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Abstract

Face morphing attack detection (MAD) is one of the most
challenging tasks in the field of face recognition nowadays.
In this work, we introduce a novel deep learning strategy
for a single image face morphing detection, which implies
the discrimination of morphed face images along with a so-
phisticated face recognition task in a complex classification
scheme. It is directed onto learning the deep facial features,
which carry information about the authenticity of these fea-
tures. Our work also introduces several additional contri-
butions: the public and easy-to-use face morphing detec-
tion benchmark and the results of our wild datasets filtering
strategy. Our method, which we call MorDeephy, achieved
the state of the art performance and demonstrated a promi-
nent ability for generalising the task of morphing detection
to unseen scenarios.

1. Introduction

Last decades with the development of deep learning
techniques the evident advances have been reached in the
area of face recognition. However, evolved and sophis-
ticated techniques for performing the presentation attacks
continue to appear, which require the development of new
protection solutions.

Face morphing is one such image manipulating tech-
nique. It is usually performed by blending several (usu-
ally two) digital face images and allows to match different
persons with this synthetic image that contains character-
istics from both faces. While being simple to implement,
face morphing poses the security risks of issuing an iden-
tification document that may be validated for two or more
persons. Presentation attacks with face morphing usually
can be hardly detected by humans which usually perform
poorly in matching unfamiliar faces on photos of ID and
travel documents [31] and by face recognition software in

ABC (automatic border control) systems [17].
In the last years, face morphing has become a matter of

research interest in academia [36] and industry [42]. Mor-
phing detection methods in facial biometric systems may
be distinguished into two pipelines depending on the pro-
cessing scenario. In no-reference morphing attack detec-
tion algorithm receives a single image, where morphing is
detected. In practice, these methods are directed to mitigate
risks related to the false acceptance of manipulated images
in the enrollment process. The authentic document, which
is generated with a successfully accepted forged image, may
further help to deceive the face recognition system.

The differential morphing detection implies additional
live data acquisition from an authentication system which
gives the reference information for the detection algorithm.
This scenario usually takes place while passing an Auto-
mated Border Control (ABC) system, when the recently en-
rolled image (which is already accepted and printed on the
ID Document) is tested against morphing detection.

First morphing detection solutions relied on the be-
haviour of local image characteristics (like texture, noise).
Recent approaches usually employ deep learning computer
vision tools. However, many of these methods utilize a
straightforward learning strategy that is limited by binary
classification or contrast learning, which in our opinion is
not optimal for a task of face morphing detection and may
lead to various convergence problems.

In this work, we introduce a novel deep learning method
for single image face morphing detection, which incorpo-
rates sophisticated face recognition tasks and implies utilis-
ing a combined classification scheme (discussed in Section
3). Also, we develop the public face morphing detection
benchmark, which is designed to be adaptive to the devel-
oper needs and at the same time to be simple for comparison
of algorithms of different developers. As an additional con-
tribution, we introduce the results of our datasets filtering
strategy (image name lists), which is described in Section
4.1.
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Regarding the limitations of the work, it is important to
note that at the current stage we focus on single image mor-
phing detection. Also, we do not take into account redig-
italized face images (by printing/scanning). At the same
time, we are limited to utilising landmark-based methods
for performing face morphing. GAN (Generative adversar-
ial Network) based methods require large computational re-
sources (namely for projecting images to latent space) and
at the same time, face recognition systems are less vulnera-
ble to presentation attacks with GAN morphs, rather than to
landmark-based morphs [61]. However, we intend to cover
those limitations in further research.

2. Related Work
To introduce our methodology, we need to discuss recent

advances in face morphing, face morphing detection (focus-
ing on the no-reference scenario) and face recognition.

2.1. Face Morphing

The generic pipeline of creating face morph from orig-
inal images includes the following steps: face features ex-
traction→ features averaging→ generating morphed image
from averaged features→ optional restoring image context
(namely background).

