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Abstract: The identification of a person is a natural way to gain access to information or places. A
face image is an essential element of visual validation. In this paper, we present the Card3DFace
application, which captures a single-shot image of a person’s face. After reconstructing the 3D
model of the head, the application generates several images from different perspectives, which, when
printed on a card with a layer of lenticular lenses, produce a 3D visualization effect of the face. The
image acquisition is achieved with a regular consumer 3D camera, either using plenoptic, stereo or
time-of-flight technologies. This procedure aims to assist and improve the human visual recognition
of ID cards and travel documents through an affordable and fast process while simultaneously
increasing their security level. The whole system pipeline is analyzed and detailed in this paper. The
results of the experiments performed with polycarbonate ID cards show that this end-to-end system
is able to produce cards with realistic 3D visualization effects for humans.

Keywords: 3D reconstruction; 3D face visualization; shape and surface 3D modelling; lenticular
lenses

1. Introduction

In recent times, security issues have become fairly prominent in our daily routines,
not only digitally but also visually. The necessity to authenticate an individual in order to
grant access to a restricted area or task is now common practice. The identity verification
that represents a confirmation that a given identity as real and that the individual claiming
the identity is entitled to it has become of major importance. Generally, identity verification
is required when there is a risk associated with dealing with the wrong person. The level of
confidence in identity claims depends on the risk related to incorrect identification and in
the liability distribution among involved parties.

The usage of a face image in authentication cards and travel documents is considered
the simplest and the most common method, thus rendering it the first step in the forging of
a document. Consequently, the counterfeiting techniques for forging documents have also
increased and improved, especially regarding visual authentication, which represents an
easier way to forge documents. The use of techniques to make this task more difficult or
even impossible has attracted significant attention.

Regarding facial recognition, for instance, recent technological advances, boosted by
deep learning architectures, have already demonstrated their ability to solve the problem
of recognizing a person from a single photo. Systems based on architectures such as Arc-
Face [1] or CosFace [2], for instance, have recently presented an extremely high confidence
level in predictions, even outperforming a human operator. On the other hand, the Face
Recognition Vendor Tests (FRVT) 1:1 and 1:n challenges, continuously promoted by the
National Institute of Standards and Technology (NIST), reveal a high variety of commercial
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and non-commercial solutions for the facial recognition problem. The research topics in this
area are now becoming particularly focused on the fairness of the population distribution
in terms of gender, skin color, ethnicity and other characteristics of the subjects [3,4].

Furthermore, in the context of using facial recognition for security purposes, new
approaches can either improve the security of the portrait photo [5] by providing an
embedding of the face in the document itself or can take advantage of the three-dimensional
information of faces. Particularly, in [6], it is shown that 3D facial recognition can achieve
more accurate and reliable recognition results by exploring the inherently 3D shapes
of faces.

Understanding the expressions of humans is also important for the issuing of ID
and travel documents. In fact, document photos must be free of facial expressions to be
compliant with the standards [7,8], which helps in the recognition task. In [9], an overview
on this topic is presented, particularly focusing on 3D faces.

As a result, many systems currently lean towards facial recognition with liveness
detection, which is designed for automatic decision systems such as airport gates or at
the entrance of buildings, for instance, although there is still a strong need for physi-
cal documents such as ID cards and travel documents (sovereign issued documents) or
civil ID cards for commercial and business purposes. The counterfeiting of such docu-
ments places considerable pressure on issuing entities to improve security and prevent
presentation attacks.

Consequently, portrait photos in ID and travel documents have been used in different
formats and secured with different elements and technologies. The main photo of these
documents is usually plain, sometimes secured with hidden elements as in the IPITM

solution [10] or the LasinkTM solution [11], to name only a few of the commercial solutions
adopted by the industry. Additionally, the portrait photo of the citizen is often stored in
the document’s chip or in a secondary photo printed with any digital transformation or
even in a lenticular structure in polycarbonate cards, as in the CLI/MLITM solution [12].

Particularly in this last element—the CLI/MLI (Changeable or Multiple Laser Image)
element—the portrait photo is personalized in the polycarbonate card in a lenticular
structure that creates a two-layer image effect, usually with the portrait photo in one
layer and an alphanumeric string or code in the other layer that is visible from a different
viewing angle.

In this paper, we are particularly interested in the elements printed in lenticular
structures and in the three-dimensional visualization effect that appears when the photo is
personalized on the card surface, under the lenticular structure, through the use of photos
generated from a 3D model of the person’s head. This set of generated images (head
views) is intended to be printed on cards with a vertical lenticular structure, providing a 3D
visualization effect and thereby allowing a more accurate visual face validation. Besides the
improvement in visual validation, this 3D effect in the card also makes it more difficult
to forge.

To build the 3D model of a face, several techniques can be used, depending on the
type of cameras or images available. Although our technique can be applied to a setup
with multiple cameras, for instance, our system is focused on 3D cameras, either using
light-field, time-of-flight, stereo or structured light technologies, as long as the information
can be obtained from a single shot. This topic is important for our systems as, in the context
of ID and travel documents, the citizen’s photos are usually obtained from portals or single
camera setups as it is often not practical to have a multi-camera setup (thus also avoiding
synchronization and alignment problems).

There is, however, a drawback concerning occlusions when using a single camera.
In fact, some parts of the face are not seen, which limits the reconstruction of the 3D model.
In [13], the authors present an overview of occlusion detection and restoration techniques
for 3D models of faces in the recognition context.

