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Pseudo RGB-D Face Recognition
Bo Jin, Leandro Cruz, and Nuno Gonçalves, Member, IEEE

Abstract— In the last decade, advances and popularity
of low cost RGB-D sensors have enabled us to acquire
depth information of objects. Consequently, researchers
began to solve face recognition problems by capturing
RGB-D face images using these sensors. Until now, it is
not easy to acquire the depth of human faces because
of limitations imposed by privacy policies, and RGB face
images are still more common. Therefore, obtaining the
depth map directly from the corresponding RGB image
could be helpful to improve the performance of subse-
quent face processing tasks such as face recognition.
Intelligent creatures can use a large amount of experi-
ence to obtain three-dimensional spatial information only
from two-dimensional plane scenes. It is machine learning
methodology which is to solve such problems that can
teach computers to generate correct answers by training.
To replace the depth sensors by generated pseudo depth maps, in this paper, we propose a pseudo RGB-D face
recognition framework and provide data-driven ways to generate the depth maps from 2D face images. Specially, we
design and implement a generative adversarial network model named “D+GAN” to perform the multi-conditional image-
to-image translation with face attributes. By this means, we validate the pseudo RGB-D face recognition with experiments
on various datasets. With the cooperation of image fusion technologies, especially Non-subsampled Shearlet Transform,
the accuracy of face recognition has been significantly improved.

Index Terms— RGB-D, face recognition, D+GAN, pseudo depth, monocular face depth estimation

I. INTRODUCTION

DARWIN’S theory of evolution proposes natural selection
which is the process of the survival of the fittest, and

the elimination of the others [1]. The genetic characteristics
of organisms that adapt to the environment can be preserved
through natural selection, which is based on sufficient facts
and has a profound effect in academic research. Nowadays,
all living higher creatures have two eyes for three-dimensional
positioning which is vital for foraging. In contrast, most one-
eyed creatures are extinct. Human beings can still perform 3D
positioning with one eye in a period of time because of a large
amount of previous experience.

In recent decades, biometrics has attracted the attention
of researchers because of its uniqueness, stability, versatility
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and difficulty to counterfeit. Because of its non-invasiveness,
face recognition has become the most user-friendly biometric
method, which leads to its wide applications [2] [3] [4].
However, the accuracy of RGB face recognition is commonly
affected by many factors, such as lighting conditions, age, head
pose variations, etc. The human vision is three-dimensional,
by contrast, 2D face images that are most common lack
face space stereo information. There is no doubt about the
importance of facial spatial information [5]. In recent years,
advances and popularity of inexpensive RGB-D sensors enable
us to utilize three-dimensional information. Comparing with
RGB face recognition, RGB-D face recognition which requires
depth images captured by depth sensors such as Kinect [6]
and PrimeSense [7] performs better in accuracy due to the
effective use of spatial features [8] [9]. In modern society,
although facial recognition systems are very convenient, they
also give rise to many information security and privacy issues.
In addition, there are no popular file formats for RGB-D data,
and not as many RGB-D cameras as RGB cameras. Therefore,
RGB-D face images are not easy to collect and are much less
common than RGB face images.

The emergence of machine learning allows computers to
imitate the human learning process to learn from historical
experience to make speculations. It occurs to us that probably
by utilizing machine learning algorithms we can get the
models to predict the depth map from its corresponding RGB
image effectively. With the development of big data and the
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improvement of computer hardware performance, the deep
learning technology that has been widely used in science and
industry in recent years has more powerful reasoning perfor-
mance than traditional machine learning models. So monocular
depth estimation inspired us to acquire 3D information from
2D face images by deep learning. Synthesizing the above, the
thought behind this paper is to generate the corresponding
depth map only from the RGB face image to replace the depth
map collected by the depth sensor to perform the pseudo RGB-
D face recognition.

In this paper, our contributions could be summarized as
follows:

1) We definitely propose and validate a pseudo RGB-D
face recognition framework shown in Figure 1. Figure
1 presents a modular process. Algorithms within the
module lists can be selected for preprocessing, depth-
generating, image fusion and feature extraction, and
therefore be combined for face recognition. The best
embodiment found is provided.

2) In order to make full use of face attributes, we em-
phatically propose a GAN based model, D+GAN, to
perform the multi-conditional image-to-image transla-
tion for transforming RGB face images to corresponding
depth maps with face attribute labels.

3) Based on the obtained depth maps, we improve the
face recognition performance in cooperation with im-
age fusion technologies, especially the Non-subsampled
Shearlet Transform (NSST).

The remaining of this article is organized as follows: In
Chapter 2, we review the related work. In Chapter 3, we
describe our proposed methods and their implementations. Our
experimental results are analyzed and discussed in Chapter 4.
In Chapter 5, we make a conclusion and describe a research
direction for the future.