Landmark based approaches, first introduced by Ferrara
et al. [17], follow this pipeline straightforwardly in the im-
age spatial domain by the face landmark alignment, image
warping and blending. Different reported morphing algo-
rithms employ variations of this strategy [26, 28, 46].

With recent advances in generative deep learning ap-
proaches, several face morphing methods, which utilise
deep latent feature domain, were proposed.

The above face morphing pipeline may adapt various
deep learning tools like variational autoencoders (VAE) [9]
or generative adversarial networks (GANs) [61, 67].

2.2. Face Morphing Detection

Single image (no-reference) face morphing detection al-
gorithms usually utilize local image information and image
statistics.

Various morphing detection approaches employ Bina-
rized Statistical Image Features (BSIF) [38], Photo Re-
sponse Non-Uniformity (PRNU), known as sensor noise
[12, 47], textuxe features [41], local features in frequency
and spatial image domain [33] or complex combination of
these features [29, 48].

Several deep learning approaches for no-reference case
were proposed. For face morphing detection these ap-
proaches usually follow binary classification of pretrained
face recognition features [39], which may be finetuned
[19, 53] or utilized in a combination with local texture
characteristics [62]. Damer et al. [11] introduced a bet-
ter regularized strategy for morphing detection by replacing

the trivial binary classification with pixel-wise supervision.
Aghdaie et al. [1] adopted the attention mechanism which
is controlled by wavelet decomposition.

Differential face morphing detection is a less challeng-
ing task and security risks in this scenario indeed may be
combated by increasing the discriminability of face deep
representation, which is utilized for recognition.

Several approaches for differential detection was re-
cently proposed. Scherhag et al. [50] followed the clas-
sification of pretrained deep features in differential sce-
nario. Borghi et al. [6] performed differential morphing
detection by finetuning the pretrained networks in a com-
plex setup with identity verification and artifacts detection
blocks. Rather different approach to the differential sce-
nario was introduced by Ferrara et al. [18] who proposed an
approach to revert morphing by retouching the testing face
image with a trusted live capture to reveal the identity of the
legitimate document owner.

In comparison to the considered approaches, we propose
to focus our method on learning the authenticity of deep
face features, regularizing the morphing detection with a
delicate face recognition task.

2.3. Face Recognition

Modern face recognition approaches rely on deep learn-
ing tools, which give the ability to learn highly discrim-
inative features themselves from unconstrained images.
Among several techniques to perform the tasks of extracting
features, the convolutional neural network (CNN) is one of
the most efficient for the pattern recognition problems [44].

There are several strategies for approaching face recog-
nition via deep learning. However, all of them are focused
on extracting low-dimensional face representation (deep
face features) and increasing the discriminative power of
that representation.

Metric learning methods are directed on optimising the
face representation itself through the contrast of match/non-
match pairs [8, 52]. However, for reliable convergence,
these methods require enormously large datasets and so-
phisticated sample mining techniques.

Another concept (which we indeed follow in our work) is
learning face representation implicitly via a closed-set iden-
tity classification task. Deep networks in these methods en-
capsulate face representation in the last hidden layer and
usually adopt softmax loss and its modifications for classi-
fication [57–59].

Improvement of the performance in this technique was
achieved by various techniques for increasing intra-class
compactness and maximizing inter-class discrepancy. For
example, by applying additional regularisation for pushing
intra-class features to their centre [64], or by introducing
several kinds of marginal restrictions for inter-class vari-
ance [14, 27, 56, 63].



Several recent works were directed onto investigating
sample specific learning strategies, which are controlled
by sample quality [60], hardness [23, 66], data augmenta-
tion [55] or even by treating facial representation in distri-
butional manner (by specifying sample uncertainty) [54].

In our work, we consider face morphing detection from
the perspective of face recognition. In the case of follow-
ing the approach via identity classification, face morphing
introduces a problem, since a face morph image indeed be-
longs to several identities, which leads to the ambiguity of
proper class labelling. In this work, we address this issue
(Section 4.2) in search of the method for single image mor-
phing detection.

