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Abstract— Advancements in deep learning techniques and
availability of large scale face datasets led to significant perfor-
mance gains in face recognition in recent years.

Modern face recognition algorithms are trained on large-
scale in-the-wild face datasets. At the same time, many facial
biometric applications rely on controlled image acquisition
and enrollment procedures (for instance, document security
applications). That is why such face recognition approaches
can demonstrate the deficiency of the performance in the
target scenario (ICAO-compliant images). However, modern
approaches for face image quality estimation may help to
mitigate that problem.

In this work, we introduce a strategy for filtering training
datasets by quality metrics and demonstrate that it can lead to
performance improvements in biometric applications that rely
on face image modality. We filter the main academic datasets
using the proposed filtering strategy and present performance
metrics.

I. INTRODUCTION

Automatic face recognition has evolved significantly in
the last decade with the help of deep learning tools. Cur-
rently, face recognition models effectively learn a highly
discriminative and low dimensional feature domain of the
considered biometric data. Biometric samples, which are
transformed into this domain to a form of a template, can
be then distinguished with computationally simple similarity
metrics.

Deep networks for face recognition are trained on the
large datasets of labeled face images. These collections are
usually based on the wild images of celebrities from the web,
even for applications where such variation of the acquisition
conditions is not needed. Such data choice is caused by
the hard availability of ICAO-compliant (International Civil
Aviation Organization[19]) images collections for research
and development due to privacy and legislation issues. For
instance, face images are considered as sensitive personal
data by the European GDPR (General Data Protection Reg-
ulation) [9]. These aspects sometimes lead to the withdrawal
of public face datasets, which now can only be obtained
through redistribution. [12]. That is why collecting a dataset
of ICAO-compliant face images with a size comparable to
the popular wild training datasets is complicated.
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In modern systems, the differentiating of face images by
their identities is done by the comparison of their respective
biometric templates with generic similarity measures (like
euclidean distance or dot product). The evaluation procedures
and metrics are defined by ISO/IEC 19795-1:2021 [1]. There
are several scenarios of benchmarking, which characterize
the face recognition method from different perspectives. For
instance, a template may be used for 1-1 verification, when
the comparison of testing and the trusted genuine samples
is performed. This scenario can be utilized in the validation
of the ID documents in the match-on-document applications
[23], [24]. Some applications, where a template is enrolled
into a database for performing further search requests, follow
a 1-N identification scenario.

The majority of face recognition benchmarks follow the
1-1 verification scenario [17], [16], [22]. Some particular
benchmarks are adapted for estimating the performance
under variation of a particular characteristic like age, pose
and quality [50], [51], [20].

However, the results in the particular benchmark indeed
should be expanded carefully to the overall face recognition
performance. Namely, focusing on of achieving the best
results in novel and sophisticated benchmarks, the perfor-
mance in more simple scenarios can drop (as an example for
ICAO-compliant images in document security applications).
This aspect is usually avoided in face recognition research,
which is directed toward improving performance under un-
constrained conditions.

This becomes especially important for biometric applica-
tions (for instance, for document security), which usually
require a certain minimal image quality level or follow the
protocols with controlled image acquisition and enrollment.

In this work, we address the above problem and propose
a technique to reduce this negative effect. We introduce
our novel strategy of filtering the wild face datasets for
training deep networks with the use of image quality metrics.
Several sample-specific loss function modifications [42], [25]
were addressed to this problem, however, to the best of
our knowledge, it was not yet approached from the dataset
filtering perspective.

We demonstrate that careful training data filtering can help
adapting the deep network for a particular scenario, namely
to improve the 1-1 verification performance for ID document
compliant images, while slightly sacrificing the results in
wild scenarios.

As additional contribution we provide the extracted quality



metrics data for the main academic face datasets for training
deep networks (CASIA-WebFace[47], VGGFace2[5], MS-
Celeb-1M[12], Glint360K[2], WebFace260M[52]) and also
the results of proposed filtering (The result metadata of this
work will be published in case of acceptance).

A. Collaboration Statement

This work raises the question of correspondence between
the training data and the benchmark results interpretation
within the scopes of facial biometrics in specific scenarios.
For instance, it can facilitate the development and evolution
of face recognition applications for ID and travel documents.
The broader impacts of this work could help revisit the issue
of quality sampling in image pattern recognition.

