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ABSTRACT Identity Documents (IDs) containing a facial portrait constitute a prominent form of
personal identification. Photograph substitution in official documents (a genuine photo replaced by a non-
genuine photo) or originally fraudulent documents with an arbitrary photograph are well known attacks,
but unfortunately still efficient ways of misleading the national authorities in in-person identification
processes. Therefore, in order to confirm that the identity document holds a validated photo, a novel
face image steganography technique to encode secret messages in facial portraits and then decode these
hidden messages from physically printed facial photos of Identity Documents (IDs) and Machine-Readable
Travel Documents (MRTDs), is addressed in this paper. The encoded face image looks like the original
image to a naked eye. Our architecture is called CodeFace. CodeFace comprises a deep neural network
that learns an encoding and decoding algorithm to robustly include several types of image perturbations
caused by image compression, digital transfer, printer devices, environmental lighting and digital cameras.
The appearance of the encoded facial photo is preserved by minimizing the distance of the facial features
between the encoded and original facial image and also through a new network architecture to improve the
data restoration for small images. Extensive experiments were performed with real printed documents and
smartphone cameras. The results obtained demonstrate high robustness in the decoding of hidden messages
in physical polycarbonate and PVC cards, as well as the stability of the method for encoding messages up
to a size of 120 bits.

INDEX TERMS steganography, Machine-Readable Travel Documents, deep neural network, Hiding
message into images

I. INTRODUCTION

I

N this paper, we present a new facial image steganography
method for transmitting secret messages through facial

images. That "encoded" information can be later "decoded",
independently of the image format, either digital or printed
and of the transmission media, if any. If the encoded image
is printed and captured by a digital device, the decoded algo-
rithm must be prepared to deal with several sources of noise
introduced by the physical and digital means. The architec-
ture of our method is called CodeFace and it is schematically
depicted in Figure 1, that presents, respectively, the encoder
and the decoder in the left and right black rectangles. The
secret message content is encoded inside the facial image is
robust to physical distortions of the image carrier and other
sources of noise and error. This is achieved through a careful
design of a noise simulation module whose parameters are
learned by the decoder. This message, which is not visible

to the naked eye, can be captured by a digital camera of a
ubiquitous mobile device and further detected and decoded
by a validation algorithm through the use of deep learning
methods.

IDs and MRTDs (Identification and Machine Readable
Travel Documents) are used to identify and authenticate iden-
tities in several scenarios such as crossing national borders,
in civil applications, sales and purchasing portals, or ad-
mission to transaction processing systems. These documents
have several security features which mitigate and combat
document forgery. As these security systems are difficult to
circumvent, criminal attacks on ID verification systems are
now focusing on fraudulently obtaining genuine documents
and the manipulation of the facial portraits. To reduce risks
related to this fraud problem, it is necessary that governments
and manufacturers of IDs and MRTDs continuously develop
and improve security measures. With this in mind, we in-
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FIGURE 1. The implementation of CodeFace is performed in two pipelines, implemented using independent networks, namely the encoder and the decoder. In the
encoder pipeline, a message intended to be secret is first encoded with a Binary Error-Correcting Code algorithm and thus concealed in the detected facial image.
This encoded image is used for the issuance of an ID document that may be validated with a smartphone camera. The developed mobile application processes the
captured ID document images using the decoder pipeline. In this pipeline, the CodeFace network then extracts the binary secret message from the image of the
detected face, and the same Binary Error-Correcting Code algorithm translates it to a string. Finally, the original and extracted messages are compared to confirm
the integrity of the ID document.

troduce the first efficient steganography method - CodeFace
- which is optimized for facial images printed in common
IDs and MRTDs. CodeFace is an end-to-end Generative
Adversarial Network (Figure 2) that is formed by an Encoder
(Figure 3), that can conceal a secret message in a face portrait
and, hence, producing the encoded image, and a Decoder
(Figure 4), which is able to read a message from the encoded
image, even if it is previously printed and then captured by a
digital camera.