Our application was thus named Card3DFace, and it is the outcome of an innovation
project by the University of Coimbra and the Portuguese Mint and Official Printing Office
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(Imprensa Nacional-Casa da Moeda—INCM), the manufacturer of ID card and travel
documents in Portugal.

Most of the available systems often make use of multiple facial images, sometimes
taken simultaneously, as inputs. They also tend to use complex pipelines for model building
and fitting [14]. This application is aimed to be an easy and rapid way to provide a solution
for the use of 3D face images in ID cards and travel documents for authentication. Since
our solution is based on single image acquisition (which is much more convenient for
acquisition portals and sites), it does not require very sophisticated equipment for the
acquisition process. In effect, the solution relies on an affordable 3D camera. This solution
is designed to be integrated into the process of producing ID cards and travel documents.

In summary, the motivation of our initial study was the research and development
of an end-to-end application to produce polycarbonate ID and travel documents with
visualization effects using lenticular lenses. In the current article, we present not only the
filtering of 3D models, as presented in the author’s previous work [15], but indeed the
whole system, from the acquisition of images to the printing of the cards, by analyzing
each of the pipeline phases and by discussing the available technology and options taken.
This article thus seeks to be an inspiration for other engineering articles in the industry of
security printing and the authentication of persons.

This paper has the following structure: in Section 2, we mention work related to
the reconstruction of faces and RGB-D characteristics; Section 3 introduces the system
characterization, with an explanation of the main steps of the proposed system; Section 4
demonstrates the interface and its functionalities; in Section 5, we present the results
obtained with the system; finally, Section 6 sheds light on the main conclusions.

2. Related Work

As we present an end-to-end system to produce identity cards with the 3D visualiza-
tion effect in this article, our main contribution is related to the way that pieces are put
together to produce the expected visualization effect. This related work section is thus
organized according to the most important research topics, while disregarding some of the
less relevant engineering aspects.

2.1. Three-Dimensional Face Reconstruction

Three-dimensional face reconstruction is the task of reconstructing a human face from
an image into a 3D form (or mesh). Over the last few decades, researchers have expended
great efforts on this matter due to its challenges and its huge applicability. As a result,
substantial progress has been made, which has led to novel and powerful algorithms
that obtain impressive results, even in the very challenging case of reconstruction from
a single RGB or RGB-D camera. According to Zollhöfer et al. [16], unlike RGB cameras,
RGB-D sensors capture both color and depth data at real-time rates. This helps to solve
the inherent depth ambiguity of the monocular reconstruction problem, since a coarse
geometry estimate is available at least. The use of an RGB-D also enables a more reliable
and realistic reconstruction of the face.

The approaches that work with RGB-D as an input with depth sensors can be classified
as passive or active devices. Passive depth sensors are most commonly implemented via
a stereo camera setup. If a point is found in both views of a calibrated stereo setup,
the 3D point can be reconstructed through triangulation. Active cameras work with a
light projector. These structured light cameras are widespread (e.g., Microsoft Kinect,
Primesense Carmine, Intel Realsense) and provide relatively good depth in the near range,
which is important for face-tracking tasks. Time-of-flight (ToF) cameras are another type of
active depth camera. These RGB-D cameras compute depth by measuring the round-trip
time of a light pulse (e.g., Creative Senz3D or Microsoft Kinect One).

In the work proposed by Thies et al. [17], one of the main contributions is a new
real-time algorithm to reconstruct the high-quality facial performance of each actor in
real-time from an RGB-D stream, captured in a general environment with large Lambertian
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surfaces and smoothly varied lighting. The proposed method uses a parametric face model
that spans a PCA space of facial identities, face poses and corresponding skin albedo. This
model, which learns from real face scans, works as a statistical prior and an intermediate
representation, which finally enables the photo-realistic re-rendering of the entire face.

Hsieh et al. [18] proposed an approach that unites facial tracking, segmentation
and tracking model personalization from an RGB-D model. They detect dynamic occlu-
sions caused by temporal shape and texture variations using an outlier voting scheme in
superpixel space. The model demonstrates robust and high-fidelity facial tracking on a
wide range of subjects with highly incomplete and largely occluded data.

Another interesting work that uses RGB-D as input was proposed by Bouaziz et al. [19].
This work demonstrates that online model building can replace user-specific training and
manual calibration for the facial performance of capture systems while maintaining high
tracking accuracy. It simply requires a low-cost 3D sensor and no manual assistance of
any kind. The authors introduced an adaptive dynamic expression model that, in turn,
combines a dynamic expression template, an identity PCA model and a parameterized de-
formation model in a low-dimensional representation, which is suitable for online learning.

One of the main problems with RGB-D cameras is the intrinsic noise that can affect
the final result in face reconstruction. Filtering is a solution, but in some cases, it may not
provide a satisfactory result. A face has some particular properties; thus, it is important
that the filtering preserves them so as not to defeature the reconstruction. In this sense, we
presented a filter approach based on exemplars [15].

In recent years, several filtering approaches have been proposed to process mesh
geometry, denoising and smoothing meshes, targeting the output from 3D scanners or
RGB-D cameras. The image processing literature considers that methods of mesh denoising
may be classified as isotropic or anisotropic [20,21]. On the one hand, isotropic methods are
independent of surface geometry; that is, they normally remove noise and high-frequency
features together. For example, low-pass filters were some of the first models proposed
to treat meshes. These filters remove high-frequency noises but also smoothen sharp
features [22,23]. Isotropic methods therefore have difficulty in preserving geometric fea-
tures. On the other hand, anisotropic filters are based on anisotropic geometric diffusions,
which are inspired by scale space and anisotropic diffusion in image processing [24]. They
are often needed to preserve features such as sharp edges and corners.

