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ABSTRACT In state-of-the-art deep learning for object recognition, Softmax and Sigmoid layers are
most commonly employed as the predictor outputs. Such layers often produce overconfidence predictions
rather than proper probabilistic scores, which can thus harm the decision-making of ‘critical’ perception
systems applied in autonomous driving and robotics. Given this, we propose a probabilistic approach based
on distributions calculated out of the Logit layer scores of pre-trained networks which are then used to
constitute new decision layers based on Maximum Likelihood (ML) and Maximum a-Posteriori (MAP)
inference. We demonstrate that the hereafter called ML and MAP layers are more suitable for probabilistic
interpretations than Softmax and Sigmoid-based predictions for object recognition. We explore distinct
sensor modalities via RGB images and LiDARs (RV: range-view) data from the KITTI and Lyft Level-
5 datasets, where our approach shows promising performance compared to the usual Softmax and Sigmoid
layers, with the benefit of enabling interpretable probabilistic predictions. Another advantage of the approach
introduced in this paper is that the so-called ML and MAP layers can be implemented in existing trained
networks, that is, the approach benefits from the output of the Logit layer of pre-trained networks. Thus, there
is no need to carry out a new training phase since theML andMAP layers are used in the test/prediction phase.
The Classification results are presented using reliability diagrams, while detection results are illustrated using
precision-recall curves.

INDEX TERMS Bayesian inference, confidence calibration, object recognition, perception system,
probability prediction.

I. INTRODUCTION
Recent advances in deep learning and sensory technology
(e.g., RGB cameras, LiDAR, radar, stereo, RGB-D, among
others [1], [2]) have made remarkable contributions to
perception systems applied to autonomous driving [3]–[6].
Perception systems include, but are not limited to, image and
point cloud-based classification and detection [5], [7]–[10],
semantic segmentation [3], [11], [12], and tracking [13], [14].
Oftentimes, regardless of the type of network architecture
or input modalities, most state-of-the-art CNN-based object
recognition algorithms output normalized prediction scores
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via the Softmax layer [15] i.e., the prediction values are in
a range of [0, 1], as shown in Fig. 1. Furthermore, such
algorithms are often implemented through deterministic neu-
ral networks, and the prediction itself does not consider the
model’s actual confidence for the predicted class in decision-
making [16]. In fact, in most cases, the decision-making
takes into account only the prediction value provided
directly by a deep learning algorithm disregarding a proper
level of confidence of the prediction (which is unavailable
for most networks). Therefore, evaluating the prediction
confidence or uncertainty is crucial in decision-making
because an erroneous decision can lead to disaster, especially
in autonomous driving where the safety of human lives are
dependent on the automation algorithms.
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FIGURE 1. Graphs (a) and (b) are the Softmax prediction scores for the
‘pedestrian’, ‘car’ and ‘cyclist’ classes (where the positives are in orange),
showing evidence of overconfidence behavior. The bar-plots were
obtained on a RGB image classification set from the KITTI and LL5
databases respectively.

Many works have pointed out Softmax layer overcon-
fidence as an open issue in the field of deep learning
[17]–[20]. Two main techniques have been suggested to
mitigate the overconfidence in deep networks, calibration
[21]–[27] and regularization [24], [25], [28]. Often, cali-
brations are defined as techniques that act directly on the
resulting output of the network, while regularization are
techniques that aims to penalize network weights through a
variety of methods, which adds parameters or terms directly
to the network cost/loss function [28]–[30]. However, the
paper proposed by [31] defines regularization techniques as a
type of calibration. Consequently, the latter demands that the
network must be retrained.

The overconfidence problem is more evident in complex
networks such as Convolutional Neural Networks (CNNs),
particularly when using the Softmax layer as the prediction
layer, thus generating ill-distributed outputs i.e., values
close to either zero or one [23] which can be observed in
Fig. 1a and Fig. 1b. We note that this is desirable when the
true positives have higher scores. However, the counterpart
problem is that ‘overconfidence networks’ also generate
high-score values for the objects erroneously detected or
classified i.e., false positives. Given this problem, a question
that arises, how can we guarantee prediction values that are
‘high’ for true positives and, at the same time, ‘low’ for
false positives? This question can be answered by analyzing
the output of the network’s Logit layer, which provides a
smoother output than the Softmax layer. This can be observed
within Figs. 2a and 2b.

Following this, we can put a new question: although
normalized outputs aim to guarantee a ‘probabilistic inter-
pretation’, how reliable are these predictions? Additionally,
given an object belonging to a non-trained/unseen class (e.g.,
an unexpected object on the road), how confident is the
model’s prediction? These are the key research questions

FIGURE 2. Probability density functions (PDFs), using normalized
histograms, for the Logit layers data on the training sets of the KITTI
(a) and LL5 (b) datasets. The graphs are organized from left-right by
classes (pedestrian, car and cyclist, where the positives are in orange)
using the RGB modality.

explored in this work by considering the importance of having
models grounded on interpretable probability assumptions
to enable adequate interpretation of the outputs, ultimately
leading to more reliable predictions and decisions. In terms
of contributions, this paper introduces new prediction layers,
designated Maximum Likelihood (ML) and Maximum a-
Posteriori (MAP) layers, for deep neural networks, which
provide amore adequate solution compared to state-of-the-art
(Softmax or Sigmoid) prediction layers. Both ML and MAP
layers compute a single estimate, rather than a distribution.
Moreover, this work contributes towards the advances of
multi-sensor perception (RGB and LiDAR modalities) for
autonomous perception systems [32]–[34] by proposing a
probability-grounded solution that is practical in the sense
it can be used in existing (i.e., pre-trained) state-of-the-art
models such as Yolo [35].