The key advantages of our model are: 1) it introduces
a new security system for encoding and decoding facial
images that are printed in common IDs and MRTDs, 2) the
differences between the encoded and original facial images
are not evident to the naked eye (see Figure 5), 3) the
authentication of persons, either using 1:1 verification or
1:N identification, can be performed using our model, 4) the
system is suitable for and optimized to run on smartphones,
5) CodeFace surpasses state-of-the-art methods in allowing
the use of images in their context, irrespectively of the back-
ground. This feature also allows us to use the method without
any restrictions relating to photo parameters, as described in
detail in Section III-A, 6) our system is able to decode secret
messages from very small images (100⇥ 100 pixels).

Considering the existing steganography models summa-
rized in section II, we have found three constraints that make
them unsuitable as security verification systems for document
portraits. Firstly, they fail to decode secret message from
small, encoded images. Secondly, they do not preserve suf-
ficiently the visual structure of the encoded face, thus intro-
ducing noticeable distortion in the appearance of the face, as
shown in the comparison of Figure 5. The existing methods
also introduce extra noise into the encoded facial images
that affects the performance of biometric facial verification
systems, as shown in the metrics presented in the plot A of
Figure 6. Thirdly, as mentioned above, these methods require
the message to be encoded in a full image. Consequently, the
currently available steganography models - to the best of our
knowledge - are not suitable security systems for application
to IDs and MRTDs.

In order to overcome the aforementioned limitations, our
method presents the following improvements. In first place,
we improve the noise simulation module by adding a resize
network (using down-sampling) to decrease the size of the
decoder input image from 400 ⇥ 400 to 100 ⇥ 100 during
the training. This new resize network increases the decoder
performance when reading messages from smaller images.
Then we add a perception loss function term that mini-
mizes the facial embedding difference between the original
and encoded images. The method for extracting high level
features is based on a metric learning approach introduced
in FaceNet [22]. Such facial embedding is usually used in
various recognition tasks such as facial verification, iden-
tification, clustering, and can be easily implemented using
standard conventional tools. This simple loss function im-
plementation enhances the face structure and improves its
perceptual appearance. Finally, we consider face detection
models in both our encoder and decoder pipeline applications
to enable the application of our method to an arbitrary part of
the face, independently of the background.

Figure 1 presents an overview of the CodeFace application
process. The application contains two separate systems, the
encoder and decoder. The encoder receives a facial photo and
an arbitrary secret message as input. Using a face detection
method described further ahead in section III-A, the relevant
part of the face is detected and cropped. In parallel, a secret
message is translated to a binary message using a Binary
Error-Correcting Codes algorithm, whose details are pre-
sented in section III-B. Then, the encoder network (a trained
deep learning network) accepts a cropped facial image and
a binary message as input and encodes this message into
the facial image. The facial image is printed in IDs and
MRTDs. The encoder network for training is described in
section III-C. In the decoding process, a document image is
first captured using a mobile camera, then the encoded part of
the image (the portrait) is detected and cropped. The decoder
network receives the cropped encoded face as input and
recovers the binary message. A detailed description of this
decoding process is presented in section III-D. Subsequently,
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FIGURE 2. The CodeFace training network is made from generator and
discriminator parts. The generator consists of an encoder, a decoder and a
noise simulation network. The discriminator is a combination of face detection,
alignment and cropping systems, a CNN and a Simple Dense layer (fast
forward network). The face detection crops the encoded image for the FaceNet
loss function. The discriminator also includes a LPIPS perceptual loss and
Critical loss functions for the encoded images, and a Dense Layer and a cross
entropy binary loss function for the decoded messages.

the same Binary Error-Correcting Code algorithm translates
the binary message to a string with the secret message.
Finally, the recovered message is analyzed and the integrity
of the portrait is verified.

For the encoder and decoder networks training, the Code-
Face structure uses a Generative Adversarial Network (GAN)
[12] which is comprised by four components: loss func-
tions module, Convolutional Neural Networks (CNN) for
the encoder and the decoder and a noise simulation module.
The encoder network has a set of loss functions consisting
of perceptual loss [30], FaceNet [22], Wasserstein loss [3]
and residual regularization [24]. These loss functions are
designed to preserve the facial structure and color of the
encoded face during training. We have implemented a com-
plete noise simulation module to approximate the magnitude
of the distortions resulting from real printing and digital
imaging processes (capture) before the image is fed into the
decoder. As far as the authors are aware, this is the first time a
resize network is used to develop the noise simulation aspect,
allowing the system to validate and decode small portrait
images. The decoder is created using a Special Transfer
Network (STN) [15] and a Convolutional Neural Network
(CNN) that are trained by a cross-entropy loss function.