II. RELATED WORK

Face recognition refers to the technology of identifying
or verifying the identity of subjects from faces in images
or videos. The history of face recognition algorithms can
be traced back to the 1970s. Traditional machine learning
method is to extract hand-crafted features which are designed
by specialists to reduce the complexity of input data, and
train a model from the input to discover the pattern to
make decisions. Matthew Turk and Alex Pentland, proposed
Eigenfaces method for face recognition on a smaller set of face
image features approximating the set of known face images
[10]. Marian Stewart Bartlett et al. proposed using the Indepen-
dent Component Analysis (ICA) method for face recognition,
and they showed that ICA representations were superior to
Principal Components Analysis (PCA) based representations
for face recognition across changes in some conditions [11].
P. Jonathon Phillips, developed a Support Vector Machine
(SVM) based algorithm to generate the decision surface for
face recognition [12]. In the past ten years, traditional machine
learning methods have increasingly been replaced by deep
learning methods based on the convolutional neural network
(CNN) in face recognition. The CNN structures mainly used in

face recognition are basically consistent with the ones for clas-
sification tasks in ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [13]. In order to adapt to the task of face
recognition, researchers mainly focus on discovering better
training loss functions. Alex Krizhevsky, Ilya Sutskever and
Geoffrey E. Hinton, proposed AlexNet which is a classic CNN
framework to classify a large amount of images in ILSVRC-
2010 [14]. Yaniv Taigman et al. presented a DeepFace system
which can reach human level performance in face recognition
[15]. The backbone network of DeepFace is based on AlexNet,
and the loss function used is Softmax. Christian Szegedy et
al. proposed a 22-layer deep convolutional neural network
GoogLeNet which is a variant of the Inception Network
[16]. Florian Schroff et al. presented FaceNet which uses
GoogLeNet as backbone network and the triplet loss function
for training to map the face image to the Euclidean space
directly [17]. Kaiming He et al. proposed ResNet which can
increase the network depth to 152 layers by using residual
blocks [18]. Jiankang Deng et al. presented an Additive Angu-
lar Margin Loss function aiming to enhance the discriminative
power of feature embeddings learned, which could get the
state of the art result for face recognition by coordinating with
ResNet [19].

Similarly, in the field of RGB-D face recognition research,
in recent years, researchers have used deep neural networks
with CNN structures to extract face depth map features.
Yuancheng Lee et al. used a 12-layer deep neural network
which is firstly trained with a color face dataset, and later fine-
tuned on depth face images for feature extraction to perform
joint classification [9]. Donghyun Kim et al. applied a fine-
tuned DCNN to extract features from 2D depth maps converted
from 3D point clouds for calculating the distance for face
matching [20]. Moreover, Luo Jiang, Juyong Zhang, and Bailin
Deng tried to propose an attribute-aware loss function for
RGB-D facial data [21].

Depth estimation to obtain a representation of the spatial
structure of objects plays a crucial role in navigation, robotics,
and augmented reality for inferring scene geometry from 2D
images. Researchers have applied machine learning methods
to estimate the depth of human faces from monocular images
since the 1990s. Shang-Hong Lai, Chang-Wu Fu and Shyang
Chang estimated the depth from defocus by using the raw
image data in the vicinity of the edge [22]. Zhan-Li Sun, and
Kin-Man Lam converted depth estimation into an independent
component analysis (ICA) problem by incorporating a prior
from the CANDIDE 3-D face model [23]. Zhan-Li Sun,
Kin-Man Lam, and Qing-Wei Gao employed the nonlinear
least-squares model to estimate the depth values of facial
feature points and the pose of the 2D face image [24]. Since
2014, with the development of deep learning, researchers
have successively used deep learning methods to perform
monocular face depth estimation, which is similar with face
recognition. Jiyun Cui et al. presented a deep neural network
with a cascaded FCN and CNN architecture to estimate
depth information of RGB face images [25]. Stefano Pini
et al. applied a conditional Generative Adversarial Network
(cGAN) for learning to translate intensity face images into
their corresponding depth maps [26]. Abdullah Taha Arslan
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Fig. 1: Pseudo RGB-D face recognition framework

and Erol Seke applied a conditional Wasserstein GAN to
perform face depth estimation [27]. Bo Jin, Leandro Cruz and
Nuno Gonçalves predicted face depth maps by using pretrained
models for scene depth estimation directly [28].

III. MATERIALS AND METHODS

Generative Adversarial Network (GAN), proposed by Ian
Goodfellow et al., is a model that learns a mapping from
random noise vector to output images [29]. The original GAN
consists of two parts which are a generator and a discriminator.
The objective of the generator is to map input Gaussian
noise into a fake image, and the discriminator is to determine
whether the input image comes from the generator or not,
that is, to compute the probability of the input image being
false. The conditional generative adversarial network (cGAN),
proposed by Mehdi Mirza and Simon Osindero, is a supervised
model that can generate output images with a desired condition
from random noise [30]. Pix2Pix, proposed by Phillip Isola et
al., could be regarded as a special case of cGAN. It takes the
2D image as the input condition of cGAN to realize the image-
to-image translation [31]. ACGAN, proposed by Augustus
Odena, Christopher Olah and Jonathon Shlens, is required not
only to judge whether the input image is true or not, but also
to classify the category of the input image in the discriminator
part [32].

For adapting our task that is generating the corresponding
depth from RGB face images better, we comprehensively refer
to the above network structures and cooperate with some
advanced skills, and propose the D+GAN. Figure 2 indicates
the main structures of cGAN, Pix2Pix, ACGAN and D+GAN.

It concisely shows the difference between D+GAN and other
GANs’ main structures. They both control the generated
images by introducing external conditions. For cGAN and
ACGAN, the generator generates fake samples from random
noise and conditions. For Pix2Pix, the generator generates fake
images from images which could be regarded as conditions.
Whereas, for D+GAN, the generator generates fake images
from condition images and their corresponding labels. For
cGAN and Pix2Pix, the discriminator determines whether the
sample is the real sample that meet the condition. For ACGAN,
the discriminator determines not only whether the sample is
the real sample that meets the condition, but also the category
of each sample. Whereas, for D+GAN, the discriminator
determines not only whether the input sample is the real
sample that corresponds the condition image, but also the
multiple categories that each sample belongs to.