In our case, the main objective is to present a robust filtering model that keeps the
information coherent and reliable even under adverse circumstances. This correction
process is similar to that which is solved in texture-based synthesis techniques [20].

To model the specific deformation of 3D human faces used for novel view synthesis,
which is necessary to print a lenticular card, one possible method is presented by [25].
In this method, the reconstructed visual hull from the shape-from-silhouette approach
is used to refine the 3D model by iterating for photo-consistency, image contour and
surface smoothness.

Furthermore, a very recent work [26] presents a stereo camera based on a new sensor
that particularly explores the rotation of an image sensor and the parallax generated by
the stereo pair of images. This work is also suitable for use in Card3DFace, as well as
conventional consumer stereo cameras, since their small baseline can generate the 3D
reconstruction of faces.

2.2. Head Model Reconstruction and Filtering

Fields such as computer graphics or geometric modeling are quite advanced regarding
representation and mesh processing. Some of the wide variety of modeling techniques
that represent data structures of meshes focus on faces (Face Set and Shared Vertices) [27],
and others focus on edges (Winged-Edge and Half-Edge) [28].

Face-based representations are considered the simplest kind of representation and
are implemented in the most common file formats, such as OFF, OBJ and STL. However,
they do not provide any connectivity information for triangles; thus, edge representations
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present themselves as a more complete strategy for storing a mesh geometry, such as the
position of the vertices, the incident faces on an edge and the vertices that make up a face.

As for the filtering, it represents a phase where the mesh points that render the mesh
irregular and defective are smoothed. Since 3D camera-acquired models are invariably
noisy, the process of mesh smoothing is of great importance. There are several techniques
in the literature used to obtain results for denoising [21]. Some of these techniques are
based on the use of filters, such as the Gaussian filter and the Savitzky–Golay filter, among
others. However, these filters are generic, which for faces that have intrinsic characteristics
for the model itself may lead to distortions such as the flattening of the nose or deformation
of the mouth and eyes.

3. System Building Blocks

Card3DFace is a system based on four main steps that address the acquisition, mod-
eling, generation of face views and printing phases, as illustrated in Figure 1. The first
step seeks to obtain an image of a person’s face based on a single-shot image acquisition.
The second phase, modeling, includes two specific steps: the reconstruction and filtering
processes. This phase is responsible for transforming the acquired image into a 3D model.
The generation of head views corresponds to the third phase, where perspective images
of the generated 3D model are obtained and used for printing in lenticular cards, which
corresponds to the fourth step.

Figure 1. The pipeline of the proposed application.

In this section, we focus on the four steps of the system pipeline separately.

3.1. Acquisition

For this application, it is necessary to use cameras that are capable of obtaining not
only the visual characteristics but also the geometric information of the scene either directly
or indirectly. In this case, the scene corresponds to faces positioned in front of the camera so
that information related to depth can be extracted. In the development of this application,
three types of cameras were considered and studied, namely plenoptic cameras (also
known as light-field cameras), time-of-flight cameras and stereo cameras.

3.1.1. Studied Camera Types Technologies and Selection

Plenoptic (or light-field) cameras present a different architecture from conventional
cameras. This difference lies in the fact that conventional cameras are composed of the
main lens and an image sensor, whereas plenoptic cameras have a microlens array between
the image sensor and the main lens of the camera. This microlens array allows the light
field to be captured from various points of view, forming a 4D light field with a 2D image,
so that it is possible to estimate the depth of the scene [29]. This estimate of the depth is
obtained by using the redundancy created by multi-view geometry, where a 3D point is
projected onto the image several times.

There are two kinds of plenoptic cameras: standard and multifocus. These two cam-
eras were studied using the Lytro Illum camera and the Raytrix R42 camera, respectively.
The difference is mainly the focal length of the lenses. The focal length of the microlenses,
in a standard plenoptic chamber [30], corresponds to the distance between the image
sensor and the array of microlenses; thus, all microlenses have the same focal length. Each
lens contributes only one pixel value to the final image, with the resolution of this image
equal to the number of microlenses. This feature drastically reduces the image resolution
compared to sensor capacity; however, the computational power required to process the
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image is also lower, making it suitable for compact cameras. An example of this type of
camera is the Lytro Illum in Figure 2 (left). On the other hand, the multifocus plenoptic
camera has the microlens array placed in front of the image sensor, where each microlens
has a different focal length from its neighboring lenses, which are thus classified as different
lens types. This design allows a better combination between effective resolution and depth
of field size, resulting in higher-resolution images.

Figure 2. Plenoptic and time-of-flight cameras (left to right: Lytro Illum, Raytrix R42, DepthSense325,
RealSense).

An example of a multifocus plenoptic camera is the R42 camera model developed
by Raytrix GmbH, presented in Figure 2 (right). Since they are multifocal (there are
micro lenses with three different focal lengths), these cameras have additional calibration
issues. As such, there is a large number of parameters that need to be adjusted, making
it disadvantageous.

Two cameras of the time-of-flight camera type were also studied: the DepthSense325
and the RealSense (Figure 2). These camera types employ time-based imaging, processing
distance estimation based on the speed of light by measuring the time spent in the round
trip for a light signal between the camera and the object for each image point. These
cameras use an artificial light (provided by a laser or LED) to estimate this distance for each
point in the image. They are also affordable and relatively easy to use. This type of camera,
due to the simplicity of its use and the results presented, was selected to be included in
this application.