Summarizing, the need of algorithms to achieve better
security in ID documents able to conceal secret information
in face portraits and able to be used in a mobile application
to validate the encoded information, and consequently able
to decode information in printed items, has motivated the
work herein described. As presented in the next section, our
model is inspired in the StegaStamp [24], the first printer-
proof steganography method, however not applicable to face
portrait.

II. RELATED WORK
Image Steganography. The use of deep learning in
steganography brought a disruptive change in its capabili-
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FIGURE 3. The encoder network is created by a UNet network with no
pooling layers, and three convolutional layers.

 

Special 
Transformed  

Images 
  

 
Conv(64,3) 

 
Flatten() 

 Dense(Secret Size)  Conv(32,3)  Conv(128,3) 

FIGURE 4. The decoder network is made from two CNNs with a Special
Transformed Network (STN).

ties and applications. The state-of-the-art methods that take
advantage of traditional methods (without deep learning),
are discussed in [13], [21]. In this work, we focus on deep
learning-based steganography techniques.

Image steganography using deep learning is a relatively
new research area, typically based on opposing networks
(mainly GANs) to encode and decode information. The most
interesting methods to achieve this result are SteganoGAN
[29] and HiDDeN [32]. The latter also adds a noise simula-
tion network to improve the ability to recover images with
distortion. The HiDDeN noise simulation component is im-
plemented between the encoder and the decoder. The authors
propose the noise simulation for a discrete cosine transform
(DCT), a JPEG compression, a JPEG-Mask, and a JPEG-
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Drop as distortion types for generating the noisy samples.
However, the noise simulation model in SteganoGAN and
HiDDeN have a rather simple formulation and they do not
entirely consider other noise sources introduced by physical
printing and capturing with a digital camera.

The first successful example of steganography with printed
images was performed by StegaStamp [24], where the au-
thors demonstrated how to achieve robust decoding of mes-
sages even under physical transmission. StegaStamp con-
siders a set of different image corruptions between the en-
coder and the decoder that successfully approximates the
set of distortions resulting from real printing transmission.
Additionally, the method adds a Perceptual Loss function
(the Learned Perceptual Image Patch Similarity, LPIPS) [30]
that preserves the high quality of the images. According
to our research, the performances of other models, such as
LFW [13], HiDDeN [32] and SteganoGAN [29], are under
10% when decoding messages from small printed encoded
face images. Therefore, in this work we only compare our
model with StegaStamp. It was the first notable steganog-
raphy model that could encode and decode hyperlinks in
photos captured from real prints. Nevertheless, StegaStamp
has some limitations in its application as a security element to
verify the integrity of documents. Firstly, StegaStamp deals
with relatively large, printed images that make it unsuitable
for small facial photo applications, as the document security
of IDs and MRTDs. Secondly, the encoded StegaStamp facial
image has excessive noise when compared to the original
image, as can be seen in Figure 5. This excessive noise also
affects other biometric face verification systems as shown
in the plots of Figure 6 for the Euclidean distance between
the original and encoded image. Finally, the StegaStamp
pipeline uses BiSeNet [28] to detect the encoded image, a
neural network that does not have the ability to hide and read
messages from specific parts of facial images.

CodeFace can overcome the aforementioned limitations.
We apply a new loss function, inspired by FaceNet [22], to
preserve the structure of encoded faces. We also introduced
a resize network before the decoder as a new noise sim-
ulation module. This resize network (that performs down-
sampling of the input images) enables the decoder to read
a message from small face images in the decoding process.
Furthermore, we add the face detection [4], [7], [8] into
the CodeFace application to enable it to hide and read the
encoded message only within the image of the face.