II. RELATED WORK

To introduce our methodology we need to discuss recent
advances in face recognition and face image quality assess-
ment.

A. Face Recognition

The great success of deep learning tools in solving pattern
recognition problems [29] was expanded to many areas of
biometrics including face recognition. Among various deep
learning techniques, which allow learning highly discrimina-
tive features from unconstrained images, the convolutional
neural network (CNN) has become one of the most efficient
tools.

Modern strategies are focused on extracting low-
dimensional facial biometric template, which is based on
deep features of a backbone network and maximizing the
discriminative power of that template under required condi-
tions. The recent mainstream research is usually related to
various kinds of modifications of the loss function, which
drives the training process. Conceptually the strategies of
learning the deep network for face recognition can be divided
into contrastive and classification approaches.

Contrastive methods (or metric learning methods) utilize
the target similarity metric (for instance euclidean distance)
to straightforwardly optimize the distance between deep
features by matching face image pairs during the learning
process [7], [31]. However, these methods are usually char-
acterized by the high demands of dataset size and diversity
for reliable convergence of the training process.

Another opportunity to train a face recognition network is
to solve the multi-class closed-set classification problem for
the existing training dataset of face images. The discrim-
inative data of the result trained network is encapsulated
in its hidden feature layer and may be further used for
open-set identity discrimination purposes. These approaches
usually utilize softmax loss and its variants for performing
the classification [39], [38], [40]. They find their use in
biometric applications related to document security. For in-
stance, in matching live portraits to Identification Document
(ID) photos [33], [34].

Basing on the softmax loss, there were introduced nu-
merous modifications, which apply additional restrictions to

the deep features. They are focused on increasing intra-
class compactness and maximizing inter-class discrepancy
by different means. For instance, it may be achieved by
additional compacting features of intra-class samples to
their mean [45], or by penalizing inter-class variance with
marginal constraints in feature domain [21], [44], [8], [43],
[37].

Modern approaches usually consider sample-specific
strategies, which allow a better control of a feature domain
for achieving higher intra-class compactness and inter-class
separation. For example, sample labeling may be performed
by its hardness [48], [18], additional data augmentation
applied [36] or even by treating its deep features in dis-
tributional manner (by specifying sample uncertainty) [32].

Some of such methods indeed follow a motivation, which
is similar to ours and try to adapt the deep network for better
quality images using various image characteristics.

For instance, recent reports mentioned the correlation
between the deep feature magnitude and sample quality [43].
MagFace [25] uses the magnitude of the feature vector during
the training and explicitly associates it with the quality of
samples to regularize the training process.

QualFace approach proposes to control the marginal penal-
ization by image quality characteristics in a sample-specific
way. The approach is conceptually similar to the MagFace,
but the adaptation is performed with a more explicit and
diverse set of quality metrics. This allows controlling the
distribution of deep features during the training process.

B. Face Image Quality Assessment (FIQA)

The procedure of biometric enrollment becomes more
standardized and controlled nowadays and apply a number
of constrains on the quality of the result biometric samples.
That is why automatic face image quality assessment have
become an important area in modern facial biometrics with
its specific metrics and benchmarks [11]. Most of the recent
face image quality metrics are discussed in a survey by
Schlett et al. [30]

The quality of a digital face image can be estimated from
different perspectives. For instance, generic image quality
assessment can be used in some cases. Such indicator as
an image blur can help to reject some images as it is
included into the list of properties for ICAO-compliance. The
estimation of image blur can be performed by convolving it
with a Laplacian filter and computing the variance of the
result [3].

Another generic image quality assessment tool is
BRISQUE (Blind/Referenceless Image Spatial QUality Eval-
uator), which can quantify the ”naturalness” an image with
use of its statistics.

The image acquisition attributes can also serve for quality
estimation purposes. For example, the face illumination is
one of such important attributes for compliance with ID-
Document. Zhang et al. predicted a face illumination quality
with CNN [49]. The network is trained on the Face Image
Illumination Quality Database (FIIQD), which is labeled
with illumination quality score.
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Fig. 1. The correlation of various quality metrics for the VGGFace2 dataset.