The technology of stereo cameras was also taken into consideration for the defined
purpose. A stereo camera is a type of camera that possesses two lenses, with an image
sensor on each lens. This camera calculates the disparity between the two images at
different positions, allowing them to simulate human binocular vision. This provides
the ability to capture three-dimensional images—a process known as stereoscopy that
can be used to create 3D images. The camera employed for the tests was the Stereo
ZED, shown in Figure 3. For this camera, the acquired images revealed that the distance
between the camera and the object was not adequate for face images, as the minimum
distance for acquisition was larger than the distance used to capture a face image, hence the
reconstruction process that estimates the depth parameter did not display reliable values.

Figure 3. Stereo camera: ZED.

3.1.2. Set-Up for Image Acquisition Conditions

Light represents one of the major components in the acquisition of an image, and it
directly interferes with the obtained results. In order to improve image quality, which is
highly important for the reconstruction of the 3D model, it is necessary to consider artificial
light in the scene. Tests have been conducted that take this parameter into consideration;
namely, acquisitions made with different light conditions, both artificial and natural. For the
artificial light, we used two softboxes with 5500K lights, which are commonly used for
photography lighting.
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It is also necessary to include the background factor, which needs to be homoge-
neous, in accordance with the general recommendations of international standards for
ID and travel documents. The use of light and a uniform background can enhance the
model reconstruction owing to the fact that it decreases the existence of outliers in the
reconstruction process. The tests with variations in lighting and background are pre-
sented in Figure 4, where one can easily see the importance of having good lighting and
background conditions.

Figure 4. Lighting/background variations (above: natural light, bellow: artificial light).

3.2. Modeling

To reconstruct the model, it is necessary to obtain a mesh that represents and stores
the facial data structure obtained in the acquisition. For this data storage, the volume
of data needs to be taken into account as well as the ease of handling it. As the aim of
this work was to obtain a mesh that represented the data structure of the acquired face,
the use of an RGB-D data structure was considered an advantage. This structure stores not
only the color information of each pixel (RGB) but also the depth information (D) in the
scene. The RGB-D structure has shown great advances in scene reconstruction in terms of
algorithmic concepts and with respect to different application scenarios [16].

Figure 5 represents the whole modeling process of one sample image. The process
starts with the acquisition of the RGB image, followed by the depth map estimation, then
the 3D reconstruction and the mesh construction.

This model generation is thus divided into two main steps: reconstruction and filtering.

3.2.1. Reconstruction

In the reconstruction from the initial image acquired by a camera, an RGB-D structure
is generated. Information is stored regarding the 2D image (color at each point in the point
cloud), as well as a point cloud according to the captured 3D scene (spatial position x, y, z).
This information is used to construct the model.

The reconstruction of the face is based on the point cloud P obtained from the input
device (camera). These points with a spatial position of x, y, z need to be aligned and
organized into a mesh structure that can be easily manipulated and visualized to obtain
the head views. The first step of reconstruction consists of a preprocessing step that is
conducted to eliminate the outliers. These outliers are generated due to noises or lighting
problems at the time of acquisition. The removal of these outliers is an approach based
on the distance of the face to the camera and its depth. In order to obtain the position of
the face and verify which points belong to it or are considered outliers, we use the facial
landmark detector proposed by [31]. It estimates the location of 68 (x, y) coordinate pairs
that map to facial structures on the face. These landmarks can be visualized in Figure 6.

After estimating the landmarks, we calculate a circular region Cn around the face’s
nose (red circle in Figure 6 (left)). The Cn center is given by the x and y coordinates of the
31° landmark calculated according to [31], and the Cn radius corresponds to the distance
between the 30° and 31° points.

Pi =

{
0 di > mD ∧ di < mD + τ
1 otherwise

(1)

where di is the depth of Pi, and τ is the threshold calculated based on the depth of a human
face. After eliminating the outliers, the remaining points P are rearranged to a regular
mesh. Firstly, we compute a triangular mesh using a Delaunay triangulation. Hence, we
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recreate the depth map by matching a surface of the form Z = F(X, Y). The inputs X and
Y are 2D grid coordinates based on the coordinates contained in the vectors x and y from
P. The grid is represented by the coordinates X and Y, with length(y) rows and length(x)
columns. X, Y and Z are the new coordinates of a regular mesh that represents the 3D
surface of the face.

Figure 5. Representation of the modeling process for an RGB-D image. The process starts with the
RGB image, passing by the depth map, 3D reconstruction and mesh.

Figure 6. Estimated facial landmarks (left), landmarks on the face (center) and the Voronoi Diagram
(right).
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The texture of the model is mapped using UV mapping that projects the 2D image
obtained from the photo to the 3D surface.

3.2.2. Filtering

The next step in the system pipeline is the filtering, which is necessary to smooth the
noisy 3D reconstruction. We thus developed a specific filter for face meshes: a content-
aware filter for RGB-D faces that proposes the smoothness of each point of a given mesh
by comparing the local neighborhood using a set of exemplars [15]. This filter consists
of an exemplar-based neighborhood matching, where all models are in a frontal position,
avoiding rotation and perspective. We take advantage of prior knowledge of the models
(faces) to improve the comparison. We first detect facial feature points, create the point
correctors for regions of each feature and only use the corresponding regions to correct
a point of the filtered mesh. As a result, the model is invariant to depth translation and
scale. The proposed method is evaluated on a public 3D face dataset with different levels
of noise. The results show that the method is able to remove noise without smoothing the
sharp features of the face. Figure 7 illustrates the proposed filtering method used [15].