Document security verification. The focus of this paper
is on concealing security encoded data in ID and MRTD
documents while allowing for the integrity verification of the
portrait. In terms of document security, it is also important
to maintain the system’s ability to recognize persons using
facial recognition algorithms. The main existing market so-
lutions for the validation of ID cards and passport portrait
photos using mobile devices are the Jura Digital IPI [18] and
the IDEMIA Lasink [16], which are focused on altering the
facial photo of the documents. Using the Jura Digital IPI
as the data encoding technique, the photo is encoded by a

digital technology and the secret information encoded in the
portrait will only be visible when using a decoding device.
The encoder uses a halftone process and the validation relies
on the scanned image and the prior knowledge of the encoded
message. In the IDEMIA Lasink, the image is modulated by
a set of lines which encodes the secret information.

Other work related with ours is the VIPPrint [9], that
recognizes a signature of a specific printer. Every printer
introduces special and unique effects into its printed mate-
rials. VIPPrint model detects these effects and use them to
build a validation system. While this is an effective model in
practice, it is not a steganography model.

The ongoing research in facial recognition is typically
focused on searching for the best facial representation. The
state-of-the-art methods here referred typically utilize deep
learning CNN based networks [7], [22], [23]. One of the
closest works to our proposed system is the Medvedev’s
algorithm [20]. The authors introduce a portable and efficient
biometric system for validating ID and travel documents.
Their model consists of a machine-readable code, that is
derived from the biometric template of a digital frontal facial
image and printed on ID cards. In the validation process
of the documents, the application reads and compares two
biometric templates, one from the frontal face photo and the
other from the machine-readable code. This work, however,
does not disguise the information in the portrait and conse-
quently the machine-readable code is visually available.

On the other hand, 1 : 1 facial verification has largely
been resolved [7], [22], [25], while 1 : N facial identification
solutions typically suffer from lower performance.

Our model can be used as a 1 : N identification and a 1 :
1 verification algorithm, with the ability to encode a unique
security number for each individual in its document’s facial
photo. Although out of the scope of this article, the decoder
can thus read this security number and find user’s data on a
sovereign database.

III. CODEFACE
The CodeFace is a model to encode and decode a secret
message in facial images in the context of IDs and MRTDs.
Our model is the first one to be designed as a security method
for the verification of document portraits and it is inspired
by steganography models such as [24], [32]. CodeFace is
composed of two processes: the encoder and the decoder, as
showed in Figure 1.

In the encoder, the facial image and the secret message
are first received as inputs. The relevant part of the image
is detected and cropped using a face detection model [4],
[8]. Simultaneously, the secret message is coded by a binary
error correcting codes algorithm [5], [11]. At the end of the
encoder application, a pretrained encoder model embeds the
message in the cropped face and produces an encoded facial
image. The encoded cropped image then replaces the original
facial image which is subsequently printed on an ID card.

As for the decoder, the ID card’s encoded facial image
is captured by a digital camera. The face detection module
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StegaStamp Codeface Original  

StegaStamp CodeFaceOriginal  

FIGURE 5. From left to right respectively: original images, StegaStamp
encoded and CodeFace encoded are shown. All encoded images hide a
random secret message. We encoded 100 bits within the facial image, which is
a reasonable amount of information for security purposes.

then detects the encoded part of the facial image, which
the CodeFace decoder network then receives, retrieving the
hidden message. A binary-error codes algorithm converts the
retrieved binary message into a number or a string. Then the
final resulting message, the retrieved message, is checked
using a hash function or checksum verification algorithm
to validate the message, thus providing a way to check the
integrity of the face portrait in IDs and MRTDs.

The CodeFace encoder and decoder networks are trained
using GANs, whose structure is shown in Figure 2. It is
composed of four parts: the encoder, decoder, noise simu-
lation module and loss functions. The encoder and decoder
networks are trained to hide and read messages in facial
images while the noise simulation layers, included before
the decoder, create a realistic environment for the complete
network during the training. Loss functions consist of various
pre-defined network components and additional loss func-
tions that preserve the appearance of the encoded face and
message during the training. In this section, we detail all
components of the CodeFace GAN generator that are made
from the encoder network, the noise simulation module and
the decoder. In the final section, CodeFace’s discriminator is
described, including the loss functions and related networks.

A. FACE DETECTION
For a robust ID verification process that conceals a message
in the facial image, we need a face detection model to identify
the part of the face where the secret message is hidden. It
is important to note that the facial detection model should
reveal the exact part of the face used to encode information.

