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Abstract: With the increased use of machine learning for liveness detection solutions comes some shortcomings like
overfitting, where the model adapts perfectly to the training set, becoming unusable when used with the testing
set, defeating the purpose of machine learning. This paper proposes how to approach overfitting without
altering the model used by focusing on the input and output information of the model. The input approach
focuses on the information obtained from the different modalities present in the datasets used, as well as how
varied the information of these datasets is, not only in number of spoof types but as the ambient conditions
when the videos were captured. The output approaches were focused on both the loss function, which has
an effect on the actual ”learning”, used on the model which is calculated from the model’s output and is
then propagated backwards, and the interpretation of said output to define what predictions are considered
as bonafide or spoof. Throughout this work, we were able to reduce the overfitting effect with a difference
between the best epoch and the average of the last fifty epochs from 36.57% to 3.63%.

1 INTRODUCTION

With the rise of facial recognition technology in day-
to-day applications, such as mobile payments, comes
a concern for the security of these systems. To coun-
teract these security vulnerabilities, which present
themselves as Presentation Attacks (PA), the develop-
ment of Presentation Attack Detection (PAD) or live-
ness detection has become a requisite of modern facial
recognition systems.

Currently, most methods are based in machine
learning, more specifically Convolutional Neural Net-
works (CNN) or a variation of these, which are
trained by feeding them large quantities of informa-
tion extracted from datasets with images from various
modalities, be it colour images (RGB, HSV, YCbCr),
depth maps or even infrared images.

A well known issue in learning systems is overfit-
ting, where the model fully adapts to a specific portion
of the data presented turning useless for the informa-
tion as a whole. The overfitting problem in liveness
detection can then be attributed to certain factors like
the binary nature of the problem itself: ”bonafide or
spoof?”.
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To mitigate the overfitting issue, there are several
approaches that try to optimize the model or aid the
typically colour images with extra information to con-
firm certain factors associated with the different types
of attacks present in the datasets.

This requires considerable additional work in as-
sociating the supervising information to the already
present dataset or in optimizing the models to deal
with a specific issue which may require compromises
that result in other shortcomings. Attempting to re-
solve these issues, this paper explores different ap-
proaches in mitigating overfitting without adapting
the model used or resorting to common techniques
like early stopping.

The objective is to reduce the overall requirements
of liveness detection solutions, be it in computational
requirements, monetary cost or information require-
ments in order to apply these solutions to the systems
that would most benefit from them.

The initial baseline result of 99.32% accuracy, ob-
tained with depth images, gave little room for im-
provement so a new baseline using RGB images,
which constitutes a more realistic scenario for com-
mon systems resorting only to RGB cameras without
depth information, was obtained. These results are
not only less successful with an accuracy of 89.75% ,
but display overfitting with the average of the model’s



last 50 accuracy results being 53.18%, a drop of
36.57% in accuracy which can be attributed to over-
fitting issues. Through this work, while unable to im-
prove the result from the best epoch, the developed
approaches were able to remove or at least heavily
lower the overfitting effect, with the top accuracy of
89.37% then achieving an average of the final 50 re-
sults equal to 85.75%.

2 LITERATURE REVIEW

Since the question of liveness detection can be put
bluntly as ”bonafide or spoof” the first machine
learning solutions employ binary cross-entropy loss
as the sole learning supervision for the network (Xu
et al., 2015; Menotti et al., 2015; Yang et al., 2014).
However due to its simplicity, the models are prone to
overfitting since they can easily focus their learning
in arbitrary features, not relevant to the liveness de-
tection problem. While the use of different loss func-
tions has been employed (Hao et al., 2019; Xu et al.,
2020) by interpreting the issue in other ways, another
solution was to aid the loss function using pixel-wise
supervision.

Pixel-wise supervision can be made by using pre-
vious knowledge of liveness detection, and applying
it to the model. For example, the use of pseudo depth
maps (Atoum et al., 2017; Yu et al., 2020) based on
the knowledge that, two dimensional attacks (print
and replay) will display a ”flat” depth map can be used
to aid the model. By the same logic, binary mask la-
bels (Sun et al., 2020; Liu et al., 2019) or reflection
maps (Kim et al., 2019) have been used.

The previously mentioned approaches are all
based on colour inputs (RGB, YCbCr or HSV) and
it is the modality most commonly used. However,
thanks to the development in sensors, it is possible
to retrieve datasets using other modalities like depth,
infra-red or thermal images. The models can then use
a singular type of modality, or use the information
available from several modalities all at once.