Another face specific attribute is the head pose since ICAO
standards require a frontal face image for the application.
Ruiz et al. [28] performed the estimation of a face pose by
three angles (yaw, pitch and roll).

Some works adopted the prediction of a single quality
score, which indicates compliance with the full list of ICAO
requirements. For instance, FaceQnet [15] is a CNN, that
is trained on the images, which are labelled with ICAO
compliance scores by a third party software. FaceQnet does
not rely on the face recognition performance explicitly, but
its scores are highly correlated with biometric verification
performance, for several off-the-shelf face recognition sys-
tems.

The above methods are heavily influenced by the quality
attributes, which are related to ICAO standards and thus
defined basing on human perception of an image. Several
modern methods consider face image quality from the per-
formance of a face recognition system and use its output for
quality estimation. That is why they are usually criticized
for their weak explainability since the resulting scores do
not have a clear physical sense and are hardly interpreted
from the perspective of standard ICAO requirements.

One of such methods is SER-FIQ [41] which uses the
robustness of an image representation as a quality indicator.
Namely, the quality of a sample is defined by the stability
of its feature embeddings in different sub-networks. The
similarity of the outputs for different sub-networks indicates
the higher quality of the sample. To achieve that SER-FIQ
relies on applying dropout during the training of a network.

Probabilistic Face Embedding (PFE) propose to encode
a measure of uncertainty in the face feature embedding. In
contrast to common deterministic embedding, PFE consists
of two output vectors, which correspond to Gaussian mean
(features) and variance (features uncertainty) [35]. In this
formulation, the uncertainty vector can be associated with

an implicit measure of image quality. The method is learned
via the similarity scores of both genuine and impostor pairs.

SDD-FIQA [27] estimates the quality of an image by pre-
dicting quality pseudo-labels while performing face recogni-
tion. This is done by mapping the inter-class and intra-class
similarity scores to the pseudo-labels by using a distribution
distance metric.

LightQnet approach is also based on the pairwise binary
quality pseudo-label generated by the face similarity. It
treats the quality assessment following a binary classification
problem, focusing on difficult samples near the classifi-
cation boundary. LightQnet is accompanied by a branch-
based quality distillation method and achieves state-of-the-
art performance maintaining the small model size and low
computation complexity.

PCNet [46] proposes a scheme for learning predictive con-
fidence which is associated with the quality of the samples.
The training of PCNet is performed with the use of pairwise
verification scores, which are then disentangled to single
images.

CR-FIQA method learns the quality estimation of a face
image implicitly by predicting its relative classifiability [4].
During training, the feature representation of a sample is
optimized in angular space with respect to its class center
and the nearest negative class center.

III. METHODOLOGY

Following our initial motivation, we intend to adapt the
deep network to the scenario of ICAO-compliant face images
by filtering the training dataset with quality data. However,
suitability for using in ID Documents applications is not
guaranteed by using a particular single metric. Some metrics
rely on generic image properties, while others define a sam-
ple quality by the recognition system response, and usually
does not carry a clear physical sense related to a particular



image characteristic. This can be reduced by accumulating
data from a number of quality indicators, which describe face
image samples from different perspectives.

That is why we focus on the joint usage of a number
of various quality metrics to benefit from the combined
usage of various quality scores. We aim to correlate those
metrics with the human acceptance indicator. Summing up
we are looking for the adaptive thresholding procedure,
which evenly accounts for the various quality metrics and
allows to filter the face dataset by criteria of suitability for
using in ID Documents.

A. Quality Sampling

In this work we employ the following list of quality
metrics for further filtering: Blur[3], BRISQUE [26], Face-
QNet(v0 [15] and v1 [14]), SERFIQ [41], FIIQA [49], Pose
[28], SDD-FIQA [27], CR-FIQA (s - ResNet-50 trained
on CASIA-Webface and l - ResNet-100 trained on MS-
Celeb-1M) [4], LightQNet (3 models with different size) [6],
MagFace [25], PFE (s - trained on CASIA-Webface and l -
trained on MS-Celeb-1M) [35].

The pose is indeed estimated by three angles (yaw, pitch,
roll). In our work, we use the mean of those angles as the
quality indicator. MagFace provides the quality measure as
the mean of magnitudes of its deep face features. PFE is
implicitly related to the face image quality since it indeed
indicates to uncertainty of deep features. In our work, we
use the harmonic mean of the uncertainty vector as a quality
measure.