3. Methodology
In this section, we describe our technique for single im-

age morphing detection via deep learning.
In our research, we intuitively tried to invent a setup

that will allow learning high-level deep features, that also
carry some information about their authenticity. This re-
sulted in the schematic that includes two backbone CNN
based networks that are trained in a similar manner but bi-
ased in a way to discriminate morphed and bona fide im-
ages. Namely, our idea implies training two parallel net-
works which consider bona fide samples similarly and mor-
phed samples differently (see Fig. 1).

Both networks learn high-level features via classifica-
tion tasks, which are different in terms of identity labelling
of face morphs. First Network labels them by the original
identity from the first source image, the Second Network -
by the second original label.

The extracted features are also explicitly compared by
similarity metric (which is the dot product due to the
softmax properties) and the result is classified according
to the ground truth authenticity label of the image (bona
fide/morph).

The identity classification parts of the training scheme
act as a regularisation that retains the facial discriminability
of feature layers. That is why for identity classification we
utilize a standard softmax, which allows easier convergence
in comparison with its modifications (like ArcFace [14]).

Following the common formulation of softmax, our
training process is regularized by the losses:

L1 = − 1

N

N∑
i

log(
eẆ

T
ẏi

ḟi+ḃẏi∑C
j e

ḟẏj
) (1)

L2 = − 1

N

N∑
i

log(
eẄ

T
ÿi

f̈i+b̈ÿi∑C
j e

f̈ÿj
) (2)

where
{
ḟi, f̈i

}
denote the deep features of the i− th sam-

ple, {ẏi, ÿi} are the indexes of the class of the i−th sample,

{
Ẇ , Ẅ

}
and

{
ḃ, b̈
}

are weights and biases of last fully
connected layer (respectively for the {First, Second} net-
works). N is the number of samples in a batch and C is the
total number of classes.

The target driver of the training process tries to explicitly
discriminate morph/non-morph images. The dot product of
backbones outputs indicates the morphing detection score.
It is activated by sigmoid function, and the corresponding
loss is defined as binary cross-entropy:

L3 = − 1

N

N∑
i

t log
1

1 + e−D
+

+(1− t) log
(
1− 1

1 + e−D

)
,

(3)

where closs-label t is computed by a comparison of input
class labels:

t = abs(sgn(ẏi − ÿi)), (4)

and D is a dot product of high level features extracted by
First and Second backbones:

D = ḟ · f̈ (5)

The result loss for optimisation is combined as a
weighted sum:

L = α1L1 + α2L2 + βL3 (6)

By minimizing this loss in the fused classification setup,
we learn the discriminative facial features that are explicitly
regularized for morphing detection.

At the testing stage, the identity classification parts of the
network are redundant and may be removed from the setup.
The morphing detection decision is made by thresholding
the scalar product of the backbones outputs.

Although our strategy is adapted for single image morph-
ing detection indeed it is naturally also suitable for differen-
tial verification scenario. In this case, First and Second net-
works shall receive respectively two images (enrolled and
life capture) instead of the same single image.

4. Datasets
The proposed methodology requires the large labelled

face dataset with an accompaniment of morphed images of
identities from this dataset.

The academic community still doesn’t have public ID
document compliant datasets which are large enough for
efficient training of modern deep networks (as an example,
one of the largest FRGC V2 [37] contains only ∼50k im-
ages and ∼500 identities). That is why our strategy for this
work is to utilize the wild dataset which is filtered by the
criteria of suitability for face morphing. Conceptually this
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Figure 1. Schematic of the proposed method. For simplicity of visualisation batch contains a single image. Labels ẏ and ÿ are indicated
by names, when the real setup utilizes their numerical index value, which is encoded to one-hot vector.

approach indeed is not novel and was recently utilized in
face morphing research [10,11]. In this work, we introduce
a technique for semi-automatic wild dataset filtering for our
method.