One such work is FeatherNets developed by
Zhang et al. (Zhang et al., 2019a) in the interest of
adapting the current deep learning approaches to live-
ness detection, which are usually very heavy in both
computation requirements and data storage, to use in
mobile or embedded devices which are incapable of
meeting these requirements. To solve this problem,
they propose a network ”as light as a feather” that
using depth information is able to achieve ACER of
0.00168, with only 0.35 million parameters and 83
million flops down from the baseline using ResNet18
(He et al., 2016) with an ACER of 0.05 with 11.18

million parameters and 1800 million flops. This net-
work was chosen since its lightweight nature is in line
with the overall objective of our work.
Datasets are an essential part of any machine learn-
ing development, varying in data type, size and qual-
ity among other attributes and variables. While fa-
cial recognition/detection has been in development
since the 1960’s (Wayman, 2007) and as such has
accumulated a large number of datasets, the interest
in liveness detection only began in the 2010’s (Yu
et al., 2021). In this short time span, various datasets
have been developed by researchers and the industry,
steadily increasing the number of individuals present,
the number of images/videos, the quality and image
modalities, and perhaps of most interest to this pa-
per the number of different attacks present. From the
different choices of datasets present, which Yu et al.
(Yu et al., 2021) give a good overview of the publicly
available ones, two were chosen for this work:
CASIA-SURF, developed by Zhang et al. (Zhang
et al., 2019b), which presents a larger dataset than
most with 21,000 videos of 1,000 individuals cap-
tured with an Intel Real Sense 3000 camera providing
not only RGB images but also depth and infrared im-
ages. The information is neatly distributed with one
bonafide video to six spoof videos of each individ-
ual in each of the modalities provided by the camera.
Where the dataset might be considered lacking is in
the number of different attacks, the six spoof videos
are all of print attacks. The print attacks were diversi-
fied by how the print was placed over the individuals
face: either flat or pressed curved, and also the fea-
tures of the print that were cut off: first removing the
eyes, then the nose and finally the mouth. The con-
ditions in which the videos were captured in a fixed
setup where the individual stands in front of a green
screen which displays various backgrounds without
specified changes to the lighting, the individuals were
then requested to tilt their heads, move closer and fur-
ther away from the camera and move up and down.
WMCA, developed by George et al. (George et al.,
2020), being quite smaller than the previous dataset
with 1,679 videos of 72 individuals, which are divided
in 347 bonafide cases and 1,332 spoofs. This dataset
was constructed with the same camera as CASIA-
SURF having the same modalities, yet they added a
Seek Thermal Compact PRO to capture thermal im-
agery of the individuals. Despite the lower num-
ber of videos, WMCA has the advantage of having
a larger variety of attacks than CASIA-SURF adding
to the print attacks, video replays, glasses, fake heads
(mannequins), rigid masks, flexible masks and pa-
per masks. These videos were captured with the in-
dividual on a fixed position through seven different



sessions, in these sessions both the background and
lighting varying, through uniform and complex back-
grounds and through natural light, ceiling lighting and
LED lighting.

In the context of deep learning, a loss function
is what evaluates how successfully the model is per-
forming: the lower the losses, the higher the success.
Janocha and Czarnecki state that most of deep learn-
ing models use binary cross entropy loss also known
as log loss (Janocha and Czarnecki, 2017). This ap-
plies well to liveness detection, considering that the
problem is at its root a simple yes or no question:
”Is this face bonafide or not?”. However, due to the
simplicity of the loss function, these models can eas-
ily learn arbitrary patterns that deviate from the initial
question of bonafide vs. spoof.

There have been several approaches attempting to
solve the shortcomings of binary cross entropy loss
by expanding on the problem like focal loss used in
(Lin et al., 2020), developed while attempting to solve
the issues present in a scenario of object detection
where there is a very large imbalance between the
foreground and background classes. It is built upon
the basic cross-entropy loss, adding a simple weight
balancing parameter to address class imbalance in the
dataset, and the focusing parameter in order to down-
weight the impact of the decisions made in easy ex-
amples i.e. the more classified categories.

3 APPROACH

For the most part, the work conducted for this pa-
per follows the methods presented by the authors of
FeatherNets, adding the use of the WMCA dataset
and resorting to the use of colour (RGB) information
instead of the original use of depth information. There
is however need to point out details of the approach
used and for the interpretation of the results.

The two key details on the use of both the net-
work and datasets used are the exclusion of the Multi-
Modal Fusion Strategy presented by Zhang et al.
(Zhang et al., 2019a), since the interest is only on the
colour modality, and the use of the free version of the
WMCA dataset. From the values presented in the lit-
erature review, the free version removes four spoof
types and from the remaining categories removes a
certain number of examples. While the distribution
of the WMCA dataset was made by dividing the in-
formation in roughly thirds and then distributing it
accordingly between the three sets (training, valida-
tion and testing) while making sure that each set had
representations not present on the other sets. The dis-
tribution chosen for these parts was a 60%/20%/20%

random pick from the images in table 1, ending in the
values presented by table 2.

Table 1: Distribution of presentations in the WMCA
dataset’s free version. The free version removes 4 types of
attacks and some examples from the categories that remain.

Category Number of Presentations
Bonafide 205
Print Attack 193
Replay Attack 169
Flexible Mask 283
Total 850

Table 2: Statistical information of the WMCA dataset’s free
version and personal distribution between its training, test-
ing and validation sets. The distribution is made between
training set (Train.), validation set (Val.) and testing set
(Test.).