It is important to emphasize that there is no need to retrain
the neural networks when the approach described in this
article is employed, because the ML and MAP prediction
layers produce outputs based on PDFs obtained from the
Logits of already trained networks. Therefore, instead of
using the traditional prediction layers (Softmax or Sigmoid)
to predict the object scores on a test set, the ML and MAP
nonlinearities can be used to make the predictions for the
objects scores. Thus, the proposed technique in this paper is
practical given that a network has already been trained with
Softmax (SM) or Sigmoid (SG) prediction layers. In other
words, theML andMAP layers depend on the Logit’s outputs
of the already trained network1

1A note for the reviewers: this paper is an extension of our workshop-
paper [36], as well as an extension of the paper [37]. The main difference
between this paper and the two previously mentioned papers is in the
analysis of the results through reliability diagrams, considering the expected
calibration error, and maximum calibration error metrics. In addition, this
paper considers a more detailed analysis regarding the predicted score values
on out-of-training distribution test data (unseen class).
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In summary, the scientific contributions arising from this
work are:
• An investigation of the distribution of predicted values
of the Logit and Softmax layers, for both calibrated and
non-calibrated networks;

• An analysis of the predicted probabilities inferred by
the proposedML andMAP formulations, both for object
classification and detection;

• An investigation of the predicted score values on out-of-
training distribution test data (unseen/non-trained class);

• The proposed approach does not require the retraining
of networks;

• Experimental validation of the proposed methodology
through different modalities, RGB and Range-View
(3D point clouds-LiDAR), for classification (using
InceptionV3) and object detection (using YoloV4).

In this paper, we report on object recognition results show-
ing that the Softmax and Sigmoid prediction layers do indeed
sometimes induce erroneous decision-making, which can be
critical in autonomous driving. This is particularly evident
when ‘unseen’ samples i.e., out-of-training distribution test
data are presented to the network. On the other hand, the
approach described here is able to mitigate such problems
during the testing stage (prediction).

The rest of this article is structured as follows. The
related work is presented in Section II, while the proposed
methodology is developed in Section III. The experimental
part and the results are reported in Section IV, the conclusion
is given in Section V, while Section VI presents ideas
to expand the proposed research, and finally Section VI
(Appendix) presents results considering an extra experiment.

II. RELATED WORK
In this section, we review the key methodologies related to
our proposed approach. We briefly discuss the uncertainties
of neural networks based on the concepts of Bayesian
inference, consequently defining the types of uncertainties
that can be captured by the Bayesian Neural Networks
(BNNs). Then, techniques for reducing overconfidence of
prediction layers are presented as well, in particular the
regularization and calibration techniques.

A. PREDICTIVE UNCERTAINTY
Many deep learning methods used for perception systems
(objects detection and recognition) do not capture the network
uncertainties at training and test times. The Bayesian Neural
Network (BNN) is an alternative to cope with uncertainties
and it can be carried out through distinct approaches. One
way is to obtain the posterior distribution using variational
inference after defining a prior distribution to the network
weights [29], [38], [39]. Another method is the ensemble of
multiple networks with the same architecture and different
training sets for estimating predictive uncertainty [40].

Currently, many studies consider aleatory and epistemic
uncertainties obtained through BNNs. Aleatory uncertainty
is related to the inherent noise of observations (uncertainties

arising from sensor inherent noise and associated with
the distance of the object to be detected, as well as the
object occlusion), while the epistemic ones explain the
uncertainties in the model parameters (uncertainties of
themodel associated with the detection accuracy, showing the
limitations of the model) [41]. The formulation of aleatory
and epistemic uncertainties with the aim of presenting
confidence of predictions, which can capture the uncertainties
in object recognition, can be done through BNNs, Shannon
Entropy (uncertainty in the prediction output) and Mutual
Information (confidence of the model in the output) to
measure the uncertainty of the classification scores [42]–[44].

The uncertainty of a prediction can also be achieved
through Monte Carlo dropout strategy, using the dropout
layers at test time i.e., the predicted values depend on the
randomly chosen connections between the neurons according
to the dropout rate, that is, the same test example (an object)
forwarded several times in the network can have different
predicted values (the predicted values are not deterministic).
In this way, it is possible to obtain the distribution, the average
(final predicted value) and the variance (uncertainty) [45] for
each example.

Differing from the aforementioned works, the approach
proposed in this paper uses data obtained from the Logit
layer of already trained/existing networks, to employ the
concepts of Bayesian inference. The methodology proposed
in this paper defines a final prediction value for each object
and does not need to predict recurrently for the same object
several times. Furthermore, the approach presented in the
paper does not consider the distribution of the network
weights, and thus, it is an efficient and practical approach.
These advantages are clear when compared to traditional
Bayesian neural networks and the Monte Carlo dropout
strategy, because the novel strategy presented here avoids a
high computational cost and at the same time does preserve
the recognition/detection performance. Nevertheless, there
are ongoing research on Bayesian neural networks that have
reduced the computational cost through feature decomposi-
tion and memorization [46].