The filtering model comprises two main steps: the model standardization and the
filtering itself. The goal of the model standardization is to allow different scales and
sampling frequencies to be handled due to the distinct acquisition processes—notice
that here we propose a system that can handle different types of cameras. The model
standardization process consists of changing the frequency sampling of a given model,
named target Π, according to a base model, named exemplar Ω. In cases when we use
more than one exemplar to define the filter, one of them is chosen to be the base, and the
others are also resampled. Firstly, we use a set of facial feature points, also known as
facial landmarks [31] (see Figure 6, left), to align and resample the faces. After defining the
landmarks of the two models to be aligned, an Iterative Close Point (ICP) [32] algorithm
is then computed. This method returns a scale s ∈ R, a rotation R(2× 2 matrix) and a
translation c ∈ R2 that when applied over the second model aligns it with the first model,
thus minimizing the difference between the two point sets. It is an affine transformation
that can be represented in homogeneous coordinates by the following matrix:

Γ =

 sR
c · x
c · y

0 0 1


3×3

(2)

After the alignment, we can perform the target resampling process. This consists of
creating a rectangular grid of target points, named
∆ = {(xkl , ykl , zkl , ukl , vkl); k = 1. . . M, l = 1. . . N}. It is performed by the definition of the
coordinates XYZ and UV of M× N points (∆ dimension) taken regularly into the target
texture space. The resampling is based on a triangulation of points of Π in UV space.

The definition of M and N (∆ dimension) is based on the target FFPs transformed into
the exemplar texture space. Each target FFP (into the target texture space) is multiplied
on homogeneous coordinates by Γ. An oriented bounding box is created around these
transformed points. Finally, M and N are the dimensions of this box.

Once these dimensions are defined, it is necessary to create the M× N points of ∆.
The resampling starts with texture (samples inside the face bounding box in target texture
space), and for each sample, we need to define the respective XYZ and UV coordinates.
It is also necessary to define (j, i) for each sample into target texture space and then the
respective (u, v) = ψ−1(j, i). The coordinates (x, y, z) are obtained based on this (u, v). We
create a Delaunay triangulation of the UV coordinates of all points of Π and detect the
triangle composed of pa, pb and pc that contains (u, v). It is noteworthy that pa, pb, pc ∈ Π
and that they have XYZ and UV coordinates. Let λa, λb, λc ∈ [0, 1] be the respective
barycentric coordinates; then, the XYZ coordinates of this point are given by (xj,i, yj,i, zj,i) =
λa(xa, ya, za) + λb(xb, yb, zb) + λc(xc, yc, zc). Therefore, this completes all coordinates of ∆
points.
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Figure 7. The pipeline of the filtering method.

After the resampling, we perform a filtering process that consists of modifying the Z
value of the target points. This is achieved through a neighborhood comparison between
that point and the neighborhood of equivalent points in the exemplar. In this step, both the
target and sample are regular grids at the same sampling frequency. This phase is divided
into two parts: the Predictor Definition and the Correction Process.

The filter is a Nearest Neighbor Predictor whose input is a neighborhood of a target
point containing k× k Z-values (centered at this point), and the output is the respective
normalized Z-value of the central point of the closest neighborhood from exemplars
(normalization is explained below). We create one predictor per FFP region, and each one
is trained by using all neighborhoods in all exemplars that belong to the respective FFP
region.

The definition of the FFP regions is given by a Voronoi Diagram. For each exemplar,
a Voronoi Diagram of all FPPs is created (Figure 6 on the right), and for each region, in turn,
all points inside it are used to train the respective predictor.

Once the points per region are defined, it is necessary to achieve a normalization
of each neighborhood by subtracting the average and dividing by its variance. This
guarantees that all neighborhoods can be compared, since all of them are at the same scale
and depth translation.

The next step is the correction process, which consists of modifying the ∆ points
position according to the predictor. For each point p ∈ ∆, (i) we determine its respective
region (FFP), (ii) we obtain its neighborhood and normalize it (with the respective mean
and variance), and finally (iii) we apply the projection to the base of the PCA. We use the
normalized and reduced neighborhood in the prediction process. The predictor returns
the normalized Z-value of the central point according to the best-matching neighborhood.
Therefore, we take this value and multiply it by the variance and add it to the average of the
p ∈ ∆ neighborhood. The normalization of the exemplar and target neighborhood ensures
that we can compare them irrespective of scale (division by variance) and translations in
depth (subtraction by the mean). In addition, it is noteworthy that a neighborhood of the
exemplar is normalized with its mean and variance, but the process of denormalization
is performed by using the mean and variance of the neighborhood of the target that is
being corrected. Thus, we transfer the neighborhood feature of the exemplar to the target,
with the invariance mentioned above. Figure 7 illustrates this step.

3.3. Head Views

The process for generating head views consists of rotating the previously created
model around a vertical axis between the eyes. Depending on the number of head views
intended to be generated, a value for the angular rotation is defined for both sides of the
face. The application presented here allows a selection of between 5 or 7 generated head
views, corresponding to angles of 9° and 6.5°, respectively. These values were defined
based on the balance between the alignment of head views and the smooth and realistic
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transition between them when printed on the lenticular card. It is necessary to avoid a
jump in the image when we rotate the card to visualize the 3D effect.