As a source wild dataset we use VGGFace2 [7](∼3M
images, ∼9k classes, ∼360 samples per class, Licence
- CC BY-SA 4.0) due to large average number of sam-
ples per identity (in comparison to other popular wild
face datasets like CASIA-WebFace [65], MS-Celeb-1M
[20, 25], Glint360K [2], WebFace260M [69]) in order to
have enough samples per identity after filtering.

4.1. Wild Dataset Filtering

Our dataset filtering strategy is based on a thresholding
by quality metrics. Following Tremoço et al. [60] we used
a set of quality scores for labeling the face images in the
dataset: Blur [4], FaceQNet [22], BRISQUE [32], Face Illu-
mination [68] and Pose [43]. This set of scores allow to dis-
criminate and select samples by their natural quality (Blur,
BRISQUE), ID documents suitability (FaceQNet), face im-
age acquisition parameters (Illumination, Pose).

Next, we randomly select samples and manually label
them with a binary value (accept/reject). This acceptance is
defined by the criteria of suitability for application in face
morphing (namely by user’s choice). In our setup, we assure
that samples are selected distributively across the quality
scores values. Namely, we split the total quality score range
into a set of sub-ranges and define the minimum number of

samples to be selected from each sub-range. By proceeding
around 4k images in our setup, we harvest the dependency
of FAR (False Acceptance Rate) and FRR (False Rejection
Rate) from quality scores values (see Fig. 2).

The dataset filtering is then performed with joint thresh-
olding by those quality metrics. For each score, we select
the threshold at a point of EER (Equal Error Rate). As a
result we get the VGGFace2-selected dataset with the same
identity list as original source and around 500k images (see
Fig. 3).

4.2. Morph Dataset Harvesting Strategy

For application in our method, the filtered wild dataset
is needed to be accompanied by a large collection of face
morphs. We automatically generate these images with
our customized landmark-based morphing approach (with
blending coefficient α = 0.5) (see Fig. 4).

A key requirement for effective learning is to provide un-
ambiguity of proper class labelling in our training method.
Namely after generating face morph from two arbitrary
samples of the original dataset, the resulting image indeed
belongs to both source identities. That is why fully random
image pairing (for generating morphs) will result in classi-
fication confusion.

To avoid that we utilize the following strategy. First, we
separate the total list of identities into two disjoint parts,
which are attributed to the First and the Second networks
respectively. Next, to generate a face morph, we randomly
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Figure 2. FAR and FRR for result manual quality labeling of ran-
dom samples from VGGFace2.

Figure 3. Example of VGGFace2 filtering result. Accepted images
(green box) and Rejected images (red box).

pair images from identities of these list halves. Each gener-
ated image is then labelled according to the attributed sub-
list for classification by the First and the Second networks.
Let us note that this labelling is made differently for each
morphed image and similarly for bona fide images in both
networks (see Fig. 1). That is why this technique, which pri-
marily acts as a regularisation, also amplifies the morphing
detection performance.

Following the above procedure, we generate VGGFace2-
selected-morph dataset, which contains around 1M mor-
phed images.

+

+

→

→

Figure 4. Examples of generated morphs with landmark based
approach. Background is restored by one of the source images
(chosen randomly).

4.3. Selfmorphing

The fully automatic landmark morphing methods may
introduce a number of visible artefacts to the generated im-
ages (like blending artefacts). That is why without addi-
tional regularisation our method will be biased to learning
those artefacts, which is not a realistic scenario. Real fraud-
ulent morphs are retouched with the intention to remove any
perceptual artefacts.

To address this problem, we utilize selfmorphs, which
are generated by applying face morphing to images of the
same identity. This concept was indeed recently introduced
by Borghi et al. [5] and was used for generating images
with visible artefacts. Then for removing these artefacts the
authors trained the Conditional GAN using original images
as a ground truth reference.