To achieve this, we applied and carried out extensive tests
using a set of facial detection approaches such as BlazeFace
[4], MobileNets V2 float32, MobileNets V2 int8 [14], SSD
int8 MTCNN [19], LBP cascade (opencv) and PRnet [26].

A cascade classifier (like HAAR and LBP) is a conven-
tional technique used for various detection purposes that can
be easily applied by the OpenCV Toolkit in a smartphone.
However, in comparison with deep learning methods, it is not
accurate enough. BlazeFace and Mobilenet V1/V2 are signif-
icantly faster and more accurate deep learning architectures
for modern mobile devices.

Furthermore, PRnet provides a complete solution for facial
detection and facial pose analysis, that increases the detection
accuracy under pose variation and occlusion. We chose PRnet
method as it had the best performance for our purposes. We
significantly optimized the network and reduced its size by
converting the model to the TensorFlow Lite format in order
to embed it into a mobile application.

B. ERROR-CORRECTING CODES ALGORITHM
Aiming to stabilize the accuracy of the decoding, we em-
ployed an error-correction code algorithm. Although the
choice of the better method for binary-correction is not within
the scope of this work, we selected cyclic error-correcting
codes namely the BCH algorithm [11] and Solomon algo-
rithm [5] [27].

C. ENCODER
The first part of the generator is the encoder network. The
aim of the encoder training process is to optimize the trade-
off between its ability to restore the perceptual properties of
the input images and the decoder performance to extract the
hidden message.

The encoder network architecture that we selected is based
on UNets, however, the pooling layers were removed to
preserve the information of the secret messages that may
otherwise be lost during the network training. It thus receives
an aligned face and a random binary message as inputs and
produces an encoded image of the same size. The secret bi-
nary message is transformed (by reshaping and up-sampling)
to coincide with the size of the encoder input as expected.
The input face image is then processed by the encoder. Since
the encoder does not have pooling layers, we need to design
its architecture in a special manner by manually matching the
parameters of convolutions to avoid layer connection errors.

Figure 3 displays CodeFace encoder network’s details that
are prepared for 400⇥ 400⇥ 3 input images.

D. DECODER
The decoder network that is presented in Figure 4 is in-
corporated into the whole architecture after applying the
noise to the images. The decoder is designed to recover a
message that is encoded in a facial image. For this network,
we applied CNNs with STN based on StegaStamp [24] and
HiDDeN [32]. STN helps to crop out the appropriate region
and normalize its scale, which can simplify the subsequent
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(c)(B)(A)

FIGURE 6. (A) the deviation in the Euclidean distance from facial features between the original and the encoded faces by StegaStamp. (B) the probability
distribution function of the variation in the facial features between original and CodeFace encoded images. (C) summarizes basic statistics that are used to compare
both models for a dataset of 809 images.

FIGURE 7. Samples of our model deployed on printed test ID cards. We used
facial images of celebrities that were downloaded directly from the internet.
The figure shows the full process of our model. The correct green box shows
the number of frames in which the encoded and decoded messages were the
same. The false red box shows the number of frames in which the decoder
cannot correctly read and decode the message. The processing was made at
10 frames per second.

steganography decoding task and lead to better performance.
It removes the spatial invariance from the encoded images by
applying a learnable affine transformation that is followed by
interpolation. The STN block is placed before the CNN.

E. PERTURBATION SIMULATION
To simulate the noise from printers and digital cameras, we
applied several types of noise to the output images of the
encoder network, before using the decoder. Based on two
works, HiDDeN and StegaStamp, our model encompasses
the same set of noise types such as perspective warp, motion
and defocus blur, camera noise, color manipulation and JPEG
compression. Perspective warp is a random homography that
simulates the effect of a camera that is not precisely aligned
with the encoded image marker. Motion and defocus blur can
result from both the camera motion and inaccurate autofocus,
which are very common on mobile devices. To simulate

motion blur, a random angle is sampled to generate a straight-
line blur kernel with a width between 3 and 7 pixels. The
camera types of noise, which include photon, dark and shot
noise from the camera system, has been well documented in
previous works [24], [32]. Color manipulation, which is noise
that can result from printers and monitors, has a limited color
gamut compared to the full RGB color space and includes
hue shift, saturation, brightness and contrast. The last added
noise is a JPEG compression, which affects the image when
it is stored in a lossy format, such as JPEG. All of these types
of noise are applied to CodeFace between the encoder and the
decoder in the training phase (refer to Figure 2). According
to the objective of the CodeFace system, it should be able to
read a message from a small face image printed on a ID or
on an MRTD. We then developed and added to the training
network the new noise simulation layers. All of the layers
have a scalar hyper parameter that governs the distortion
intensity.