3.4. Lenticular Printing

The different head views generated are meant to be printed on lenticular cards, thus
providing the desired 3D effect. The lenticular printing technique is a process that has
been widely used to produce optical effects such as 3D perception or image flipping.
Lenticular technology involves exhibiting numerous sets of images, which change when
being viewed from different angles. The effect is created when the viewer sees the image
from a slightly different viewpoint with each eye. The images to be viewed are sliced into
strips and interlaced with each other (Figure 8).

Figure 8. Lenticular lenses.

In a specific scenario, the printing process consists of the usage of a sheet of a cylindri-
cal lens array placed on top of a high-resolution LCD in such a way that the LCD image
plane is located at the focal plane of the lenses [33]. The printing techniques for lenticular
lenses are still considered to be of interest in the reconstruction of a 3D image and are
still used in commercial applications with advantages in terms of their low-cost and easy
fabrication [34]. In our case, the printed depth in the lenticular lenses was established at
450 µm, as this depth displayed a more realistic effect of the 3D image in experiments.

4. Application Interface

The Card3DFace application was developed in the C++ language and Qt environment,
which is widely used for developing multi-platform user interfaces that can run on desktops
and mobile devices. This application presents four main areas that encompass the controls
(1 on Figure 9) and the three principal stages of the model (2, 3 and 4 on Figure 9). It
possesses a block for image acquisition, a block for the generated model and a block for
rendering the head views for printing.

The controls for the application are gathered in a single ribbon at the top. In this
command bar, we can select the tasks to perform; namely, uploading from a previously
generated model (Figure 9a), camera acquisition (Figure 9b), filtering (Figure 9c), the
selection of the number of head views (Figure 9d), the generation of the head views
(Figure 9e) and file storage (Figure 9f).

There is a defined procedure to follow when running this application. Firstly, it is
necessary to load a previously generated model (a) or take a picture of a person’s face
(b). In the next step, it is necessary to apply the filtering technique (c), and after defining
the quantity of head views to be generated (d), we can proceed with the generation of
head views (e). There is also the possibility of saving the obtained images (f) for later use
for printing.



Appl. Sci. 2021, 11, 8821 12 of 23

Figure 9. Application interface.

5. Experiments and Results

The experimental setup for the Card3DFace system was composed of a rig for the por-
trait acquisition and a polycarbonate personalization machine (printer). The acquisition rig
was composed of several 3D cameras (plenoptic, stereo and time-of-flight), a photographic
studio with soft-boxes and a homogeneous background and the software application. Re-
garding the personalization of the cards, this was achieved with a specialized printer with
laser technology, which is commonly used for the personalization of Portuguese ID cards
at the Portuguese Mint and Official Printing Office (INCM).

After the acquisition and modeling processes, the generated head view images could
be used for printing on the lenticular cards. The calibration of the personalization machine
was conducted by expert operators. This process involved the calibration of the exact
position of the laser beam reaching the lenticular lenses and the exact calibration of the
angle of the card holder with respect to the laser beam. This calibration guaranteed that
the generated view images were personalized on the card surface below the lenticular
lenses. As this calibration process depends on the specific printer and its inner design, its
description does not fall within the scope of this article.

We present some examples in Figures 19–23 of the head views generated for printing,
and an imprinted card prototype example is presented in Figure 25. Figure 24 shows
the same card viewed from different perspectives. Notice that the printed 3D face will
commonly have small dimensions and usually occupies a reduced area of the card and
travel document.

Before evaluating the whole process, we describe some ablation studies made for the
phases of the process.

5.1. Reconstruction Evaluation

Although the 3D reconstruction is relatively straightforward for each type of input
camera, we review the cameras used and describe in greater detail the steps from the input
image until the estimation of the mesh (Figures 10 and 11).
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Figure 10. Representation of a cost volume, where light colors represent less probability that the
points are at this depth.

Figure 11. Resulting depth map after roughness restriction [35] and cost volume refinement [36].

5.1.1. Three-Dimensioanl Reconstruction Model—Lytro Illum

To estimate depth with Lytro Illum cameras, we followed one of the most popular
approaches in current research: the use of cost volumes [35,36]. A cost volume is a
volumetric structure in which each layer represents the cost of assigning the pixels of the
image to a given depth. The lower the cost, the more likely the pixel is to be at that same
depth. In a way, one can set the cost volume C to

Cx,y,z =
1

p(x, y, z)
(3)

where p is an estimate of the probability of a coordinate in the image {x, y} being at a
given depth z. The advantage of using a cost volume instead of a “probability volume” is
associated with the fact that depth estimation can be treated as a minimization problem.

For a given image, we generated the cost volume using the method [35] and its method
of post-processing the volume. Then, we applied our roughness restriction to further refine
the results. In this method, given an infinite-dimension C cost volume on the depth axis, z,
the l depth is estimated by selecting the lowest cost layer for each pixel:
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lx,y = argminzCx, y, z (4)

The roughness constraint is defined as a modification in the depth solution:

l′x,y = argminzC′x, y, z = argminzCx, y, z + λR(x, y, z) (5)

where λ is a number in the range [0, 1] and R(x, y, z) is the constraint function. The restric-
tion encourages each pixel to be placed near its neighbors. Given a kernel of neighborhood
N and size n, the roughness restriction is given by

R(x, y, z) =
n

∑
i=1

G
(

d(x,y)+Ni
, z
)

(6)

where G is the incentive function for a given depth t. Using inverted Gaussian distributions,
G is defined as

G(t, z) = 1− e−
(z−t)2

8 (7)

Finally, the depth of the image was reconstructed from the final finite volume, using
an existing common method—approaching parabolas. The lowest cost layer for each pixel
was found, lx,y, and then it was approached as a second degree polynomial at the cost of
the lx,y layer and its neighboring layers lx,y+1 and lx,y−1. Finally, the depth of the pixel dx,y
was set as the minimum of the polynomial. This allowed solutions to be found at points
between layers, resulting in smoother and more accurate predictions.