In this work, we utilize selfmorph images to focus mor-
phing detection onto the deep face features behaviour, rather
than to detecting artefacts. We assume that deep discrimi-
native face features remain after performing selfmorphing.
In the proposed method schematic (Fig. 1) we consider self-
morphs as bona fide samples.

We perform a random pairing of samples within
each identity from the VGGFace2-selected and gener-
ate VGGFace2-selected-selfmorph dataset, which contains
around 500k images (see Fig. 5).

Figure 5. Examples of generated selfmorphs. Images contain
blending artefacts but the identity is perceptually retained.

5. Benchmarking
There are few public benchmarks for evaluating the per-

formance of morphing detection or morphing resistant algo-
rithms: the NIST FRVT MORPH [35] and FVC-onGoing
MAD [15, 40]. Both of these benchmarks accept no-
reference and differential morphing algorithms, however,
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Figure 6. Detection Error Trade-off curves for various α/β proportions in different protocols.
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Figure 7. Detection Error Trade-off curves for various bona fide images selection in different protocols.

they are proprietary and are executed on the maintainer side.
Thus they have a number of submission restrictions.

The straightforward metric for evaluating single image
morphing detection is the dependency of Bona fide Presen-
tation Classification Error Rate (BPCER) from Attack Pre-
sentation Classification Error Rate (APCER) (according to
ISO/IEC 30107-3 [24]), which may be plotted as a Detec-
tion Error Trade-off (DET) curve.

5.1. Face Morphing Detection Benchmark

For this work, we develop an custom benchmark, which
is to be executed on the developer side. We are not mak-
ing it public at this stage). The existing public benchmarks
provide useful data but usually specify the protocols for the
certain software frameworks [45].

Our benchmark intends to provide the functionality for
estimating the morphing detection performance, for gener-
ating custom protocols and also for further comparison of
the results from different developers with existing proto-
cols. At this stage of our work, we focus on the single image
morphing detection with only the usage of public data (how-
ever, we assume the possibility of further adapting private
datasets).

We generate several protocols for single image morphing
detection. Our benchmark is based on the FRGC-Morphs,
FRLL-Morphs [45], AMSL [34] and Dustone datasets [16].
Using this data we combine several benchmark protocols
with various types of face morphs:

• protocol-real (∼3k morphs(Dustone+AMSL)), which
includes morphs with low level of visible blending ar-

tifacts, and imitates realistic presentation attacks.
• protocol-facemorpher (∼2k morphs), which includes

simple morphs with foreground and background arti-
facts

• protocol-webmorph (∼1k morphs), which includes
images with background artifacts but the low level of
artifacts inside the face contour

• protocol-stylegan (∼2k morphs), which includes
StyleGan morphs

As bona fide images all our protocols use frontal faces
from the following public datasets: FRLL Set [13], FEI [3],
AR [30], Aberdeen and Utrecht [51] (∼1.5k images in to-
tal).

6. Experiments and Results
To analyze the performance of our approach we per-

form several experiments with our method. As backbone
networks we use ResNet-50 [21], which are initialized
with weights, pretrained on the ImageNet dataset. Fol-
lowed by pooling and dropout layers each backbone re-
turns 512 deep features. Input images (RGB 3-channel)
are aligned and resized to 224×224. We report the
performance by APCER@BPCER = (0.1, 0.01) and
BPCER@APCER = (0.1, 0.01).

Our default training dataset is a joined and shuffled
concatenation of VGGFace2-selected, VGGFace2-selected-
selfmorph, and VGGFace2-selected-morph. It is important
to note that in all experiments we assured the equal balance
between the numbers of morphed and non-morphed (which
are bona fide + selfmorphed) images in the training dataset.