The novel idea proposed in this research is to attach a
resize network to our model as an additional noise simu-
lation module. This is designed to help the decoder read
messages from smaller photos in comparison with previous
approaches. The resize network decreases the size of the
encoded images that the decoder receives.

F. LOSS FUNCTIONS
All the outputs of the CodeFace generator are received by the
CodeFace discriminator. The discriminator is designed with
a set of loss functions to improve the model’s performance.
The most important loss functions in our model are LPIPS
and face embedding.

LPIPS demonstrated its efficiency in StegaStamp. There-
fore, we use it as perceptual loss function in our model. In
addition to LPIPS, there is need to preserve the facial struc-
ture and its high-level representation, thus it was modified
the loss function with the similarity function that is estimated
by the output of a FaceNet model. FaceNet model uses
the Inception Resnet V1 architecture that was trained with
the VGG2 dataset. The model receives a 160 ⇥ 160 pixels
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RGB facial image and delivers a 128 dimensional vector
of facial features. The Euclidean distance between the two
sets of features expresses the degree of similarity between
their source images. Our model thus computes the Euclidean
distance to minimize the difference in facial features between
the original and encoded facial images during the training
process.

The two loss function terms are then summed with other
loss terms that were used in the aforementioned models, [24],
[32]. In summary, the complete loss function in the CodeFace
model includes the following components:

• LPIPS perceptual loss function LP ,
• FaceNet loss function LF - an arbitrary biometric recog-

nition system which measures the closeness of two face
templates by Euclidean distance,

• The Wasserstein loss LW - utilised as a perceptual loss
for the encoder/decoder pipeline [3],

• Residual regularization LR [24],
• The cross entropy message LB - that trains the decoder

network in order to recover the message.
In the training process, the loss functions are the weighted

sum of the five image loss terms,

Loss = FLF + PLP +WLW +RLR +BLB (1)

where F , P , W , R, and B are the weights for each loss
function components. At the early stage of the training F ,
P , W , and R are initially set to zero (B is set to 0.01) until
the decoder achieves high accuracy in these weights (this
usually occurred after 500 to 700 steps in our experiments).
Afterwards, these weights are increased linearly in every
step. We slowly improve the effectiveness of the loss function
by increasing these coefficients.

G. DATASETS
For the training of the CodeFace models, seven databases of
frontal facial images were incorporated, including the PICS
face dataset1, the Color FERET face dataset2, the AT&T
Database of Faces3, the BioId face dataset4, the Georgia Tech
Face Database5 and the FEI Face Database6.

For the purpose of CodeFace, we needed a dataset to meet
the requirements of international institutions such as ICAO
(International Civil Aviation Organization) concerning iden-
tification documents [1], [10]. The first requirement concerns
the size of the photos, which must be at least 35mm⇥45mm

(width ⇥ height) and the size of the image of the face that
must be at least 16mm⇥20mm (excluding ears). The second
requirement concerns the framing of the image: the image
should depict a complete frontal image of the face, showing

1http://pics.psych.stir.ac.uk/
2https://www.nist.gov/itl/ products-and-services/color-feret-database/
3https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/
4https://www.bioid.com/facedb/
5http://www.anefian.com/ research/face_reco.htm
6https://fei.edu.br/ cet/facedatabase.html

FIGURE 8. The first plot shows the LPIPS loss function between original and
the CodeFace encoded images (red line), and between the original and
StegaStamp encoded images (green line). Second plot shows the Structural
Similarity Index (SSIM) between the original and the encoded images for both
CodeFace (red) and StegaStamp (green) images.

the full head and centered in the eyes. The third requirement
regards the background: the photo should have an uniform
white background with sufficient contrast with the face. The
fourth requirement states that the eyes should be fully visible.
If the person uses glasses, the lenses must be fully transparent
(without distortion due to reflections and shadows).