We extract the above metrics for the mentioned wild
face datasets and estimate the correlation between them by
computing Pearson product-moment correlation coefficients
(see the correlation for VGGFace2 in Fig. 1) [10].

We observe that metrics, which rely on face recognition
performance are highly correlated. The only exception is
PFE, which is even weakly correlated between its versions.
Also, these metrics are better correlated with face pose, and
naturalness rather than with the blur and illumination.

0.0 0.2 0.4 0.6 0.8
0

1

Quality Score Acceptance

False Acceptance Rate

False Reject Rate

Quality Score

A
cc

e
p

ta
n
ce

/R
e
je

ct
 R

a
te

 0.235  0.276   0.484  0.583   0.716

N0 1 2 3 n...... ......

....... .... ......... ....... ...... ...... ..... .... .. .

.. .... ...... ..... ...... ...... . ....... .. ....... ...

Fig. 2. Schematic of samples labeling by their quality score.
Blue(true)/red(false) points illustrates the accepted/rejected samples, which
are demonstrated to the user. FaceQNet v1 is taken as example.

B. Joint Quality Filtering

Dataset filtering requires the definition of a threshold value
for each quality metric. In order to do that it is necessary to
map the full dynamic range of each metric with acceptance
score rates. We achieve this with the following semiautomatic
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Fig. 3. Crossover Error Rates for various quality scores of images from
the VGGFace2 dataset. The filtering parameters are the following: N = 21,
P = 50. In total ∼ 5k samples were labeled for plotting the curves.



technique (see Fig. 2). The dynamic range of each quality
score is split into several equal segments. Then we define
a minimum number of samples P that is required to fill
each segment with the mapped samples. Next, we randomly
select samples to be demonstrated to an instructed human
participant(informed about ICAO face image requirements),
who labels the sample manually by interacting with a key-
board. The instruction for the participant simply requires to
ask a question in the following form for each received face
image: ”Is this face image suitable for an ID-Document?
(The following characteristics can be neglected: background,
straight look at the camera, inexpressive emotions)”. The
procedure is repeated until the segments are filled with
at least P samples. We also skip images, that belong to
filled segments, which significantly accelerate the process
and allow to complete it in a reasonable time. Such process
allows to correlate the heuristics of human choice with the
the quality metrics that can be obtained automatically. By
using multiple quality metrics the better generalization of
that heuristics can be achieved.

This technique allows to gather the image acceptance in
full quality metric dynamic range and to build a Crossover
Error Rates (CER) plot, which is the joint dependency of
False Acceptance Rates (FAR), the False Reject Rates (FRR)
from the quality score threshold (see Fig. 3) These curves
were plotted basing on a labeled collection of ∼ 5k samples.

Further filtering should be performed evenly along with
the quality metrics. We achieve this from the perspective
of equal limiting of an undesirable effect - false discarding
images, which can be estimated by False Reject Rate (see
Fig.3) and should be minimized.

That is why to define the level of filtering we set the
limiting value of FRR for the quality scores to constrain the
negative effect of removing samples with acceptable quality.
The score value which corresponds to the defined FRR acts
as a threshold for filtering. In this perspective, FRR becomes
the only global filtering coefficient in our technique.

{X ′} = {Xi | qj > thj ,∀qj ∈ Qi} (1)

where X and X ′ are original and filtered datasets, qj is a
score of jth quality metric, thj is a threshold value for jth

quality metric and a defined FRR and Qi ∈ Rk (where k
is a number of quality scores) is a quality scores set of ith

image in the dataset.
With this formulation, we generate several training pro-

tocols with different FRR values and make a number of
experiments in Section IV.

IV. EXPERIMENTS

To analyse the impact of our strategy, we train the deep
networks via identity classification task on various filtered
datasets and compare their performance in different bench-
marks for several scenarios.

As a source dataset for our experiments, we choose the
VGGFace2 (only its train part). Train image are aligned by
method in [8]. Due to the large initial ”image per class”

TABLE I
PARAMETERS OF THE FILTERED VGGFACE2 DATASETS.