A. Datasets
In our experiments, there are 9290 pairs of colored images

and corresponding depth maps from Bosphorus 3D Face
Database [33] and CASIA 3D Face Database [34] for training
the GAN models. Binghamton University 3D Facial Expres-
sion (BU-3DFE) Database [35] is only for testing.

a) Bosphorus 3D Face Database: Bosphorus 3D Face
Database widely used for 3D face processing contains 105
subjects and 4666 faces in the database. One third of the
subjects are professional actors or actresses. There are various
expressions (up to 35), head poses (13 yaw and pitch rotations)
and varieties of face occlusions for each subject. Facial data
in the dataset is acquired by a 3D system based on the
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Fig. 2: Main structures of GANs. (a) cGAN (b) ACGAN (c) Pix2Pix (d) Ours: D+GAN

structured-light. The ground truth depth images and their
corresponding color images are transformed from 3D point
cloud files provided by the Bosphorus database.

b) CASIA 3D Face Database: CASIA 3D Face Database
collected by the Chinese Academy of Sciences contains 4624
scans of 123 persons. The scans are collected by the Minolta
Vivid 910 which is a non-contact 3D digitizer. Each person in
the database has 37 or 38 scans which include variations of
poses, expressions and illuminations. Most of the persons in
the database are Mongoloid.

c) Binghamton University 3D Facial Expression (BU-3DFE)
Database: There are 100 subjects in the BU-3DFE Database of
which 56 are male and 44 are female. The majority of subjects
were undergraduates with various races. For each subject, there
are 25 3D models with seven expressions which are happiness,
disgust, fear, anger, surprise, sadness and neutral with different
levels of intensity.

B. Preprocessing
In practice, images always have different backgrounds

which can affect the processing performance of the algorithm.
Since training image pairs transformed from 3D data have
black backgrounds. In this section the main purpose is to
remove the image background out of the face uniformly.
Firstly, the threshold is calculated by using Otsu’s method
[36]. Then, the image is transformed to a binary image by the
threshold. Thus, 8-connected objects are labeled to locate the
face based on the binary image. Next, background pixels are
replaced with black pixels. Finally, an open operation which
is an erosion followed by a dilation is performed to remove
small objects and smooth the boundaries of larger objects of
the image.

C. D+GAN

In the task of generating face depth maps from correspond-
ing RGB images, we propose a generative adversarial network
named D+GAN for making full use of the attribute information
of the human face. The generator (G) is composed of residual
modules [18], self-attention modules [37] and convolution
neural network, and its input is a 256×256 RGB image and its
facial attribute labels which include the corresponding gender,
age and race categories. The output is a depth map with the
same size, which realizes the mapping of image to image.
The discriminator (D) is used to identify the quality of the
depth map. In our design, D+GAN not only outputs the score
of the depth map, but also determines gender, age and race
categories. Thus the input of the discriminator is a 256× 256
depth map with its labels, and the output of the discriminator
contains four scalar values which represent probabilities of true
or false, age, gender and race. Figure 3 shows the structure of
D+GAN.

1) Generator: Specifically, the core architecture of the gen-
erator is U-shaped [38], which consists of an encoder and a
decoder. The encoder is mainly used for feature extraction
and feature compression of the image. It reduces the size of
the input image and the number of feature parameters while
increases the number of channels, which realizes the down-
sampling process. The decoder with a symmetric and opposite
structure to the encoder performs the encoding representation
up-sampling successively and restores it to the same feature
size as the encoder input.

The generator model also utilizes a skip connection in the
convolutional layer between the encoder and decoder to build
an information flow transmission approach, which can relieve
the gradient disappearance problem effectively. The encoder
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Fig. 3: D+GAN: A GAN architecture for translating RGB images to depth maps with multiple face attributes

is composed of 8 two-dimensional convolutional layers, as
shown in Figure 3. The number of convolution kernels set
is [64, 128, 256, 256, 512, 512, 512, 512] respectively, and
the strides are set to [2, 1, 2, 1, 2, 1, 2, 1] sequentially. There
are one Batch Normalization (BN) layer for normalizing input
features to accelerate the convergence process and one layer
with the ReLU activation function for introducing the sparsity
of data to suppress the overfitting after each convolutional
layer except for the first one.

The decoder is mainly composed of the convolutional neural
network and deconvolutional neural network. In the decoder,
the convolutional neural network is designed for feature ex-
traction, and its calculation method is the same as that of
the encoder, while deconvolutional neural network is designed
for increasing the size of feature maps for up-sampling. In
addition, the decoder intersperses two convolutional neural
layers as shown in Figure 3. The number of convolution
kernels set is [512, 512, 256, 256, 256, 128, 128, 128, 64, 3]
respectively, and the strides are set to [2, 1, 1, 2, 1, 1, 2, 1, 1,
2] sequentially. Layer 1, 4, 7 and 10 are the deconvolutional
layers. Similarly, BN layers and ReLU activation functions
are added after each convolution layer except for the last one.
Finally, the tanh activation function is used to normalize the
output depth map at [-1, 1].

a) Residual block: In order to fully extract features and
increase model capacity, ten groups of residual block and
self attention module combinations are used consecutively
at the connection between the encoder and decoder of
the generator. In our design, we use residual blocks to
replace the original design of UNet. In the residual block

H(x), the original mapping is changed into F (x) + x from
F (x) by using skip connections, which makes the neural
network to be easier optimized. The number of convolution
kernels is 256, the kernel size is 3×3, and the stride is set to 1.