B. REGULARIZATION AND CALIBRATION
Another important component for the improvement of the
predicted values are the regularization techniques that avoid
overfitting and contribute to reduce overconfidence predic-
tions, such as the transformation of network weights using
L1 and L2 [47] regularization, label and model regularization
by a process of pseudo-label and self-training [30], label
smoothing [48], knowledge distillation [49], architecture
development where the network has to determine whether
or not an example belongs to the training set, and specific
cost mathematical formulation [50], [51]. Other well-known
regularization techniques are the Batch Normalization [52],
stochastic regularization techniques such as Dropout [53],
multiplicative Gaussian noise [54], and dropConnect [55].

Alternatively, highly confident predictions can often be
mitigated by calibration techniques such as temperature
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scaling (TS) [23], by multiplying all the values of the logit
vector by a scalar parameter, 1

TS > 0, for all classes, where the
value of TS is obtained by minimizing the negative log likeli-
hood on the validation set; Isotonic Regression [56] which
combines binary probability estimates of multiple classes,
thus jointly optimizing the bin boundary and bin predictions;
Platt Scaling [57] which uses classifier predictions as
features for a logistic regression model; Beta Calibration [58]
which uses a parametric formulation that considers
the Beta probability density function; compositional
method (parametric and non-parametric approaches) [59],
as well as the embedding complementary networks
technique [60], [61].

In this study, we reduce highly confident predictions on
the test set by replacing the predicted values by Softmax
and Sigmoid layers with the predicted values from ML and
MAP nonlinearities, obtaining a smoother score distribution
for new objects. Such functions depend on the output of
the network’s Logit layer, by means of parametric (Gaus-
sian functions) and nonparametric (normalized histograms)
modeling. This is a post-training operation, that is, the novel
inference functions proposed in this work do not modify the
weights neither the cost function of the network and still
provides very satisfactory results. This is an advantage over
regularization techniques, since the ML and MAP layers do
not require network retraining. The advantage of the approach
proposed in this paper with respect to calibration techniques
is to provide a smoother distribution of the predicted values
without degrading the results.

III. PROPOSED METHOD
This section presents the core of the proposed methodology
i.e., the formulations for making predictions based on the
novel ML and MAP prediction layers. The development of
such amethodology begins with the concepts of probabilities,
random variables, distribution function, probability density
function and Bayes’ theorem i.e., the background to develop
the methodology proposed in this paper. In the second stage,
we present the proposed method through formulations of
the Maximum Likelihood (ML) and Maximum a-Posteriori
(MAP) layers, as well as nonparametric and parametric
mathematical modeling to define the posterior (likelihood-
conditional) and prior probabilities. Finally, we present the
network architectures, diagrams for evaluating the calibration
of the proposed methodology, and the datasets that have been
used in the experiments.

A. A BRIEF REVIEW OF PROBABILITY AND
DENSITY FUNCTIONS
The output scores x = {x1, . . . , xnc} of a supervised
classification system with nc classes, c = {c1, . . . , cnc} can
be formulated according to a random experiment considering
a sample space S. The numerical outcome obtained from each
element of S is related to a real number defined by the random
variable (rv) x i.e., the output scores, which is conditioned to
the rv c. Formally, the rv is a function that maps each element

of the sample space with a real number of the set R, which
can be simply expressed as x : S → R. In other words,
an rv is a function x that outputs a real number x(ζ ) for each
element ζ ∈ S of a random experiment. From the sample
space, an event (subset of S) can be defined and associated
with a probability P between the [ξ , ξ + 1ξ ] interval. Such
probability is a distribution function and its derivative is the
probability density function (PDF) fx(x = ξ ), as in (1) [62].

fx(x = ξ ) = lim
1ξ→0

P{ξ ≤ x ≤ ξ +1ξ}
1ξ

, (1)

where fx(x = ξ ) ≥ 0 ∀ ξ , considering ξ continuous. The
integral of (1) represents the probability P with the random
variable x contained in the interval. Consequently, if the
interval [ξ , ξ +1ξ ] is sufficiently small, the probability will
be P{ξ ≤ x ≤ ξ + 1ξ} ' fx(x = ξ )1ξ i.e., the probability
of the random variable x is proportional to fx(x = ξ ). Thus,
the probability will be maximum if the interval [ξ , ξ + 1ξ ]
contains its value and fx(x = ξ ) will be maximum. Such a
value is the most likely value of x.

Given the most likely value of the random variable
x, Maximum Likelihood (ML) and Maximum a-Posteriori
(MAP) inferences can be obtained. However, the random
variable x is dependent of the variable c for the formulation of
ML and MAP. Therefore, the density function is conditional
to c [62], as formulated in (2):

fx(x = ξ |c) = lim
1ξ→0

P{ξ ≤ x ≤ ξ +1ξ |c}
1ξ

. (2)

If the random variable is discrete, a probability mass func-
tion (PMF) is used instead of a probability density function
(PDF). Assuming that the class conditional probability P(x|c)
(likelihood) and the prior are known, the posterior probability
P(c|x) can be obtained through Bayes’ rule

P(c|x) =
P(x|c)P(c)

P(x)
, (3)

where P(c) is the prior probability, P(x) 6= 0 is the
marginal probability defined by

∫
P(x|c)(c)dc, that often can

be determined by law of the total probability [63]. Thus, (3)
can be re-written using the per-class expression:

P(ci|x) =
P(x|ci)P(ci)
nc∑
i=1

P(x|ci)P(ci)
. (4)

In this work, the goal is to use (4) to make inferences on the
test set about the ‘unknown’ rv c from the dependence with x
i.e., the value of the posterior distribution of c is determined
after observing the value of x.