Method
APCER@BPCER = δ

protocol-real protocol-facemorpher protocol-webmorph protocol-stylegan
δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01

α = 0 0.697 0.947 0.756 0.939 0.976 0.995 0.980 0.998
α/β = 0.01 0.601 0.895 0.651 0.957 0.945 0.992 0.895 0.991
α/β = 0.05 0.607 0.965 0.502 0.968 0.915 0.999 0.842 0.996
α/β = 0.2 0.401 0.835 0.431 0.786 0.778 0.979 0.799 0.969
α/β = 1 0.711 0.935 0.670 0.928 0.942 0.995 0.913 0.982
α/β = 10 0.556 0.839 0.513 0.791 0.749 0.923 0.852 0.969
β = 0.0 0.945 0.996 0.922 0.993 0.954 0.997 0.949 0.997

α/β = 0.2 Original 0.481 0.875 0.498 0.876 0.987 0.997 0.915 0.993
α/β = 0.2 Selfmorphs 0.608 0.938 0.568 0.911 0.704 0.986 0.816 0.983

Table 1. APCER@BPCER = (0.1, 0.01) of our method for various α/β proportions and bona fide images selection in different protocols.

Method
BPCER@APCER = δ

protocol-real protocol-facemorpher protocol-webmorph protocol-stylegan
δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01

α = 0 0.795 0.993 0.781 0.971 0.961 0.998 0.952 0.998
α/β = 0.01 0.625 0.968 0.638 0.979 0.969 0.997 0.991 1.0
α/β = 0.05 0.577 0.950 0.598 0.951 0.841 0.989 0.895 0.991
α/β = 0.2 0.494 0.726 0.562 0.848 0.710 0.822 0.697 0.904
α/β = 1 0.616 0.871 0.628 0.843 0.882 0.963 0.851 0.960
α/β = 10 0.642 0.892 0.604 0.913 0.742 0.931 0.829 0.967
β = 0.0 0.956 0.998 0.932 0.998 0.971 0.998 0.874 0.986

α/β = 0.2 Original 0.417 0.601 0.370 0.595 0.718 0.963 0.605 0.862
α/β = 0.2 Selfmorphs 0.580 0.912 0.587 0.905 0.484 0.842 0.798 0.976

Table 2. BPCER@APCER = (0.1, 0.01) of our method for various α/β proportions and bona fide images selection in different protocols.

6.1. Fused Classification Balance

For effective convergence and further morphing detec-
tion, our method requires choosing the proper balance be-
tween the elements of the loss function. Namely the balance
between α (= α1 = α2) and β (disbalance of α1 and α2

didn’t demonstrate any interesting behaviour in our tests).
We perform training of our method with different propor-
tional settings also including the ablation of particular parts
from the overall loss. Our experiments demonstrate (see
Fig. 6 and Tab. 1, 2) that by varying α/β proportion it is
possible to achieve some optimal performance of morphing
detection in different protocols. Our strategy allows gener-
alizing the detection of morphing even to the images, which
are generated with GANs even accounting that this type of
morphing is totally unseen in the training.

On the edge case with excluded main loss function driver
(namely binary morph/bona fide classification), our method
demonstrates the almost random detection decision. At the
same time, ablation of the regularisation (β = 0) also leads
to bad performance, which we relate with the overfitting on
the trivial binary classification learning task.

Summing up, we can conclude that our strategy allows

learning such face features which are discriminative by the
criteria of authenticity.

6.2. Data combination experiments

Further experiments are performed with the selected pro-
portion α/β = 0.2 in order to understand the impact of
selfmorphing for our method.

In comparison to the dataset selection in Section 6.1
where the collection of bona fide samples is split evenly
to original and selfmorphs, we test two more options where
these particular parts are ablated from the total dataset.

Our results (see Fig. 7 and Tab. 1,2) proves the sig-
nificant importance of selfmorphs in our strategy. Utilizing
selfmorphs at the training stage allows to reduce the empha-
sis of the detection of facial blending artefacts and shift it to
the behaviour of the deep feature for generalizing to unseen
types of attacks.