b) Self-attention module: Self-attention mechanism can
learn from distant blocks, so it is used in both generator and
discriminator in our design. The self-attention module helps
to learn multi-level and long range dependencies across image
regions, which is complementary to the convolution layer. In
the self-attention module, the input feature x with n channels
is transformed into query (Q = WQx), key (K = WKx)
and value (V = WV x) by convolution operations. The size
of Q,K, V remains unchanged, but the number of channels
becomes n/8, n/8 and n respectively. Next, Q, K, and V are
serialized by channels so that feature map of qm×n

8
, km×n

8

and vm×n are obtained respectively, where m represents the
feature size. The final output of attention weight distribution
is computed as:

attention(q, k, v) = softmax(qkT )v (1)

2) Discriminator: The discriminator of D+GAN consists
of a backbone structure for distinguishing between true and
false, and three branches for identifying face attributes of
the image generated. In the backbone network, in order to
provide more information exchange between channels and
save computing resources, we insert a self-attention module
after some higher convolutional layers as described above
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before the branch node. In detail, there are ten convolutional
layers where the number of convolution kernels set is [64, 64,
64, 128, 128, 128, 256, 256, 256, 512] respectively and the
strides are set to [2, 1, 1, 2, 1, 1, 2, 1, 1, 2] sequentially. The
size of convolution kernels is 3 × 3, except the first layer is
5 × 5. In order to make the training process more stable, we
set up spectral normalization [39] in these 10 convolutional
layers to make the neural network robust to input disturbances.

a) Spectral Normalization: In detail, for the weight Wm×n

of the neural network, the spectral norm is the maximum
singular value of the matrix. The maximum singular value
σ(Wm×n) is defined as:

σ(Wm×n) = max
δ

||Wm×nδ||2
||δ||2

(2)

In practice, σ(Wm×n) is approximately calculated by the
power iteration, and then the weight Wm×n is updated to
Wm×n/σ(Wm×n) in the forward direction during training,
which is the process of spectral normalization.

The four branch networks get the output of the branch node
as the input and perform different classification tasks. The first
branch network is used to judge whether the depth map is
true or false, which is essentially a binary classification task.
Similarly, the second, third and fourth branch networks are
used to classify age, gender and race respectively. In detail, the
age label is divided into three categories which are 19-39 years
old, 40-60 years old, and above 60 years old. The gender label
is divided into two categories which are male and female. The
race label is divided into three categories which are Caucasoid,
Mongoloid and Negroid. These four branch networks have the
same network structure except for the last layer, which are
composed of seven two-dimensional convolutional layers, and
their kernel size is 3× 3. The number of convolution kernels
in the first six layers is 512 with a stride of 1, and the number
of kernels in the last layer is 2 or 3 with a stride of 2.

3) Loss function: The loss of the discriminator LD consists
of two parts. The first part LS,D, adopted from standard GAN,
is used to distinguish between training samples and generated
samples, which is indicated as:

LS,D = EY ∈Pdat(Y ),X∈Pdat(X) [logD1 (X,Y )]

+EX∈Pdat(X) [log(1−D1(G(X), X)))]
(3)

where X represents the RGB face image to be translated,
Y represents the condition image corresponding to the real
depth image, and Pdat represents the probability distribution
of the corresponding dataset. D1 represents the output of the
first discriminator. For the condition real image Y and the
generated image G(X), the classifiers in the discriminator
should be able to predict the classes it belongs to. The second
part LC,D, classification loss, is the cross entropy loss of age,
gender and race classification, which is indicated as:

LC,D =

4∑
i=2

EX∈Pdat(X)[logP (Di = c|G(X))]

+EY ∈Pdat(Y )[logP (Di = c|Y )]

(4)

where Di represents the ith discriminator, and Ci represents
the corresponding label. Totally, the training loss of the
discriminator, LD, can be expressed as:

LD = λ1LS,D + λ2LC,D (5)

For the generator, its loss function LG contains three parts.
First, it is expected that the generated samples can deceive the
discriminator, thus LS,G is defined as:

LS,G = −EX∈Pdat(X)[logD1(G(X), X)] (6)

In order to ensure the similarity of input and output images
of the generator, L2-loss is introduced as:

LO,G = −EY ∈Pdat(Y ),X∈Pdat(X) [∥Y −G(X)∥2] (7)

Next, the generator is expected to generate high-quality sam-
ples so that they can be correctly classified by the discrimina-
tor. Similarly, the classification loss LC,G is defined as:

LC,G =

4∑
i=2

EX∈Pdat(X)[logP (Di = c|G(X))] (8)

In addition, in order to avoid the over-fitting, the weight
regularization term LW,G is introduced. It is expressed as:

LW,G =
1

2
||W ||2 (9)

Totally, the training loss of generator, LG, can be expressed
as:

LG = λ1LS,G + λ2LC,G + λ3LO,G + λ4LW,G (10)

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we not only evaluate on the face depth map
generated itself, but also validate it for the face recognition
task in various datasets.

A. Qualitative Results and Analysis
To perform the qualitative evaluation, we calculate some

indicators on the three 3D face datasets described above to
evaluate the quality of the obtained depth map. In this section,
we present outputs of face depth maps generated by several
state-of-the-art techniques for some examples. There are Mon-
odepth2, DenseDepth (KITTI), DenseDepth (NYU-Depth V2),
3DMM, Pix2Pix, CycleGAN and D+GAN for comparison. In
this study, Monodepth2 [40] is trained on the KITTI dataset
with the mono training modality. DenseDepth (KITTI) [41]
is trained successively on the ImageNet and KITTI datasets,
and DenseDepth (NYU-Depth V2) is trained successively on
the ImageNet and NYU-Depth V2 datasets. 3D Morphable
Model (3DMM) [42] is to generate a textured 3D face with
parameters including vertices, triangles and attribute based on
Basel Face Model (BFM). With these parameters, we render
this 3D face into the depth map via a rasterization renderer.
GAN models including Pix2Pix, CycleGAN and D+GAN are
all trained on the Bosphorus 3D Face Database and CASIA
3D Face Database for 20 epochs, and their training curves all
converge before or around 16 epochs. Adam optimizer is used
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for Pix2Pix and CycleGAN, while Adadelta optimizer is used
for D+GAN.