B. ML AND MAP PREDICTION LAYERS
The proposed ML and MAP layers make inference based
on PDFs obtained from the Logit layer prediction scores
by using the training set. This is illustrated in Fig. 3,
where the horizontal axes represent the random variable
x and the vertical axes are the normalized frequency of
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FIGURE 3. From left-right respectively, normalized histogram-based
densities and Gaussian densities calculated on the Logit layer values, for
each class, on the training set (here for the RGB modality). On the 1st

row, we have the densities on the KITTI set while the 2nd row shows the
densities on the LL5 training set.

the amount of objects in the classification and detection
datasets. We can observed that the distribution scores from
the Logit layer are far more appropriate to represent a
PDF (as shown in Fig. 2). Therefore, the ML and MAP
layers are more adequate to perform probabilistic inference
in regard to permitting decision-making under uncertainty,
which is particularly relevant in autonomous driving and
robotic perception systems.

As noted in (4), the posterior probability depends on the
class conditional probability (likelihood function) and on
the prior probability i.e., the MAP estimated depends on a
distribution for both the likelihood and prior, while ML only
depends on P(x|c), because P(c) is usually assumed to be
uniform and identically distributed. The probabilities P(x|c)
are modeled by means of non-parametric estimates over the
predicted scores of the Logit layer for each class, as showed
in the first column of Fig. 3. These estimates are obtained on
the training set, through normalized histograms (i.e., discrete
densities defined by a single parameter - the number of bins)
for each modality, as shown in the Table 1.
Histograms are graphical ways of summarizing or describ-

ing a variable in a simple way, in other words, histograms
show how variables (in this case, the network logits)
are distributed, revealing modes and bumps, as well as
information about the frequencies of observations. As said
by C. Bishop [63], ‘we can view the histogram as a simple
way to model a probability distribution given only a finite
number of points drawn from that distribution’. Often, the
bins of a histogram are chosen to have the same width

TABLE 1. Number of bins and smoothing parameter (λ) for ML and MAP
layers.

thus, the only (single) parameter left is the number of bins
(nbins). To do so, nbins can be mathematically determined
by means of the mean squared error (MSE-expected value
of the squared error) [64]. However, for our methodology,
we have chosen nbins empirically to guarantee a result very
close to or better than the results provided by the SM and SG
layers and, in addition, to generate smoother distribution by
adding the parameter λ. Thus, the process of estimating the
number of bins and λ (the additive smoothing factor) have
been defined empirically by verifying which combinations
would not degrade the results. So, these two parameters were
defined empirically for each dataset/modality, as well as for
each of theML and MAP layers.

Each predicted value on the test set from the Logit layer has
a score value corresponding to its bin range in the respective
class histogram, which is illustrated in Fig. 4. For the MAP
layer, the prior is modeled by a Gaussian distribution that
guarantees a smoother distribution of the prediction values,
as observed within the second column of Fig. 3. Thus,
P(c) ∼ N (x|µ, σ 2) with mean µ and variance σ 2 is
calculated per class, from the training set. The modeling
with different distribution techniques, Gaussian distribution
and normalized histogram, aims to capture complementary
information from the training data, where the maximum
values per classes in the normalized histograms are different
from the maximum values of the Gaussian distributions
(Fig. 3).
The normal distribution is feasible for modeling an

unknown distribution because it has a maximum entropy.
Thus, the greater entropy can guarantee a more informative
distribution and at the same time less confident information
around the mean, that is, it contributes to the reduction of
the overconfidence inferences. Defining otherwise, the events
most likely to happen have low information content i.e., low
entropy. Therefore, a Gaussian distribution was defined for
prior P(ci) to express a high degree of uncertainty2 in the
value of variable c before observing the data. Furthermore,
a prior distribution with high entropy is said to be a prior
distribution with high variance [63].

2The amount of uncertainty can be quantified, for example, using
Shannon’s entropy for a probability distribution.
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FIGURE 4. Obtaining probability values of a normalized histogram
generated with the training data of the Logit layer.

Additionally, to avoid the ‘zero’ probability problem,
as well as to incorporate some uncertainty level in the final
prediction, the Additive Smoothing method (λ) [65]–[67]
(also defined as Laplace smoothing) is implemented during
the ML and MAP predictions. The values assigned for the
Additive Smoothing are shown in Table 1, does not depend
on previous information of the training set. This value was
determined empirically i.e., by observing which value would
preserve approximately the ‘original’ distribution without
compromising the final result. The probability estimates with
the Additive Smoothing are shown in (5) and (6), i.e., a small
correction is incorporated into the ML and MAP estimate.
Consequently, no prediction will have a ‘zero’ probability,
no matter how unlikely.
ML layer is straightforwardly calculated by normalizing

P(x|c) by the P(x) during the prediction phase, as in (5), since
the priorsP(c) are set uniformly and identically distributed for
the set of classes c,

ML = argmax
i

(P(x|ci)+ λ)
nc∑
i=1

(P(x|ci)+ λ)
. (5)

Alternatively, the inference usingMAP layer is given in (6)
as follows,

MAP = argmax
i

(P(x|ci)P(ci)+ λ)
nc∑
i=1

(P(x|ci)P(ci)+ λ)
. (6)

The sequential steps for calculating the ML and MAP
is summarized within Algorithm 1, where class-conditional
P(x|c) is modelled by a normalized histogram. On the other
hand, to get the maximum posterior probabilities (MAP)
the priors are modelled by normals N (testLg|µtrain, σ 2

train),
where the sub-index Lg indicates that the data is obtained
from the Logit layer (layer before the network prediction

Algorithm 1: ComputeML andMAP
Input
• Number of classes used in training (nc);
• Number of histogram bins (nbins);
• Values of the Logit layer on the training set (trainLg);
• PDF’s parameters (normalized histogram and normal
on the training set, see Fig. 3);

• Values of the Logit layer on the testing set (testLg).
• Additive smoothing (λ).