Filtering Number Number Images
Level of Images of Classes per Class
Full Dataset 3074k 8631 356
FRR = 0.005 2413k 8630 279
FRR = 0.01 2155k 8630 249
FRR = 0.025 1634k 8630 189
FRR = 0.05 1158k 8628 134
FRR = 0.1 667k 8586 77
FRR = 0.15 401k 8492 47
FRR = 0.2 235k 8234 28
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Fig. 4. DET curves of ResNet-50 trained on various filtered VGGFace2
tested on Strict benchmark(a) and LFW benchmark(b)

value, it is well suited to demonstrate the effect of our
technique. We filter this dataset with a defined set of FRR
values [0.0, 0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.2] (see Table
I).

Deep learning classification is usually performed with the
softmax loss function, which now serves as the basis for most
of the recently developed loss functions in face recognition.
The softmax loss is usually formulated as follows:

LSoftmax =
1

N

∑
i

− log(
efyi∑C
j efyj

). (2)
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Fig. 5. DET curves of ResNet-50 trained on various filtered VGGFace2 tested on CALFW benchmark(b), CPLFW benchmark(b) and XQLFW benchmark(c)

TABLE II
PERFORMANCE METRICS OF RESNET-50 TRAINED ON VARIOUS CONFIGURATIONS OF VGGFACE2 DATASET.

Filtering
Level

FNMR@FMR = α, EER, AUC of ROC
Protocol Strict LFW

α=10−3 α=10−4 α=10−5 EER AUC α=10−2 α=10−3 α=10−4 EER AUC
Full Dataset 0.00604 0.02733 0.08667 0.0024 0.999972 0.00667 0.03133 0.09567 0.0073 0.99919
FRR=0.005 0.00591 0.03254 0.09892 0.0022 0.999969 0.00667 0.01700 0.30600 0.0080 0.99909
FRR=0.01 0.00804 0.03686 0.06207 0.0026 0.999965 0.00833 0.02600 0.04700 0.0086 0.99906
FRR=0.025 0.00336 0.03024 0.06031 0.0016 0.999983 0.01000 0.03767 0.26767 0.0100 0.99909
FRR=0.05 0.00182 0.00790 0.02417 0.0013 0.999992 0.01533 0.03533 0.19833 0.0146 0.99831
FRR=0.1 0.00182 0.00931 0.01917 0.0013 0.999986 0.02500 0.05333 0.21100 0.0203 0.99687

FRR=0.15 0.00596 0.02860 0.08473 0.0024 0.999968 0.05067 0.10367 0.23567 0.0256 0.99579
FRR=0.2 0.01773 0.06574 0.11455 0.0041 0.999904 0.06933 0.14133 0.26433 0.0360 0.99293
QualFace 0.00443 0.02807 0.04340 0.0019 0.999979 0.00600 0.03133 0.16033 0.0073 0.99931
MagFace 0.00399 0.01318 0.03496 0.0020 0.999978 0.00933 0.02333 0.24733 0.0093 0.99898

Here the C is the number of identities (classes), N is the
number of samples in a batch, yi is the numerical index of
the class of the i− th sample and fyj is the yj − th element
of the logits vector f in the final layer.

L2 normalization of the weights wj and deep features
xi is usually performed to constrain them on the hyper-
sphere in Rd space (where d is the size of f ). Then fyj can
be represented as: fyj = wT

j xi = cos(θj) and biometric
templates of samples are conveniently discriminated with
angular similarity metric.

Clean softmax is usually modified with additional penal-
ization, which applies constraints on feature distributions
of classes. For instance, to obtain ArcFace loss, it can be
reformulated with the feature normalization and additional
angular marginal penalization parameter m to the positive
logit:

LArcFace =
1

N

∑
i

− log(
es cos(θyi+m)

es cos(θyi+m) +
∑

j ̸=yi
es cos θj

)

(3)
The popularity of this formulation is caused by the high

discriminability and class compactness of the result deep
features and at the same time, robust convergence [8], [52].
In our experiments in this section we use the ArcFace and
maintain its margin m = 0.5, and the scaling constant
s = 30.