The IDs of the example cases are bs016 LFAU 22 0 of
Bosphorus 3D Face Database, 008-025 of CASIA 3D Face
Database and F0010 FE03WH F2D of BU-3DFE Database re-
spectively. The ground truth depth image and its corresponding
color image are transformed from 3D data provided.

1) Case Study: bs016 LFAU 22 0 of Bosphorus 3D Face
Database: Figure 4 presents the results for the case of
bs016 LFAU 22 0 of Bosphorus 3D Face Database. Figure
4a shows the RGB face image which is transformed from
3D data provided, and Figure 4b shows the ground truth
face depth map which is transformed from 3D data provided.
Figure 4c shows the output generated by Monodepth2. The
result shows the contour of the face vaguely, and the relative
depth information is not accurately expressed. Figure 4d shows
the output generated by DenseDepth (KITTI). The result can
only show the outline of the face, and cannot show the depth
of facial details. Figure 4e shows the output generated by
DenseDepth (NYU-Depth V2). The result shows the depth
better, but still lacks the facial detailed depth. Figure 4f shows
the output generated by 3DMM. The result shows face detailed
depth information more, however the contour of eyes, nose,
mouth and the face shape showed are visually very different
with the ground truth. We infer that this is because 3DMM
is based on an average model. Visually, Figure 4g and Figure
4h show the basically satisfactory results which are generated
by Pix2Pix and CycleGAN. Figure 4i shows the best result in
visual which is the output generated by D+GAN. The depth
values especially in eyes, nose and mouth shown by D+GAN
are more precise than Pix2Pix and CycleGAN.

The autocorrelation function is usually used as the texture
measure in the image. The texture coarseness of the image is
proportional to the expansion of the autocorrelation function.
We assume that one image is denoted as I(x, y). Autocorre-
lation function is defined as:

C (ξ, η, a, b) =

∑a+w
x=a−w

∑b+w
y=b−w I(x, y)I(x− ξ, y − η)∑a+w

x=a−w

∑b+w
y=b−w[I(x, y)]

2

(11)
where (a, b) is the pixel in the window which size is (2w +
1) ∗ (2w+ 1). ξ, η = ±0,±1,±2...±N . ξ and η are shifting
variables on the pixels.

In the case of bs016 LFAU 22 0 of Bosphorus 3D Face
Database, autocorrelation function graphs on depth maps gen-
erated by various models are shown as Figure 5. In the auto-
correlation function graph, a larger downward trend as ξ and
η increasing means a larger coarseness of the corresponding
image. Figure 5b shows the autocorrelation function graph
of the ground truth depth map. Comparing with Figure 5a,
Figure 5b has a smaller downward trend as ξ and η increasing,
which means the depth map has a lower coarseness than
its corresponding grayscale image. Subjectively, the spatial
details of the face should be changed regularly. Comparing
with Figure 5b, Figure 5c, Figure 5d and Figure 5e has a
larger downward trend as ξ and η increasing, which means the
depth maps generated by Monodepth2, DenseDepth (KITTI)
and DenseDepth (NYU-Depth V2) have a higher coarseness

than the ground truth depth map. Conversely, the shapes of
Figure 5f, Figure 5g, Figure 5h and Figure 5i are similar
with Figure 5b, which indicates the depth maps generated
by 3DMM, Pix2Pix, CycleGAN and D+GAN have a higher
quality.

In the case of bs016 LFAU 22 0 of Bosphorus 3D Face
Database, local SSIM maps of the depth maps generated
by various models are shown in Figure 6. The structural
similarity index measure (SSIM) is to measure the similarity
between two images. In the SSIM map, regions with smaller
local SSIM values correspond to different regions from the
reference image. Similarly, regions with larger local SSIM
values correspond to uniform regions of the reference image.
The reference image here is the ground truth face depth map.
From Figure 6 seen, Figure 6g representing D+GAN has the
most red area. Figure 6e representing Pix2Pix and Figure
6f representing CycleGAN in overall perform well except in
specific areas of eyes, nose and mouth in comparison with
Figure 6g. Figure 6d representing 3DMM shows a larger
difference in face shape besides in eyes, nose and mouth.
In addition, besides eyes, nose and mouth areas, Figure 6a
representing Monodepth2, Figure 6b representing DenseDepth
(KITTI) and Figure 6c representing DenseDepth (NYU-Depth
V2) show a larger difference in four corners out of the face.
Among these three, Figure 6c shows a less difference in the
area of the human face.

2) Case Study: 008-025 of CASIA 3D Face Database: Figure
7 presents the results for the case of 008-025 of CASIA
3D Face Database. Unlike the previous example, the input
image in this example is a bust. In all, the performance of
each model is similar to that in the above example. Figure
7g, Figure 7h and Figure 7i representing three GAN models
show a satisfactory result. Especially for Figure 7i representing
D+GAN, it is difficult to see the difference from the ground
truth with the naked eye. It is worth mentioning that 3DMM
can only be used for the human head area (see Figure 7f).