To meet these requirements, we implemented a verification
system that removes facial images that did not fulfil all the re-
quirements. After the mentioned datasets were filtered, 1900
images remained, respecting the ICAO standards. Although
this is not a large dataset, we are able to obtain very good
results with it. All the facial images that are presented in this
paper belong to celebrities.

IV. EXPERIMENTS
We have monitored and verified the performance of our en-
coder and decoder networks using three smartphone cameras
with medium to high capacities (HUAWEI P40Pro, HUAWEI
P20Pro and iPhone 10s). All the decoding tests have been
done using a set of images (grayscale and RGB) physically
printed on polycarbonate, PVC cards and regular paper. In
terms of printer, we used two commercial printers (Brother
HL-3270CDW and HP Color LaserJet CP5225n), one laser
engraving printer for polycarbonate cards from the manu-
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FIGURE 9. Comparison of the face verification performance. First, the blue
plot is the face verification applied to the original image without any message.
The second plot, in orange, shows the ROC of the face verification when an
image is generated by CodeFace. The last plot, in green, is the ROC for
StegaStamp generated images.

facturer Muehlbauer, and a Thermal Transfer printer from
DataCard.

Since the results of the experiments showed no significant
differences regarding the type of printer used or the material
(paper, polycarbonate or PVC), we do not present separate
results for each printer and material.

We will show that CodeFace is better at improving the
image perception quality than similar state-of-the-art ap-
proaches such as StegaStamp [24]. We compare our result
with the StegaStamp model because it is the only printer-
proof steganography model to the best of authors’ knowl-
edge.

In the experiments, we recorded the videos from the ID
cards and analyzed them. Figure 7 shows samples of these
videos and the number of frames in which the encoded and
decoded messages were the same. A frame is considered
correct if the decoder recovers the expected message and
passes the validation step. It is worth noticing that the method
fails when any of the network modules is not able to achieve
successful results. For instance, the method fails if a face
detection is not achieved or if the correct crop of the region
of interest is not correctly performed. The method also fails
if the decoder is unable to produce a correct bit stream for the
error-correcting code method.

Instead of running the method for a single frame or image,
CodeFace analyzes frames from the video feed to improve
the user experience. The user then has a more fluid and
friendly interface with the application, while increasing the
probability of achieving a successful decoding since more
frames are analyzed. CodeFace code was developed using
TensorFlow library and it is trained in Python. After train-
ing, the model was converted and optimized for the TFLite
format, running in Java (Android studio).

A. PERFORMANCE
Facial images encoded with our CodeFace approach out-
perform the StegaStamp generated images in terms of their
perception quality. The visually perceptible results from both
CodeFace and StegaStamp for 100 bit messages are pre-
sented in Figure 5. The results clearly show, qualitatively,
that our model better preserves facial structure and texture.
Quantitatively, Figure 6 presents the Euclidean distances of
facial features and the probability distribution function of
the difference in the facial features between the original and
encoded images generated by CodeFace and StegaStamp.
CodeFace reduced the impact of noise on the system by
at least 90 percent compared to StegaStamp. Therefore, we
expect that when using CodeFace for encoding, the face
detection and face verification systems have a negligible
error rate caused by the encoding of the hidden message.
Additionally, we have used 100 frontal face images from the
VGGFace2 dataset to compare perceptual similarity using
LPIPS and the Structural Similarity Index (SSIM) between
the original and encoded images from both CodeFace and
StegaStamp, as depicted in Figure 8. As shown in the two
plots, CodeFace images are much more similar to the original
images when compared with StegaStamp encoded images.
LPIPS is adopted for the training of both CodeFace and
StegaStamp.

To compare the influence of StegaStamp and CodeFace on
the performance of face verification, we selected a dataset
of 32000 pairs of facial images from the VGG2 database
(16000 with the identity matched and 16000 non-matched).
In each image pair, we chose one image to generate an
encoded copy using StegaStamp and CodeFace. Next, we
evaluated the facial verification performance across three
setups, namely original, StegaStamp and CodeFace images.
The similarity score is estimated by the standard DLib face
verification module [17]. We used an accuracy metric to
fix the similarity threshold at 0.6 (as used in [22]). With
these settings, we obtained a 99.9% percent accuracy for face
verification using only original images, 99.3% accuracy for
the CodeFace encoded images and 88.8% accuracy for the
StegaStamp images whose ROC curves are shown in Figure
9.