A. Benchmarking

The purpose of the benchmarking in our work is to demon-
strate the performance difference by the relative comparison
of the results under various conditions, namely in the Wild
scenario and in the ICAO compliant scenario. For the last
one, we employ the Strict protocol from [42], which is
constructed from the FRGC V2 dataset that is manually
filtered by the property of ID Documents compliance. We
consider this protocol as the target one and aim to improve
its performance in it with our quality filtering strategy. For
the Wild Scenario, we use a well-known LFW benchmark
[17], [16].

To analyse the performance difference under variation of
age, pose, and quality, we also employ a set of benchmarks
CALFW [51], CPLFW [50] and XQLFW [20], which are
constructed similarly to LFW.

We report the performance by FNMR@FMR = α and also
include additional metrics such as Equal Error Rate (EER)
of Detection Error Trade-off (DET) and Area Under Curve
(AUC) of Receiver Operating Characteristic (ROC).

B. Training Settings

In all our experiments we use the following training
settings. The backbone network architecture is the widely
used ResNet-50 [13] with the input image size 299 × 299.
The backbone is followed by the pooling, flattening dense
feature, batch normalization and dense classification layers.



The feature layer contains 512 nodes. For additional regular-
ization, we add the dropout layer between the flattened and
dense feature layers with the dropout rate 0.25.

The networks are initialized with the ImageNet weights
and then trained for 10 epochs with linear learning rate
scheduling, which started at 0.01 in the beginning and
decayed to 0.00001 in the end. The momentum value is equal
to 0.9. The batch size is set to 36. We also apply the weight
decay 0.0005.

C. Learning On Filtered Datasets

With the above settings, we train a set of ResNet-50 mod-
els with ArcFace loss on the listed configurations of filtered
VGGFace2 (see Table I). We also train QualFace (which is
controlled by the blur quality metric) and a MagFace models
to perform the comparison with similar approaches. In our
work these strategies are based on sample specific adaptation
of the ArcFace loss.

The results on the Strict benchmark demonstrate that care-
ful dataset filtering with our strategy allows to outperform
the baseline model (which is trained on the full dataset)
and the adaptive strategies (QualFace and MagFace) on
several levels. However, the high filtering levels lead to an
overall performance drop, which is related to the insufficient
dataset size. We observe that the optimal evaluation metrics
are achieved at the level of filtering, which corresponds to
FRR=0.05 (see Table II).

Regarding the LFW benchmark, the dataset filtering does
not affect the performance significantly up until the filtering
level at FRR = 0.025. After this value evaluation metrics
reduces evenly with the increase of the filtering level (see
Fig. 4b). Adaptive strategies (QualFace and MagFace) as ex-
pected demonstrate the superiority over the baseline ArcFace
for the Strict scenario and performs on par with the ArcFace
in the Wild (LFW) scenario.

Our results on CALFW, CPLFW and XQLFW demon-
strate the dataset filtering effect against various face attributes
variation (namely age, pose, quality). We observe that the
variation of age starts to affect the performance only at the
high levels of filtering (FRR > 0.1) when pose and quality
affect the curves evenly with the increase of the filtering level
(see Fig. 5). This is the expected result of our strategy since
we reduce variations of pose and quality in our training data.
QualFace behaves similarly to the baseline ArcFace model
in these tests. MagFace demonstrates the significant drop of
the performance under the variations of pose and quality.

V. CONCLUSION

In this work, we revisit the scenarios of benchmarking a
face recognition deep network and show that if it is trained
on sophisticated and diverse data, the network can lose the
performance in simple (but usually the target) scenarios.
We raise this question, particularly for facial biometrics and
propose a solution for reducing such negative effects by using
quality-driven dataset filtering.

We demonstrate that such careful filtering (removing the
worst samples) of training data with quality metrics can

help to adapt the deep network for a particular scenario,
for instance, to improve the 1-1 verification performance
for ID document compliant images, while slightly sacrificing
the results in wild scenarios. We propose our novel strategy
of filtering the wild face datasets by a number of various
quality metrics. These results may be important for biometric
applications, which deal with ICAO-compliant face images
(namely ones, which are related to document security).

We also provide the extracted quality metrics data for
the main academic face datasets for training deep networks
(CASIA-WebFace, VGGFace2, MS-Celeb-1M, Glint360K,
WebFace260M) and the results of our filtering strategy.
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