In the case of 008-025 of CASIA 3D Face Database,
autocorrelation function graphs on depth maps generated by
various models are shown as Figure 8. It shows the coarseness
of the generated depth map. It is worth mentioning that Figure
8 indicates the texture coarseness of the depth map of the bust
should be higher than the face (see Figure 6). Comparing with
Figure 8b, Figure 8c, Figure 8d and Figure 8e has a smaller
downward trend as ξ and η increasing, which means the
depth maps generated by Monodepth2, DenseDepth (KITTI)
and DenseDepth (NYU-Depth V2) have a lower coarseness
than the ground truth depth map. In contrast, Figure 8g,
Figure 8h and Figure 8i representing three GAN models have
similar trends with Figure 8b, which implies they retain depth
information well.

In the case of 008-025 of CASIA 3D Face Database, local
SSIM maps of the depth maps generated by various models
are shown in Figure 9. It shows the similarity of areas in the
depth maps generated. In all, the performance of each model
is similar to that in the last example. It is worth mentioning
that the areas of clothes and neck in the depth map generated
by CycleGAN are not as satisfactory as Pix2Pix and D+GAN
(see Figure 9f).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4: Face depth maps generated by various models in the case of bs016 LFAU 22 0. (a) Input RGB image, (b) Ground truth
depth map, (c) Model: Monodepth2, (d) Model: DenseDepth (KITTI), (e) Model: DenseDepth (NYU-Depth V2), (f) Model:
3DMM, (g) Model: Pix2Pix, (h) Model: CycleGAN, (i) Proposed Model: D+GAN

3) Case Study: F0010 FE03WH F2D of BU-3DFE
Database: Figure 10 presents the results for the case of
F0010 FE03WH F2D of BU-3DFE Database. It is worth
mentioning that, unlike the previous examples, GAN models
are not trained by BU-3DFE Database. In all, the performance
of each model is similar to that in the first example. Figure
10g, Figure 10h and Figure 10i representing three GAN
models show a more satisfactory result than others. In
detail, Figure 10g and Figure 10h representing Pix2Pix and
CycleGAN respectively show a inaccurate depth in the eyes
area. However, D+GAN performs well in the eyes area (see
Figure 10i). It is worth mentioning that 3DMM generates
inaccurate results in the face shape again (see Figure 10f).

In the case of F0010 FE03WH F2D of BU-3DFE Database,
autocorrelation function graphs on depth maps generated by
various models are shown as Figure 11. It shows the coarseness
of the depth map generated. It is worth mentioning that the
graph shape of Figure 11f representing 3DMM is the most
similar with Figure 11b representing the ground truth in this
case. Figure 11g and Figure 11h has a smaller downward

trend as ξ and η increasing, which means the depth maps
generated for the face by Pix2Pix and CycleGAN have a lower
coarseness.

In the case of F0010 FE03WH F2D of BU-3DFE Database,
local SSIM maps of the depth maps generated by various
models are shown in Figure 12. It shows the similarity of
areas in the depth maps generated. In all, the performance of
each model is similar to that in the previous example. It is
worth mentioning that the areas of clothes and neck in the
depth map generated by CycleGAN are not as satisfactory
as Pix2Pix and D+GAN (see Figure 12). In comparison with
Figure 12g, Figure 12i representing D+GAN performs better
in the area of the eyes.

B. Quantitative Results and Analysis
In this section, quantitative analysis is carried out. The

Structural Similarity Index (SSIM), Root Mean Squared Error
(RMSE) and Peak Signal-to-Noise Ratio (PSNR) are selected
to evaluate of the quality of the face depth map generated by
several models on three datasets described before which are
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Fig. 5: Autocorrelation function graphs of various output images: (a) Original RGB image, (b) Ground truth depth map,
(c) Depth map generated by Monodepth2, (d) Depth map generated by DenseDepth (KITTI), (e) Depth map generated by
DenseDepth (NYU-Depth V2), (f) Depth map generated by 3DMM, (g) Depth map generated by Pix2Pix, (h) Depth map
generated by CycleGAN, (i) Depth map generated by D+GAN

50 100 150 200 250

(a)

50

100

150

200

250

300

350
-0.4

-0.2

0

0.2

0.4

0.6

0.8

50 100 150 200 250

(b)

50

100

150

200

250

300

350 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 250

(c)

50

100

150

200

250

300

350 -0.4

-0.2

0

0.2

0.4

0.6

0.8

50 100 150 200 250

(d)

50

100

150

200

250

300

350
0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

(e)

50

100

150

200

250

300

350 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250

(f)

50

100

150

200

250

300

350
0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

(g)

50

100

150

200

250

300

350

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6: Local SSIM maps of depth maps generated by various models. (a) Model: Monodepth2, (b) Model: DenseDepth (KITTI),
(c) Model: DenseDepth (NYU-Depth V2), (d) Model: 3DMM, (e) Model: Pix2Pix, (f) Model: CycleGAN, (g) Proposed Model:
D+GAN
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7: Face depth maps generated by various models in the case of 008-025. (a) Input RGB image, (b) Ground truth depth
map, (c) Model: Monodepth2, (d) Model: DenseDepth (KITTI), (e) Model: Densedepth (NYU-Depth V2), (f) Model: 3DMM,
(g) Model: Pix2Pix, (h) Model: CycleGAN, (i) Proposed Model: D+GAN

Fig. 8: Autocorrelation function graphs of various output images: (a) Original RGB image, (b) Ground truth depth map,
(c) Depth map generated by Monodepth2, (d) Depth map generated by DenseDepth (KITTI), (e) Depth map generated by
DenseDepth (NYU-Depth V2), (f) Depth map generated by 3DMM, (g) Depth map generated by Pix2Pix, (h) Depth map
generated by CycleGAN, (i) Depth map generated by D+GAN
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Fig. 9: Local SSIM maps of depth maps generated by various models. (a) Model: Monodepth2, (b) Model: DenseDepth (KITTI),
(c) Model: DenseDepth (NYU-Depth V2), (d) Model: 3DMM, (e) Model: Pix2Pix, (f) Model: CycleGAN, (g) Proposed Model:
D+GAN
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(g) (h) (i)