6.3. NIST FRVT MORPH Results

We have performed the comparison of the results of our
method and the state of the art face morphing detection ap-
proaches with NIST FRVT MORPH Benchmark (Report of
October 28, 2021) [35].



Method
APCER@BPCER = δ

P1 P2 P3 P4
δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01

Aghdaie et al. [1] 0.965 0.998 0.923 0.991 0.015 0.200 0.271 0.721
Debiasi et al. [12] 0.049 0.823 0.994 1.000 1.000 1.000 0.985 0.994

Ramachandra et al. [41] 0.375 0.990 0.938 0.985 0.159 0.998 0.936 0.996
Scherhag et al. [49] 1.000 1.000 0.997 1.000 0.996 1.000 0.993 1.000
Lorenz et al. [29] 0.380 1.000 0.966 1.000 0.819 1.000 0.971 0.995
Ferrara et al. [19] 0.477 0.999 0.978 1.000 0.037 0.810 0.420 0.777

Ours 0.434 0.686 0.842 0.954 0.323 0.639 0.499 0.805

Table 3. Comparison with the state of the art single image morphing detection methods by APCER@BPCER = (0.1, 0.01).

Method
APCER@BPCER = δ

P1 P2 P3 P4
δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01

Scherhag et al. [50] 0.109 1.000 0.094 1.000 0.031 1.000 0.093 1.000
Lorenz et al. [29] 0.432 1.000 0.634 1.000 0.168 1.000 0.732 1.000

Scherhag et al. [49] 0.208 1.000 0.927 1.000 0.451 1.000 0.934 1.000
Ours 0.865 0.967 0.948 0.981 0.815 0.929 0.861 0.987

Table 4. Comparison with the state of the art differential morphing detection methods by APCER@BPCER = (0.1, 0.01).

We select the model with α/β = 0.2 from Section 6.1 as
our best model and present results of comparison in several
protocols:

• P1 - Visa-Border (25727 Morphs)
• P2 - Manual (323 Morphs)
• P3 - MIPGAN-II (2464 Morphs)
• P4 - Print + Scanned (3604 Morphs)

As bona fide samples all protocols utilize a large collec-
tion of 1047389 Bona Fide images. The comparison is per-
formed by the metrics APCER@BPCER = (0.1, 0.01).

6.4. Single Image MAD

First, we perform the comparison in the target single im-
age morphing detection scenario (see Table 3).

MorDeephy outperforms other techniques in detecting
landmark-based morphs and challenging manual morphs
and achieves comparable results in other protocols.

Also, our method does not demonstrate bias to a partic-
ular morphing generative strategy and has the most stable
performance across all protocols in comparison to other ap-
proaches.

It is important to note that these results are achieved
by utilizing a rather straightforward and simple morphing
technique during training (without any adaptation to realis-
tic scenario or modifications for removing artefacts), which
proves that our method allows generalizing morphing detec-
tion to various unseen generative approaches by focusing on
deep face features behaviour.

6.5. Differential MAD

The suitability of the approach for the differential sce-
nario was previously mentioned. We perform the straight-
forward application of our method to the differential detec-
tion and compare with several SOTA methods (see Table
4). In order to do it the Second network (see Fig. 1) re-
ceives the life capture image (instead of the same image as
the First network) on the testing stage.

The comparison demonstrates that our method has
more regular characteristics and outperforms other ones
by APCER on low demanding BPCER. These results are
achieved with zero effort of training our method in a differ-
ential manner, which proves that the extracted deep authen-
tically discriminative features are not only characteristic for
a particular sample but are generalised to the identity.

7. Conclusion

We introduce a novel deep learning strategy for single
image face morphing detection, which implies utilising a
complex classification task. It is directed onto learning the
deep facial features, which carry information about the au-
thenticity of these features. Our method achieved the state
of the art performance and demonstrated a prominent abil-
ity for generalising the task of morphing detection to unseen
scenarios (like GAN morphs and print/scan morphs).