B. ABLATION STUDY
Figure 10 presents the encoded CodeFace images with mes-
sages of different sizes, without the resize network, from 80
to 200 bits. As one can see, after 120 bits the perceptual
quality of encoded images is slightly degraded.

In order to test the performance of the resize network
(regarding the noise simulation aspect), the experiments were
performed based on the videos captured by the smartphone
camera in a variety of real-world environments. In the experi-
ments, we first converted the images to the same resolution by
a super resolution network [31]. Then we encoded a special
message in 100 facial images of celebrities, and finally we
removed the background from all of the encoded images
by applying a Portrait Segmentation model [6]. By using a
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200 bits140 bits120 bits

100 bits90 bits80 bits

FIGURE 10. Encoded CodeFace images are shown with different sizes of the
message, from 80 bits up to 200 bits.

FIGURE 11. The plot shows the decoders’ performance tests carried out with
a handheld HUAWEI P20Pro smartphone camera. Videos were captured in a
variety of real-world environments (in-the-wild). Encoded images, which are of
celebrities, are printed by a consumer printer. We repeated the test five times
to achieve higher precision. As can be seen, CodeFace with the resize layers
has better performance in small images with widths above 4 cm (the actual
size of a typical ID card portrait).

commercial office printer, the encoded images are printed
with sizes ranging from 1 cm to 6.5 cm wide on paper. As
the size and shape of people’s faces are not uniform, we do
not have a fixed range of dimensions for all images. For
each test, we preserved the width of the images, while the
height can be scaled accordingly to the original aspect ratio.
In the end, we test the 100 facial images with a HUAWEI
P20Pro smartphone camera. An image was validated and
accepted if the decoder recovers the complete message at
least once in the first 10 frames, and at least twice in the first
20 frames. The result of the experiments, which are presented
in Figure 11, demonstrate that the CodeFace system achieved
an accuracy of 100%, for images whose width is larger than
6 cm, while the CodeFace system, with the resize network

model, has an accuracy of 100% for images whose width is
larger than 4 cm. It means that above this size, we expect the
CodeFace model to work with no error irrespectively of the
use of the resize network. We emphasize that the results are
dependent both on the smartphone camera and the printer.

In summary, the use of the resize network can improve
the model accuracy for smaller images at a small cost on the
perceptual structure of encoded faces.

In terms of computational performance, for 100 random
images of the dataset, the mean execution time to encode
a message in a single image is approximately 1.2 seconds,
running in a regular PC, while the mean execution time of
the decoder to read and validate a message is approximately
0.8 milliseconds.

CONCLUSION
In this paper, we introduce a novel deep learning printer-
proof steganography approach for document security sys-
tems. We significantly optimized the performance of the
CodeFace encoder and decoder to incorporate and read
messages in facial images by combining the steganography
with face detection, considering a new loss function and a
noise simulation pipeline. The new loss function combines
perceptual and high-level facial representation parts to mea-
sure the variation of the facial structure during training. The
noise simulation pipeline is modified with a resize layer that
decreases the size of the encoded images used throughout
the training. Therefore, CodeFace with the resize layer can
better read a message from a smaller image and the storage
size of the decoder network was decreased. This is achieved
at a small cost to the perceptual structure of the encoded
face. In comparison with state-of-the-art approaches, we have
demonstrated significant improvements in terms of percep-
tual quality of the encoded images and their compliance with
modern facial recognition systems and document issuing
requisites. CodeFace presents an innovation that can be eas-
ily implemented in real world document validation systems
and applied directly to ID cards and MRTDs as a security
protocol.

As future paths for research, we intent to increase the
amount of information encoded in the face images. To
achieve this goal, we will study new coding and compression
algorithms as local sensitive hashing [2]. We also intend to
study alternative possibilities to use the whole face image,
instead of a smaller part of the portrait.
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