Fig. 10: Face depth maps generated by various models in the case of F0010 FE03WH F2D. (a) Input RGB image, (b) Ground
truth depth map, (c) Model: Monodepth2, (d) Model: DenseDepth (KITTI), (e) Model: DenseDepth (NYU-Depth V2), (f)
Model: 3DMM, (g) Model: Pix2Pix, (h) Model: CycleGAN, (i) Proposed Model: D+GAN
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Fig. 11: Autocorrelation function graphs of various output images: (a) Original RGB image, (b) Ground truth depth map,
(c) Depth map generated by Monodepth2, (d) Depth map generated by DenseDepth (KITTI), (e) Depth map generated by
DenseDepth (NYU-Depth V2), (f) Depth map generated by 3DMM, (g) Depth map generated by Pix2Pix, (h) Depth map
generated by CycleGAN, (i) Depth map generated by D+GAN
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Fig. 12: Local SSIM maps of the depth maps generated by various models. (a) Model: Monodepth2, (b) Model: DenseDepth
(KITTI), (c) Model: DenseDepth (NYU-Depth V2), (d) Model: 3DMM, (e) Model: Pix2Pix, (f) Model: CycleGAN, (g) Proposed
Model: D+GAN

Bosphorus 3D Face Database, CASIA 3D Face Database and
BU-3DFE Database.

The Structural Similarity Index (SSIM) [43] is the widely
used standard for evaluating structural similarity in images that
evaluates the quality of a processed image from a ground truth
image. We calculate the SSIM for above six models as:

SSIM(a, b) = [l(a, b)]α[c(a, b)]β [s(a, b)]γ (12)

where
l(a, b) =

2µaµb + C1

µ2
a + µ2

b + C1
(13)

c(a, b) =
2σaσb + C2

σ2
a + σ2

b + C2
(14)

s(a, b) =
σab + C3

σaσb + C3
(15)

In the above equations, there are two images denoted as a and
b. µa and µb indicate the local mean values of corresponding
images, σa and σb indicate the standard deviations and σab

indicates the cross-covariance for images.
A lower RMSE value means a more accurate result corre-

sponding to the reference. The RMSE between images a and
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b is calculated as:

RMSE(a, b) =

√√√√ 1

M ×N

M∑
i=1

N∑
i=1

(a(i, j)− b(i, j))2 (16)

where M and N are width and height of the image respectively.
PSNR, a logarithmic form using the decibel scale based on

MSE, is widely used to quantify reconstruction quality for
images. It is defined as:

PSNR = 10 log10
L2

MSE
= 20 log10

L

RMSE
(17)

where L is the maximum possible pixel value of the image.
Here, L equals 255.

The calculated mean results in SSIM, RMSE and PSNR on
datasets are presented in Table 1. Not only qualitatively, but
also quantitatively, the GAN model overall outperforms other
models in these three datasets. Among them, the depth map
output by D+GAN can get the best SSIM, RMSE and PSNR
values.

For a 256*256 image, among the above three GAN mod-
els, Pix2Pix requires 18.6G multiply-accumulate multiply-
accumulate operations (MACs) approximately, CycleGAN re-
quires about 56.8G MACs approximately [44], and D+GAN,
the embodiment showed, requires about 21.6G MACs ap-
proximately. These computations are acceptable for today’s
GPUs. Using the GAN model to obtain high-quality spatial
information of face images will take more computation, which
is a trade-off.

C. Face Recognition Results and Analysis

In this section, classic machine learning and deep learning
models including PCA [10], ICA [11], FaceNet [17] and
InsightFace [19] are selected as face recognition methods.
Five classic face recognition datasets including ORL [45], Yale
[46], UMIST [47], AR [48] and FERET [49] are selected.

In order to make effective use of generated depth features in
the pseudo RGB-D face recognition, image fusion algorithms
are utilized. Through comparisons among Wavelet-based
methods, Laplacian Pyramid and Non-subsampled Shearlet
Transform (NSST) [50], NSST performs the best so as to be
selected as the image fusion method for our face recognition
experiments.

The shearlet system can be expressed as:

ΛD,S(Ψ) =
{
Ψj,k,l(x) = |det(D)|j/2Ψ(SlDjx− k) :

j, l ∈ Z; k ∈ Z2}
(18)

where j, k, and l denote the scale, shift, and direction
respectively. D, the anisotropic expanding matrix, is expressed
as:

D =

[
4 0
0 2

]
(19)

and S, the shear matrix, is expressed as:

S =

[
1 1
0 1

]
(20)

The NSST performs multi-scale and multi-directional de-
composition on input images by Non-subsampled Pyramids
(NSPs) and shearing filters in the first place. Next, according
to the made fusion strategy, the high frequency and low
frequency sub-band images decomposed are transformed and
combined into new sub-band images. Last, the final fused
image is achieved by the inverse NSST on the new sub-band
images. In our embodiment, the filter set for the Laplacian
Pyramid decomposition is ’maxflat’. The vector indicating
decomposition directions is set to [3, 3, 4, 4]. The vector
indicating the local support of the shearing filter is set to [8,
8, 16, 16]. The fusion coefficient is set to 0.5.