Output
• Maximum Likelihood (ML) and Maximum
a-Posteriori (MAP).

Getting the normalized frequency histograms:
hc← histogram(ScoresLogitsTrain(classes));
Getting the edge values of each bin of each
histogram:
BinLow← BinEdgesLow(hc);
BinHigh← BinEdgesHigh(hc);
Getting the normalized frequency values of each bin
of each histogram:
Values← Values(hc);
Getting the likelihood:
P(x|C)← zeros(size(testLg), nc);
Y ← ScoresLogitsTest;
for k ← 1 : size(testLg) do

for cla← 1 : nc do
for i← 1 : size(Values) do

if (BinLow(cla, i) 6
Y (k, cla)) & (Y (k, cla) < BinHigh(cla, i))
then

P(x|C)(k, cla)← Values(cla, i);
end

end
end

end
Getting the Prior:
P(C)← N (testLg|[µtrain, σ 2

train]);
Calculating theML andMAP:
ML ← P(x|C)+ λ;
ML ← (ML/sum(ML));
MAP← P(x|C)P(C)+ λ;
MAP← (MAP/sum(MAP));

layer). Both the likelihood and prior are extracted from the
Logit layer using the training data.3

C. CNN ARCHITECTURES FOR OBJECT RECOGNITION
Experiments in [23] suggested that the greater the number
of layers and neurons, the more overconfidence the result
will be. However, the experiments that we have conducted
show that even when reducing the amount of neurons and
filters in the dense and convolutional layers, the network
can still produce overconfidence in the predicted values,

3The code for training the network, obtaining the logit layers and comput-
ing theML andMAP layers are available at github.com/gledsonmelotti/ML-
MAP-Layers-for-Probabilistic.
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FIGURE 5. Inception V3 CNN representation with Logit and Softmax layers, Maximum Likelihood (ML) and Maximum a-Posteriori (MAP) layers. CNN’s
training was done with the Softmax layer. After training, the Softmax layer was replaced by the ML and MAP i.e., the CNN was not trained with the ML
and MAP layers.

as can be observed in Fig. 1. This conclusion was reached by
training the Inception V3 CNN [68] and reducing the number
of filters and neurons/units. Regarding object detection, the
model Yolo V4 [35] was trained to detect cars, cyclists, and
pedestrians, with predictions based on the SG layer.

The experiments reported throughout the remainder of
this work were based on the premise that, after training the
network, the proposed ML and MAP layers then replace the
SM and SG prediction layers on the test set, only, according
to Fig. 5.

D. RELIABILITY DIAGRAM
Typically, post-calibration predictions are analyzed in the
form of reliability diagram representations [23], [69], which
illustrate the relationship of the model’s prediction scores in
regard to the true correctness likelihood [70], as shown in
Fig. 6. Reliability diagrams show the expected accuracy of
the samples as a function of confidence i.e., the maximum
value of the prediction function.

The scores (predicted values) are grouped into M
bins (histogram) in the reliability diagrams. Each sample
(classification score of an object) is allocated within a
bin, according to the maximum prediction value (prediction
confidence). Each bin has a range Im =

( (m−1)
M , mM

]
, where

m = 1, ..,M . The accuracy is calculated in each range Im,
as well as the average confidence confaverage = 1

BM

∑
i p̂i,

where p̂i is the confidence for sample i and BM is the amount
of objects in each Im. In addition, a gap can be obtained i.e.,
the difference between accuracy and average confidence in
each range (Im). Thus, the greater the gap, the worse the
calibration result in the respective bin. Furthermore, through
reliability diagrams, it is possible to obtain calibration errors,
such as the Expected Calibration Error (ECE) and the
Maximum Calibration Error (MCE):

ECE =
M∑
m=1

|BM |

n
|acc(BM )− conf (BM )|, (7)

MCE = max
m∈{1,...,M}

|acc(BM )− conf (BM )|, (8)

where n is the number of samples.

FIGURE 6. Reliability diagrams for the RGB modality on the testing set
using the Softmax layer (SM). On the left, uncalibrated model for KITTI
dataset, and on the right uncalibrated model for LL5.

TABLE 2. KITTI and LL5 dataset for classification: number of objects per
class and subsets.

Moreover, the reliability diagrams illustrate the identity
function (diagonal-dashed line) that represents a perfectly
calibrated output, while any deviation from the diagonal
represents a calibration error [23], [69].

E. BENCHMARKING DATASETS
A key contribution to the growing improvement of perception
systems for autonomous driving is the availability of
representative datasets of different modalities, such as RGB,
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TABLE 3. Comparison between the classifications obtained by the SM layer, ML and MAP layers in terms of average F-score and FPR (%). The
performance measures on the ‘unseen’ dataset are the average and the variance of the prediction scores.

FIGURE 7. Example from the KITTI dataset. Representations of a ‘raw’
point-cloud (a) in image coordinates and the upsampled range-view
(b) obtained using the bilateral filter.

