre-trained model. For the SUN RGB-D Dataset, in the first
learning step, Stochastic Gradient Descent (SGD) optimizer
method with learning rate of 0.001 was used over 75 iterations.
In the second learning step, the ADAM optimizer method
with learning rate of 0.0001 was used over 25 iterations. For
the NYU Depth Dataset V2, during both learning steps, the
ADAM optimizer method with learning rate of 0.0001 was
used over 75 and 25 iterations respectively. A fixed momentum
rate of 0.9, a weight decay rate of 0.0005, and a mini-batch size
of 32 was also used in all learning steps. All experiences were
performed using a NVIDIA RTX 2070 GPU, 32GB RAM, and
an Intel i7-4790-@-3.60 GHz.

C. Results

We compare our achieved results with the recently state-
of-the-art works [3][5][6][12][18][20]. Among them, Song
et al. [20] and Wang et al. [5] introduced object detection
based local feature learning methods. Li et al. [3] proposed a
framework to learn distinctive and correlative features simul-
taneously. Xiong et al. [6] proposed a method that learns how
to select important local region features. Among these works,
[5] is the most related to ours. They achieved state-of-the-art
performance by combining local with global features. In their
work, local features represent the RoI detected in the image.
It is important to highlight that most of these works used the
AlexNet [24] as their CNN baseline and processed RGB and
Depth data. In our work, VGG16 [9] network is used as the
CNN baseline to process the RGB data.

Results on the SUN RGB-D Dataset

Table I shows the overall performance achieved in the SUN
RGB-D Dataset. Our proposed framework achieves 55.3%

TABLE II
ABLATION STUDY ON THE SUN RGB-D DATASET.

Proposed methods Accuracy (%)
VGG16 (random initialization) 36.1

VGG16 (pre-trained model initialization) 54.5
SFV + SVM 39.2

SFV + FeedForward 42.0
VGG16 + SFV 55.3
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Fig. 6. Accuracy variation according with different YOLOv3’s confidences
thresholds on the SUN RGB-D Dataset.

of mean-class accuracy, getting close to the highest state-of-
the art performance, which is 55.9% achieved by [6]. The
confusion matrix can be seen in Fig. 7. An ablation study
with intermediate evaluations of the proposed framework was
conducted, whose results are summarized in Table II, which
leads to the following observations:

CNN Baseline: It can be seen in Table II, that using the
ImageNet pre-trained VGG16 model improves the model per-
formance (from 36.1% to 54.5%). Note that during the training
stage, both models (random/pre-trained model initialization)
reached a very low loss value, however, as can be seen in
the presented results, a better generalization of the model was
achieved using the pre-trained model.

Semantic Features: In order to assess the potential that
semantic features may have, a linear SVM and a FeedForward
classifier were trained using the semantic feature vector as
classifier inputs. Compared with the CNN baseline results,
semantic feature learning had achieved acceptable results
(39.2% with SVM and 42.0% with a FeedForward) showing
that semantic features could be an asset to improve indoor
scene classification tasks. Figure 6 shows the achieved results
with YOLOv3’s confidence threshold variations that directly
affect the generated semantic feature vector. As expected,
using lower thresholds leads to a higher number of semantic
features which results in an improvement of the model’s
accuracy.

GSF2App: It represents our final model, combining global
and semantic features in a two-step learning approach (VGG16
+ SFV). In overall, our approach combining the global CNN
with the semantic features attained state of the art results,
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Fig. 7. Confusion matrix of GSF2App on the SUN RGB-D dataset (Classes: 0
= bathroom, 1 = bedroom, 2 = classroom, 3 = computer room, 4 = conference
room, 5 = corridor, 6 = dining area, 7 = dining room, 8 = discussion area,
9 = furniture store, 10 = home office, 11 = kitchen, 12 = lab, 13 = lecture
theater , 14 = library, 15 = living room, 16 = office, 17 = rest space, 18 =
study space).

TABLE III
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

THE NYU DEPTH DATASET V2.