Besides NSST, D+GAN is selected as the preferred embod-
iment for generating the pseudo face depth map in the pseudo
RGB-D face recognition due to its good performance in the
previous section. If the training images are sufficient, due to
the great learning ability of the deep learning model, it is
easy to have a 100% accuracy during testing. Therefore, in
the evaluation, due to the different capabilities of ML models,
we used separate experimental settings to differentiate the
performance of face recognition of each model.

In experiments of testing PCA, two images of each person
in the dataset are applied for testing, and the rest images of that
person are for training. The number of feature face set is 30 for
PCA. In this case, the mode of pseudo RGB-D face recognition
improves the accuracy by 10.2%, 9.0%, 4.6%, 6.3% and 5.5%
approximately on ORL, Yale, UMIST, AR and FERET dataset
respectively.

In experiments of testing ICA, five images of each person
in the dataset are applied for training, and rest images of
that person are for testing. The number of components set is
70 for ICA. The mode of pseudo RGB-D face recognition
improves the accuracy by 12.7%, 9.6%, 3.4%, 10.6% and
14.8% approximately on ORL, Yale, UMIST, AR and FERET
dataset respectively.

In experiments of testing DL models including FaceNet and
InsightFace, for ORL and AR datasets, 30% of the images of
each person are used for training, and 70% of the images of
each person are used for testing. For Yale dataset, 20% of the
images of each person are used for training, and 80% of the
images of each person are used for testing. For UMIST dataset,
10% of the images of each person are used for training, and
90% of the images of each person are used for testing. For
FERET dataset, 40% of the images of each person are used for
training, and 60% of the images of each person are used for
testing. Since the number of images of each person in the ORL
and YALE datasets is relatively small, and the total number
of people is also relatively small. Therefore, using the pre-
trained model to directly extract features, and then training
a linear SVM classifier for testing could get better results.
For the datasets UMIST, AR and FERET with more images,
fine-tuning the pretrained network model could be used as a
conventional strategy.

Table II presents the face recognition results by two modes
including RGB and Pseudo RGB-D using traditional ML and
advanced DL models on the five classical face recognition
datasets.

Specifically, in experiments of testing the FaceNet: Incep-
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TABLE I: Quantitative Index Results

Method Index Dataset
Bosphorus CASIA 3D BU-3DFE

Monodepth2
SSIM 0.660 0.205 0.585
RMSE 60.77 99.15 54.41
PSNR 12.46 8.205 13.42

DenseDepth
(KITTI)

SSIM 0.697 0.339 0.555
RMSE 92.70 127.7 95.91
PSNR 8.789 6.007 8.494

DenseDepth
(NYU Depth V2)

SSIM 0.728 0.334 0.570
RMSE 74.38 123.7 86.79
PSNR 10.70 6.283 9.361

3DMM
SSIM 0.747 0.624 0.677
RMSE 50.20 73.27 64.82
PSNR 14.12 10.83 11.90

Pix2Pix
SSIM 0.933 0.949 0.852
RMSE 13.43 11.11 26.41
PSNR 25.56 27.22 19.70

CycleGAN
SSIM 0.916 0.851 0.792
RMSE 21.26 34.36 34.23
PSNR 17.41 21.58 17.44

D+GAN
SSIM 0.970 0.978 0.869
RMSE 4.122 3.803 23.99
PSNR 35.83 36.53 20.53

tion ResNet v1 model pretrained by CASIA-WebFace, the
mode of pseudo RGB-D face recognition improves the ac-
curacy by 2.7%, 5.7%, 0.4%, 0.9% and 11.3% approximately
on datasets ORL, Yale, UMIST, AR and FERET respectively.
In experiments of testing the FaceNet: Inception ResNet v1
model pretrained by VGG-Face2, the mode of pseudo RGB-
D face recognition improves the accuracy by 0%, 0%, 1.7%,
0.7% and 1.3% approximately on datasets ORL, Yale, UMIST,
AR and FERET respectively. In experiments of testing the
Insightface: IResNet34 model pretrained by MS1MV2, the
mode of pseudo RGB-D face recognition improves the ac-
curacy by 2.1%, 3.2%, 1.0%, 0.2% and 7.9% approximately
on datasets ORL, Yale, UMIST, AR and FERET respectively.
In experiments of testing the Insightface: IResNet100 model
pretrained by MS1MV2, the mode of pseudo RGB-D face
recognition improves the accuracy by 2.7%, 5.7%, 0.3%, 2.4%
and 2.5% approximately on datasets ORL, Yale, UMIST, AR
and FERET respectively.

Table II shows that in the face recognition experiments,
the best performing results annotated in bold for each dataset
of the five almost all use the mode of pseudo RGB-D face
recognition. It can be concluded that pseudo RGB-D face
recognition proposed is able to improve the accuracy in
comparison with RGB face recognition using different classic
traditional ML and DL models. Especially for traditional ML
models, pseudo RGB-D face recognition mode can increase
the accuracy more.

V. CONCLUSION

Inspired by the occurrence of RGB-D face recognition,
we propose a pseudo RGB-D face recognition framework. In

essence, the ML model is able to imitate the relative depth
map from its corresponding RGB image by learning from
big data to replace the depth sensors. We provide a D+GAN
model for making increased use of face attribute information to
generate the high quality face depth map. In cooperation with
NSST, the pseudo RGB-D face recognition obtains an overall
improvement in comparison with RGB face recognition. With
the pseudo RGB-D face recognition framework, we could
modularly adapt off-the-shelf algorithm models to promote
the performance of RGB face recognition. In future, we will
continue to discover simple and effective models to perform
the monocular face depth estimation, and efficient ways to
apply them to improve the biometric recognition performance.
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