LiDAR, and radar [71]–[76]. In this work, we used the
KITTI Vision Benchmark Suite-2D object [33] and Lyft
Level-5 (LL5) Perception [77], [78] datasets. The classes of
interest were pedestrians, cars, and cyclists. Table 2 shows
the number of objects cropped from both the RGB and range-
view (depth from the LiDAR modality) images. In addition,
some extra objects from the unseen/non-trained classes (not
used during training), such as a person sitting, tram, truck,
van, tree, lamppost, signpost, bus, and motorcycle classes
were classified in the test/prediction phase, to verify the
erroneous overconfidence from the prediction layers of the
trained networks. Such a class can be understood as an
‘adversarial’ class; Note that this research did not carry out
any study involving adversarial network architectures.

Range-view images were obtained by a coordinate
transformation of the 3D point clouds on the 2D image
plane followed by an upsample of the projected points.
The upsample was performed using a bilateral filter, and
considered a mask size 13 × 13 (sliding-windows) [34] for
t he KITTI dataset and a mask size 23× 23 for LL5 dataset.

FIGURE 8. Example from the LL5 dataset. In (a) the 3D point clouds are in
pixel-coordinates, and (b) shows the respective range-view after applying
the bilateral filter.

Examples of these operations can be observed in Fig. 7 and
Fig. 8, respectively.
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FIGURE 9. The graphs, from left to right, represent uncalibrated score values, followed by score values calibrated through Temperature Scaling, then
scores obtained by the ML and MAP layers respectively.

FIGURE 10. Reliability diagrams, on the LL5 dataset, for the following cases (from left-right): uncalibrated scores, calibrated model using TS, and then the
diagrams for the models using ML and MAP layers.
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FIGURE 11. Prediction scores on the unseen/non-trained data
(comprising the classes: person sitting, tram, tree/ lamppost/signpost,
truck, van), using SM layer (left side), and the proposed ML (center) and
MAP (right side) layers. The graphs of the first two rows are the results of
the KITTI dataset, while the last two are from the LL5 dataset.

As a way to validate the proposed methodology for object
detection, the KITTI Vision Benchmark Suite-2D object was
used. The respective dataset was divided into 3367 frames for
the training dataset, 375 frames for the validation dataset and
3739 frames for the test dataset.

IV. EVALUATION AND RESULTS
The output scores of the CNN indicate a degree of certainty
of the given prediction. The level of certainty can be defined
as the confidence of the model, and in an object recognition
problem, represents the maximum value within the prediction
layer. However, the output scores may not always represent
a reliable indication of certainty with regard to a given
class, especially when unseen (non-trained) objects occur in
the prediction stage; this is particularly relevant for a real
world application involving autonomous robots and vehicles,
since unpredictable objects are likely to be encountered
which would be misclassified by prediction layers with a
high degree of certainty. With this in mind, in addition to
the trained classes (pedestrian, car, and cyclist), a set of
unseen objects were introduced into the classification dataset,

FIGURE 12. Results obtained from the Yolo V4. The columns from left to
right represent the car, cyclist and pedestrian classes, as well as the
distributions of the Sigmoid layer, Maximum Likelihood and Maximum
a-Posteriori functions scores. The first line of the distributions are the
results of the classifications of the true positives, while the last line is the
corresponding scores of the false positives.

according to Subsection III-E. Regarding the object detection,
the unseen classes are already contained in the dataset’s
own frames. Unlike the results reported on the classification
dataset, the object detection results are presented by means
of precision-recall curves considering the easy, moderate,
and hard cases, according to the devkit-tool provided by the
KITTI benchmark.

A. RESULTS ON OBJECT CLASSIFICATION
All classes for the training dataset were extracted directly
from the aforementioned datasets, except for the tree, lamp-
post, and signpost classes which were manually extracted
from the data for this study. The rationale behind this is
to evaluate the prediction confidence of the network on
objects that do not belong to any of the trained classes,
and as such the consistency of the models can be assessed.
Ideally, if the classifiers are perfectly consistent in terms
of probability interpretation, the prediction scores would be
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FIGURE 13. Precision-recall curves for Yolo V4 obtained from the Sigmoid prediction layer, ML and MAP layers on the KITTI dataset, considering the true
positives. The curves were obtained for the easy, moderate and hard cases, according to the toolbox provided by KITTI.

identical (equal to 1/3) for each class in each sample of
the unseen dataset. Results on the testing set are shown in
Table 3 in terms of F-score, false positive rate (FPR), the
average (Ave.ScoresFP) and variance (Var .ScoresFP) of the
false positives (FP). The average (Ave.Scoresunseen) and
the variance (Var .Scoresunseen) of the predicted scores
are also shown for the unseen testing set (out-of-training
distribution test data).

In reference to Table 3, where the results are reported
based on the classification test set, it can be observed that the
FPR, Ave.ScoresFP and Var .ScoresFP values are considerably
lower than the results presented by the SM layer for both of
the sensor modalities and datasets. Regarding the F-scores of
the proposed approach (ML and MAP) compared to the SM
resulted in an average reduction of 1% (percentage point) for
the RGB modality and 0.76% for RV modality, considering
KITTI dataset. The F-scores on the LL5 dataset got a gain of
0.065% for RGB modality, considering the MAP approach,
F-score of the VRmodality had a average reduction of 0.26%.
Such reductions of the F-scores are relatively small and thus
did not compromise the classification ability. Additionally,
the distribution of the top-label scores on the test set
comprising the objects that belong to the trained classes (in-
distribution classes) is discussed in the Appendix VI-A.
Another way of analyzing the results of reducing overcon-

fidence predictions is through reliability diagrams, as shown
in the figures 9 and 10, considering uncalibrated, ML
and MAP data. Furthermore, as a way of validating our
methodology, we compared our results achieved with the

temperature scaling calibration technique. Note that the
results presented through the reliability diagrams are shown
through the MCE and ECE metrics. From these metrics we
cannot saywhich is the best calibration technique, because for
a given technique the lowest value for theMCEwas obtained,
while for another technique the lowest value for the ECE
was obtained. However, we show that the proposed approach
contributed to reduce the calibration errors i.e., to reduce
the values of the MCE and ECE metrics when compared
to the uncalibrated data, and consequently we provide a
more reliable result, as well as the contribution to reduce the
overconfidence predictions.