Our work also introduces several additional contribu-
tions, which are the public and easy-to-use face morphing
detection benchmark and the results of our wild datasets fil-
tering strategy.



In our further work, we will focus on improving the per-
formance by applying more sophisticated morphing tech-
niques during training and on explicit adapting our method
to the differential scenario, which will require sophisticated
sampling strategies.
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Salicetti, and Aurélien Mayoue. Fingerprint and On-Line
Signature Verification Competitions at ICB 2009. In Ad-
vances in Biometrics : Third International Conference, ICB
2009, Alghero, Italy, volume 5558, 06 2009. 5

[16] Ted Dustone. New face morphing database for vulner-
ability research, 2017. https://www.linkedin.
com / pulse / new - face - morphing - dataset -
vulnerability-research-ted-dunstone. (ac-
cessed: November 1, 2021). 6

[17] Matteo Ferrara, Annalisa Franco, and Davide Maltoni. The
magic passport. IJCB 2014 - 2014 IEEE/IAPR International
Joint Conference on Biometrics, 12 2014. 1, 2

[18] M. Ferrara, A. Franco, and D. Maltoni. Face demorphing.
IEEE Transactions on Information Forensics and Security,
13(4):1008–1017, 2018. 2

[19] Matteo Ferrara, Annalisa Franco, and Davide Maltoni. Face
morphing detection in the presence of printing/scanning and
heterogeneous image sources. IET Biometrics, 10, 02 2021.
2, 8

[20] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and
Jianfeng Gao. MS-Celeb-1M: A Dataset and Benchmark
for Large-Scale Face Recognition. In Proceedings of ECCV,
volume 9907, pages 87–102, 10 2016. 4

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–
778, Las Vegas, NV, USA, June 2016. IEEE. 6

[22] J. Hernandez-Ortega, J. Galbally, J. Fierrez, R. Haraksim,
and L. Beslay. FaceQnet: Quality Assessment for Face
Recognition based on Deep Learning. In 2019 International
Conference on Biometrics (ICB), pages 1–8, 2019. 4

[23] Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu,
Pengcheng Shen, Shaoxin Li, Jilin Li, and Feiyue Huang.
CurricularFace: Adaptive Curriculum Learning Loss for
Deep Face Recognition. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020. 3

[24] International Organization for Standardization. ISO/IEC
30107–3:2017. Information Technology—Biometric Presen-
tation Attack Detection — Part 3: Testing and Reporting.
ISO/IEC JTC 1/SC 37 Biometrics, 09 2017. 6

[25] Chi Jin, Ruochun Jin, Kai Chen, and Yong Dou. A com-
munity detection approach to cleaning extremely large face

https://fei.edu.br/~cet/facedatabase.html
https://fei.edu.br/~cet/facedatabase.html
https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666/3
https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666/3
https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666/3
https://www.linkedin.com/pulse/new-face-morphing-dataset-vulnerability-research-ted-dunstone
https://www.linkedin.com/pulse/new-face-morphing-dataset-vulnerability-research-ted-dunstone
https://www.linkedin.com/pulse/new-face-morphing-dataset-vulnerability-research-ted-dunstone


database. Computational intelligence and neuroscience,
2018, 2018. 4

[26] Biometric System Laboratory. UBO-Morpher, 2018. http:
//biolab.csr.unibo.it/Research.asp. (ac-
cessed: November 1, 2021). 2

[27] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.
SphereFace: Deep Hypersphere Embedding for Face Recog-
nition. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6738–6746, 2017. 2

[28] Moment Media LLC. FaceFusion application, 2010.
www.wearemoment.com/FaceFusion/. (accessed:
November 1, 2021). 2

[29] S. Lorenz, U. Scherhag, C. Rathgeb, and C. Busch. Morph-
ing attack detection: A fusion approach. In IEEE Fusion,
2021. 2, 8

[30] A. Martinez and Robert Benavente. The AR face database.
Tech. Rep. 24 CVC Technical Report, 01 1998. 6
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