Additionally, some cost volume refinement could be performed by applying the
method of [36] in order to improve the depth results. As mentioned by the authors,
the refinement in a prior stage (cost volume) is beneficial in terms of final accuracy over
the refinement of the depth map.

5.1.2. Three-Dimensional Reconstruction Model—Raytrix

The methods presented by Ferreira et al. [37,38] to estimate the depth map of an image
of a multi-focus plenoptic camera can be used with the Raytrix camera. This method
takes advantage of the different focal lengths to perform ray tracing in order to obtain
depth (back-projecting the pixels to the array of microlenses). The method begins with
finding salient points and their matches in neighbor microlenses using a scaled value
from the sum of absolute differences. To perform the ray tracing and to obtain more
robust results, the method filters the noisy results using a RANSAC approach, eliminating
unwanted results.

Raytrix cameras have additional calibration problems as they are multifocal. As such,
there are several parameters that need to be adjusted. The main objective during our vision
system configuration was to determine the best camera setup for estimating a depth map,
including both the photographic environment and calibration parameters.

The results obtained the method of Ferreira et al. [38] are presented in Figure 12, and
a 3D reconstruction example using the software of the manufacturer Raytrix is presented
in Figure 13.

5.1.3. Three-Dimensional Reconstruction Model—Time of Flight

The 3D reconstruction model for images obtained by the DepthSense camera—a time-
of-flight (ToF) camera—was an alternative 3D reconstruction solution to models using
plenoptic cameras. In addition to presenting itself as an alternative solution, with this
model, we aimed to verify the quality of 3D reconstruction using a low-cost camera. For this
camera type, we opted to use the software from the manufacturer.
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Figure 12. Resulting depth map using a Raytrix light-field camera. (Left): original face image;
(center): Raytrix software output depth map; (right)—output depth map using [38].

Figure 13. Depth map and textured reconstruction using Raytrix software.

The image acquisition obtained by the DepthSense camera of a given scene is described
in two files: a file that stores a 2D image of the scene and a file that describes a point cloud
according to the captured 3D scene. These two files were used in the initial phase (input)
of our proposed method: a file that stored the 3D information (x, y, z) for each point in the
cloud and a file that stored the color of each point of the point cloud.

Figure 14 illustrates the data initially captured by the DepthSense camera.

Figure 14. Image and 3D reconstruction views of the point cloud estimated by the DepthSense soft-
ware.

In the next step, outliers that corresponded to noisy points that had been improperly
captured by the camera were removed. Based on the remaining points, a regular mesh
was created with the aim of constituting the mesh of the 3D reconstruction. As previously
stated, filtering was the following phase, as described in the next subsection.

5.1.4. Three-DImensional Reconstruction Model—Stereo

As previously stated, the stereo camera used in our system was a ZED camera. How-
ever, since the work distance of this camera was not appropriate for face acquisition in a
studio environment, we opted to discard these experiments.

Nonetheless, stereo cameras are generally suitable for the 3D reconstruction of scenes
and consequently for the estimation of meshes of the reconstructed scene.
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5.2. Filtering Evaluation

In order to evaluate the results of the filtering, we performed experiments by applying
white noise [39] to the set of different models. We varied the noise intensity and compared
the results with Bilateral [40] and Gaussian filters. We then calculated the mean-squared
error (MSE) [41] between the noisy models and filtered models. Table 1 shows the quantita-
tive errors on the models used in this experiment. Our method presents the lowest error
compared to other filters and preserves the details of the mesh (sharpness). These sharp
details can be seen in Figure 16d.

Table 1. The quantitative errors of the models used in this experiment. The first column is the noise
level. Columns 2, 3 and 4 are the results of the mean-squared error (MSE) [40] between the noisy
models and filtered models.

Noise level Bilateral Gaussian Ours

0.0 0.6615 1.8459 0.4859
0.5 0.6782 1.8484 0.4991
0.7 0.6970 1.8595 0.5289
1.0 0.7117 1.8819 0.5383
2.0 0.8236 1.9450 0.7218

Figure 15 shows the differences between the results obtained by the tested methods.
Column (a) illustrates the applied noise, while columns (b), (c) and (d) show the difference
between the noisy model and the model filtered by the Bilateral and Gaussian filters and
our filter, respectively. The noise is a random number in the interval [−ασ, ασ], where σ is
the standard deviation of the target model. The alpha values per row are 0, 0.5, 0.7, 1.0 and 2.0.

Figure 16 exhibits the results obtained by the tested filters. Column (a) illustrates the
noisy model (α equals 0.5, 0.7, 1.0 and 2.0), while columns (b), (c) and (d) show the models
filtered by the Bilateral and Gaussian filters and our filter, respectively.

Additionally, Figure 17 illustrates the correction of a mesh obtained using the Depth-
Sense camera [23]. We first standardized the scale and sampling frequency with relation to
the database, and then we corrected it using our filter.

Figure 18 demonstrates the results obtained by our filter on different models. Column
(a) illustrates the model with texture, column (b) shows the ground truth of the mesh
obtained by a 3D scanner, (c) is the same mesh after noise, (d) shows models filtered by our
method without texture and (e) illustrates the textured filtered models.