Further experiments have been carried out as a comple-
mentary analysis concerning the network’s overconfidence
behaviour, on a so-called ‘unseen’ test set, by means of the
network’s average score Ave.Scoresunseen. Note that for ML
and MAP layers, the results are smaller than the SM layer as
can be seen in Table 3. This indicates that the probabilistic
inferences are significantly better balanced i.e., enabling
more reliable decision-making, when ‘new’ objects of ‘non-
trained’ classes are presented to the CNNs, as illustrated by
Fig. 11 i.e., the distribution for the unseen dataset. We can
see that the aforementioned graphs show less extreme results
than those provided by the SM layer.

B. RESULTS ON OBJECT DETECTION
The results on the object detection dataset using the ML
and MAP nonlinearities are impressive. Such results were
not presented through reliability diagrams, but through
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TABLE 4. Comparison of the areas under the curves (%) between the Sigmoid layer (SG), ML and MAP layers from the precision-recall curves.

normalized histograms, which showed more clearly the
reduction in overconfidence in relation to objects detected
as false positives without degrading the results of the true
positives, as showed in Fig. 12. The results are more
representative through precision-recall curves, especially for
the cyclist class (Cyc), whose areas under the curves (AUCs)
are 24.03%, 14.28% and 14.63% for the easy, moderate and
hard cases respectively, as shown in Fig. 13 and Table 4. With
respect to the car (Car) and pedestrians (Ped), the proposed
approach also showed some improvement.

Note that the proposed methodology is dependent on the
number of bins (nbins) and the parameter λ. Thus, the
values of the scores may vary according to the values of
these parameters. For the particular case of the cyclist class,
the proposed methodology achieved strong classification
performance compared to the baseline (results in Table 4).
In this paper we have chosen to use a single set of parameters
for all the three cases (i.e., the same values of λ and nbins
for each class). Given the proposed approach, we note that a
set of tailored parameters for each class can be used instead,
as the distributions (PDF’s) are carried out individually.

V. DISCUSSION AND CONCLUSION
Within the experiments performed in this work, a proba-
bilistic approach for CNNs was addressed as distributions in
the Logit layer to better represent the classification outputs.
The results reported within the experiments in this work are
promising given that ML and MAP noticeably reduced the
classifier overconfidence and provided a more significant
distribution in terms of probabilistic interpretation.

The improvement is not as significant when analyzing
objects defined as true positives. But, our concern is to
develop a methodology that can reduce the values of false
positives (mainly objects of the unseen class: which may
be critical in robotics and autonomous driving applications)
without degrading the results achieved by true positives. Note
that we have included two metrics in Table 3, in order to
show the reduction of score values for the ‘unseen’ class (in
particular) and also to show that the overconfidence behavior
has been mitigated for TPs and FPs.

One potential way to improve the F-scores achieved by
the ML and MAP layers would be to obtain a ‘perfect’
match between the smoothing parameter (λ) and the number
of bins in the histograms. For the new results with the
EfficientNetB1 network, we have selected the parameters by
using an exhaustive search process (combining several values
as possible), in order to keep the values of the F-scores of the

FIGURE 14. From the RGB and LiDAR (RV) modalities, the prediction
scores were calculated using the ML and MAP functions on the KITTI
dataset.

ML and MAP layers practically identical to those achieved
by the EfficientNetB1 baseline. Figures 16, 17, and 18 show
reductions on the scores for objects of class ‘unseen’ thus, the
proposed approach is efficient.

As a consequence of the Additive Smoothing, the score
values equal to 0.0 and 1.0 are excluded from the prediction
values. The influence of the λ parameter on the data
distribution can be seen from the figures in Appendix VI-B,
particularly with respect to objects of the ‘unseen’ class.

To assess the classifier’s robustness or the uncertainty of
the model when predicting objects of unseen classes by the
network, we considered a test set comprised of ‘new’ objects.
Overall, the results are promising, since the distribution of the
predictions were not extremities relative to the results from
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FIGURE 15. Prediction scores on the testing set for RGB and LiDAR (RV)
modalities with the LL5 dataset, using the ML and MAP functions.

the SM layer, in other words, the average scores using ML
and MAP layers were significantly lower than the Softmax
prediction layer (the baseline), and thus the CNNs are less
prone to overconfidence.

The results for object classification were presented through
reliability diagrams, taking into account the MCE and ECE
metrics. In fact, suchmetrics indicate howmuch the predicted
score values are calibrated, that is, the best calibration
has to present the lowest value for the MCE and ECE.
However, we observed that depending on the dataset and
sensor modality, our approach obtained the best result in
only one of the metrics i.e., either the lowest value for the
MCE metric or the lowest value for the ECE metric. This fact
can also be noticed with the temperature scaling calibration
technique.