Method Accuracy (%)
RGB RGB-D

Gupta et al. [12] 58.0 -
Li et al. [3] 61.1 65.4

Wang et al. [5] 53.5 63.9
Xiong et al. [6] 53.5 67.8
Du et al. [18] 53.7 67.5

Song et al. [20] 57.3 66.9
GSF2App (ours) 70.6 -

that were also similar to the achieved results by the VGG16
network with the ImageNet pre-trained model.

Results on the NYU Depth Dataset V2

We also obtained results on the NYU Depth Dataset V2,
where new observations can be made. Table III shows the
overall performance achieved in the NYU Depth Dataset V2.
The proposed framework achieves 70.6% mean-class accuracy,
which, to the best of our knowledge, outperforms the recently
reported results for this indoor scene dataset [8] (outperform-
ing the Xiong et al. [6] achieved result). The confusion matrix
of the achieved results can be seen in Fig. 9. An ablation study
was also conducted, attaining the results shown in Table IV,
of which the following observations are taken:

CNN Baseline: As mentioned before, using the ImageNet
pre-trained VGG16 model significantly improves the model
performance. In the case of the NYU Depth Dataset V2, which
contains much less data than the SUN RGB-D dataset, using
the pre-trained model allowed to achieve promising results,
leading to a 26.7% mean-class accuracy gap between the

TABLE IV
ABLATION STUDY ON THE NYU DEPTH DATASET V2.

Proposed methods Accuracy (%)
VGG16 (random initialization) 42.4

VGG16 (pre-trained model initialization) 69.1
SFV + SVM 57.6

SFV + FeedForward 57.4
VGG16 + SFV 70.6
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Fig. 8. Accuracy variation according with different YOLOv3’s confidences
thresholds on the NYU Depth Dataset v2.

random/pre-trained model initialization. The achieved results
by the VGG16 network using the pre-trained model to initial-
ize the parameters already outperforms the 67.8% of mean-
class accuracy achieved by Xiong’s work [6].

Semantic Features: The same individual semantic features
evaluation was performed. Once again, promising results were
achieved (≈57.7%), showing that semantic features can be
very useful in this kind of applications. Specially, when
compared with the random initialization CNN result that only
achieved 42.4% of mean-class accuracy. As shown in Fig.
8, once again, with lower thresholds, the highest accuracy is
achieved.

GSF2App: Combining global and semantic features in a
two-step learning approach, significantly improved the CNN
baseline result by 1.5%. Our final performance gets 70.6%
of mean-class accuracy on the NYU Depth Dataset V2, out-
performing the recently state-of-the-art accuracy [6] by over
2.5%.

Notice that, the best final achieved results used semantic
feature vectors that were extracted from the COCO dataset pre-
trained YOLOv3 model with confidence thresholds of 0.1 and
0.2 on the SUN RGB-D and NYU Depth dataset respectively.

V. CONCLUSION

In this paper, a deep-learning based Global and Semantic
Feature Fusion Approach (GSF2App) with two branches for
RGB indoor scene classification is proposed. Semantic features
represent the objects recognized in the RGB image along with
the number of times that the same object appears in the same
image. Semantic features were extracted through the COCO
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Fig. 9. Confusion matrix of GSF2App on the NYU Depth Dataset V2
(Classes: 0 = others, 1 = bedroom, 2 = kitchen, 3= livingRoom, 4 = bathroom,
5 = diningRoom, 6 = office, 7 = homeOffice, 8 = classroom, 9= bookStorage).

dataset pre-trained YOLOv3 model. The proposed approach is
trained in two steps. In the first one, the ImageNet pre-trained
VGG16 CNN model is used to initialize our CNN model
that is trained to extract global features from RGB image.
In the second learning step, the model learns how to combine
semantic features with Global-CNN features. Promising results
were attained for RGB indoor scene classifications on both
SUN RGB-D Dataset and NYU Depth Dataset V2, which
validate the proposed learning approach, however, a good
classification is dependent from the scene view. Note that
we use an object-centric pre-trained model to initialize our
model, however, promising results were achieved in indoor
scene classification, showing that the model initialization is an
important factor that must be taken into account. Despite the
occurrences of errors in object recognition, reported results
show that semantic features can be useful for indoor scene
classifications tasks.
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