The use of the Bosphorus Database [42] allowed us to use these models as a ground
truth. We used 20 randomly chosen models as examples. Future work may involve the
determination of the minimum amount of examples that minimize filtering error. Reducing
the amount of neighborhoods per FFP region (by removing intraclass redundancy) is left
for future work.

Finally, our filtering approach was based on a division of the model into regions
in which all points have an intrinsic geometric similarity. We presented how to define
these regions for the specific case of faces with the usage of facial features in Section 3.2.2.
A future research direction would be to define general descriptors that can be used for
general-purpose filtering.
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(a) (b) (c) (d)

Figure 15. The differences of the results of the tested methods. Column (a) illustrates the applied
noise, while columns (b–d) show the difference between the noisy model and the model filtered by
the Bilateral and Gaussian filters and our filter, respectively. The noise is a random number in the
interval [−ασ, ασ], where σ is the standard deviation of the target model. The alpha values per row
are 0, 0.5, 0.7, 1.0, 2.0 and 5.0.
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(a) (b) (c) (d)

Figure 16. The results obtained by the tested filters. Each row shows the noise levels applied to the
models, which are 0.5, 0.7, 1.0 and 2.0 (respectively) multiplied by standard deviation. Column (a)
illustrates the noisy model, while columns (b–d) show models filtered by the Bilateral and Gaussian
filters and our filter, respectively.
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(a) (b) (c) (d)

Figure 17. The correction of a mesh obtained using DepthSense camera [43]. We first standardized
the scale and sampling frequency in relation to the database, and then we corrected using our filter.
Figure (a) shows the acquired noisy mesh, (b) is only the texture, (c) is the filtered mesh and (d) is the
filtered mesh with texture.

(a) (b) (c) (d) (e)

Figure 18. The results obtained by our filter on different models. Column (a) illustrates the model
with texture, column (b) shows the ground truth of the mesh obtained by a 3D scanner, (c) is the
same mesh after noise, (d) shows the models filtered by our method without texture and (e) shows
the textured filtered models.

Datasets

As mentioned before, the 3D model dataset used for the image synthesis was the
Bosphorus Database [42]. This dataset allowed us to test and improve the last two steps of
the pipeline: the rendering of new views and the printing phase.

As for the first two steps of the pipeline—the acquisition and the modeling (3D
reconstruction and filtering)—we used an dataset built in-house and comprising 20 persons.
For the filtering phase, we also used the Bosphorus dataset to provide the database of
exemplars, as described previously.

5.3. System Evaluation and Discussion

Figures 19–23 are examples of the head views. The visual inspection of the result-
ing cards (represented by two examples in Figures 24 and 25) clearly shows the three-
dimensional visualization effect that was expected to be produced in the viewing of
the cards.

The Card3DFace application offers a fast and affordable way to increase security in
authentication cards and travel documents. It does not need highly sophisticated camera
equipment for 3D image effect creation and does not use proprietary or sophisticated
software packages, allowing for the easy implementation of this application. The results
present themselves as reliable and adequate, providing a 3D effect of the face in lenticular
cards through the laser printing techniques of the respective head views generated.

It is worth noting that the angle difference in the generated head views is relatively low,
although it is enough to create the 3D visualization effect. This angle difference is usually
up to ±20 degrees in relation to the frontal view of the face. Higher angle differences are
not allowed due to two factors: on the one hand, the most important factor is the limitation
of the viewing angle to keep the visibility of the card surface by a laser beam through
the lenticular structure; on the other hand, the laser personalization machines themselves
have physical limitations on the rotation angle of the card, which varies from machine
to machine. Additionally, the 3D model of the head is also limited as it is reconstructed
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from a single frontal photo for practical reasons. Despite these limitations, the results
demonstrated that a good 3D visualization effect is created in the printed cards, which
validates the approach to this technology and its use to secure a person’s authentication
using ID and travel documents.

Furthermore, due to the fast development and latest breakthroughs in the smartphone
industry—devices which are very likely to generally have time-of-flight technology in their
cameras (Huawei, Apple, Honor and others) in the future—reflecting on the possibility
of using this application in a smartphone as well is relevant. In future work, we should
also consider improvements in adapting some techniques related to the removal of radial
distortion in images.

Figure 19. Example head views generated for printing.

Figure 20. Example head views generated for printing.

Figure 21. Example head views generated for printing.

Figure 22. Example views generated for printing.
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Figure 23. Example head views generated for printing.

Figure 24. Imprinted lenticular card prototype—these images show the same card viewed from
different perspectives.

Figure 25. Imprinted lenticular card prototype.

6. Conclusions

In this paper, we presented an application that is capable of producing different views
of a person’s head and face based on an image from a single-shot acquisition. These views
are meant to be printed on lenticular cards, thus providing a 3D visualization effect and a
sense of depth of an individual’s image.

In our view, this application presents itself as a considerable and important step
to achieving a higher level of security and improving the authentication capability of
documents. By improving the 3D views of images on an ID card and travel document, we
are intrinsically improving authentication control.

The system requires a 3D camera (several technologies are included in this specifica-
tion) that is able to output an image from which we can reconstruct a 3D model, and these
cameras are now affordable and common. Considering the specific type of image effect
intended (3D) and the type of card used for printing the subject image area, this technology
also represents an obstacle for forgery, in addition to the printing technology, which in
itself is much more complex.
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