Another important factor that contributes to validate the
proposed approach is the use of two different datasets,
in terms of both RGB and Range-View (3D point clouds-
LiDARs) modalities, since the sensors of the datasets have
different resolutions, mainly the LiDAR sensor; While the
KITTI dataset provides 3D point clouds obtained from a

FIGURE 16. Prediction scores on the RGB unseen/non-trained data, using
SM layer (left side), and the proposed ML (center) and MAP (right side).
The SM case, that does not depend on λ, serves as baseline for
comparison.

sensor with 64 beams, the LL5 dataset provides 3D point
clouds with 40 beams - and so, the proposed approach was
also successful with differing sensor resolutions within the
state of the art.

The proposed methodology also obtained good results for
object detection, not degrading the results when compared
to the SG prediction layer, presenting better results in all
cases. The improvement is more evident for the ‘cyclist’
class, which contains the least amount of examples. This is an
interesting result that could be further investigated in future
work.

Regarding the formulations of probabilistic distributions,
the prior modeling by a Gaussian distribution was shown to
guarantee a smoother distribution for the prediction values.
Unlike the prior, the likelihood function was modeled by
means of a normalized histogram i.e., by a non-parametric
formulation showing the probability distributions. If both
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FIGURE 17. Prediction scores on the unseen data (RGB modality), for the
SM layer (left side), and the variations in the ML (center) and MAP layers
for different values of λ.

the prior and the likelihood function were modeled by a
uniform distribution, the final result would be similar to those
achieved by the SM and SG layers, since it would not offer
any smoothing for the prediction values. In fact, a uniform
prior or likelihood would add a constant to the training data
modeling, which would have little effect on the prediction
values obtained by theML and MAP.

VI. FUTURE WORK
Softmax and Sigmoid layers represent confidence measures,
but they do not provide any measure of uncertainty of the
predictions. In other words, both layers mentioned previously
provide a direct measure of certainty through the maximum
class probability. Such layers also do not provide any
information about the certainty that the model itself has
about the predictions. Therefore, we address the issues of
overconfident predictions and calibration techniques in this
work with a focus on perception systems for autonomous
vehicles. However, we realize that there is a lack of studies

FIGURE 18. Further results, in terms of the prediction scores (RGB
modality), showing the influence of different values of λ on the ML
(center) and the MAP (right side). The results using the SM layer, in the
left-hand side, serves as baseline for comparison.

on how to quantify the certainty/uncertainty of predictions
in relation to calibration techniques and reliability diagrams.
As we verified that the MCE and ECE metrics that quantify
the calibrated data through the reliability diagrams depend on
the number of bins of such diagrams, that is, by changing the
number of bins, the MCE and ECE metrics can provide new
error values. Thus, what is the correct value of bins to ensure
that a set of predictions is well calibrated?

Regardless of the methodology to reduce overconfidence
predictions or capture uncertainty in predictions, how should
we assess the quality of estimated uncertainty independent of
calibration and regularization techniques?

Faced with such questions and based on the studies
presented in the literature on computing uncertainties of
predictions and of calibration and regularization techniques,
we found that evaluating the quality of uncertainty estimates
is still a challenge for the following reasons:
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• uncertainty estimates depend on methods, which are
performed by means of approximations i.e., by means
of inferences;

• uncertainty estimates depend on the sample size i.e., the
sample size can provide a certain degree of confidence
that such a sample is representative;

• it is not easy to obtain a ground truth about uncertainty
estimates. In fact, during our study we did not verify the
ground truth about uncertainty estimates;

• study and evaluate the quality of quantitative uncertainty
metrics, such as entropy, Mutual Information, Kullback-
Leibler Divergence, and predictive variance.

Based on the issues mentioned above, we intend to advance
research on the quality of uncertainty estimates, including the
formulation of reliability diagrams, as a way to quantify the
quality of uncertainty estimates.

APPENDIX
A. PREDICTION SCORES OF THE OBJECTS ON THE
TESTING SET
The proposed methodology, which is based on the ML/MAP
layers, aims to reduce overconfidence predictions of deep
models, especially for objects classified as false positives
which sometimes receive high score values of deep networks.
An ideal result would be for the network to provide lower
score values for the false positives i.e., objects misclassified
by the network, and concurrently to attain higher scores
for the true positives. As a way of validating additional
results on test sets, we present the Fig. 14 and Fig. 15
that contain the results for the pedestrian, car, and cyclist
classes (columns from left to right), considering the scores
of the objects as being positive and negative, which show
smoother distributions of scores when compared to the results
shown in Fig. 1.

B. SMOOTHING PARAMETER INFLUENCE
Additionally to the results presented above, we have imple-
mented the proposed methodology on another state-of-the-
art network, the EfficientNetB1. The performance achieved
by the EfficientNetB1 to classify RGB images is a F-score
of 98.67% using the Softmax layer (as baseline). The result
achieved through the ML layer is equivalent to the baseline
i.e., F-score = 98.67%, while using the MAP layer the
network achieved 98.66% (almost the same). By keeping
nbins = 19 for both cases, we have performed several runs by
changing the values of λ, and the resulting F-score stabilized
around 99.66% i.e., very close to the F-score provided by the
Softmax layer (baseline). A way to choose the best values for
nbins and λ could be, for instance, by reducing the values of
the scores of the objects classified as false positives without
degrading the results of the true positives, as illustrated by
figures 16, 17, and 18, where the distributions in each row
were obtained through a given value for the λ parameter,
considering classifications from the unseen dataset. Note that
as the value of λ increases, the distributions tend to move
away from the extreme values (0.0 and 1.0).
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