Train. Val. Test. Total
# Spoofs 387 129 129 645
# Bonafide 123 41 41 205
# Videos 510 170 170 850
# Frames 25,500 8,500 8,500 42,500

3.1 Architecture

FeatherNets’ structure is based on a main block, a
down sampling block and then a streaming module
that substitutes the fully connected layer as to reduce
overfitting. The main block is based on the ”Mo-
bileNet v2” model proposed by Sandler et al. (San-
dler et al., 2018) which employs the use of depth wise
convolution as well as inverted Rectified Linear Unit
(ReLU) blocks to improve the computation require-
ments associated with the computer vision tasks.

The main block is then followed by one of two
down sampling blocks, creating the distinction be-
tween FeatherNetA and FeatherNetB. FeatherNetA’s
downsampler is the simpler of the two having a sin-
gular branch of the depth wise convolution/inverted
ReLU combination while increasing the stride of the
convolution to 2 thus reducing the dimensions of the
input to 12.5% of the original size. FeatherNetB’s
downsampler has also a first branch equal to Feather-
NetA but adds a parallel secondary branch with aver-
age pooling to better learn more diverse features.

Both models are then followed by their proposed
streaming module that, by replacing the fully con-
nected layer, reduces the overfitting effect and use fo-
cal loss for their loss function, as seen in equation 1.

FocalLoss =−αt(1− pt)
γlog(pt) (1)

where pt and αt are the estimated probability and
weighting factor to address class imbalance of any



determined class, respectively and γ is the weighing
factor that regulates how much importance is given to
the ”harder” predictions over the ”easier” ones. For
further details on these topics, a reading of the origi-
nal articles (Zhang et al., 2019a) and (Lin et al., 2020)
is recommended.

3.2 Evaluation Metrics

In order to measure the success of any proposed
method in liveness detection, there is a number of
metrics that can be taken from the result’s confusion
matrix. In binary cases like the basic approach to live-
ness detection, one can immediately take the values
from the confusion matrix to obtain the true positive
(TP), false positive (FP), true negative (TN) and false
negative (FN) values, with which the following met-
rics can be calculated (Chingovska et al., 2014):

• Accuracy: The percentage of correct predictions
on the dataset;

Accuracy =
T P+T N

T P+FN +T N +FP
(2)

• Recall: Also known as True Positive Rate (TPR)
is the percentage of true values predicted as such;

Recall =
T P

T P+FN
(3)

• Specificity: Also known as True Negative Rate
(TNR) is the percentage of false values predicted
as such;

Speci f icity =
T N

T N +FP
(4)

• Precision: The percentage of correctly predicted
true cases among all predicted true cases;

Precision =
T P

T P+FP
(5)

• False Acceptance Rate: The percentage of false
cases that are wrongly accepted as true cases;

FAR =
FP

FP+T N
= 1−Speci f icity (6)

• False Rejection Rate: The percentage of true
cases that are wrongly mistaken for false cases;

FRR =
FN

FN +T P
= 1−Recall (7)

• Half Total Error Rate: The average of the previous
two metrics;

HT ER =
FAR+FRR

2
(8)

Figure 1: Relation between EER, FRR and FAR.

• Equal Error Rate: EER is the HTER when FAR
and FRR are equal;

Recently the terms Attack Presentation Classifi-
cation Error Rate (APCER), Bonafide Presentation
Classification Error Rate (BPCER) and Average Clas-
sification Error Rate (ACER) have been used to evalu-
ate liveness detection solutions. Simply put, APCER
is equivalent to FAR measuring the amount of spoof
cases that are considered as bonafide, BPCER to FRR
measuring the amount of bonafide cases considered as
spoofs and ACER to HTER being the average of the
two.

3.3 Confusion Matrix

The ”construction” of the confusion matrix is made
by comparing the predicted positive and negative
cases, in this case the bonafide and spoof cases re-
spectively, to the true label of each image thus defin-
ing the prediction as true or false. The prediction is
made according to the outputted value of the model
which is a value between [0,1], with values above a
threshold of 0.5 being considered as the positive case
and those below being considered as negative. This
threshold will be a matter of further discussion in the
text and will be altered to reach some conclusions.

3.4 Overfitting

As previously stated, overfitting occurs when the
model adapts perfectly to the training set becoming
useless when used on the testing set (Ying, 2019).

The occurrence of overfitting will be defined
through the decrease of accuracy over the epochs, the
larger the reduction, the more prevalent the overfit-
ting. This can be simply read through the result ta-
bles presented throughout the document and is trans-
lated graphically in an increase of accuracy until it
hits a peak (the highest accuracy score, considered
then as the best epoch) and a subsequent decrease un-
til a plateau is reached (here the model is no longer
learning and is perfectly adapted to the training set).



Figure 2: Visualization of underfitting versus overfitting.
As the model (represented as the red line) adapts further
to a certain set of data, the success towards the overall data
may decrease.

4 EXPERIMENTS AND RESULTS

This section will detail the various experimental ap-
proaches to the problem that this work presents. None
of the approaches employ a modification of the net-
work used itself, instead preferring to work with the
parameters used in certain key points and the data
used. On the topic of data, all the experiments were
made using both the previously described datasets,
because the differences between them give important
insights to the problem at hand.

4.1 Depth Image Tests

The first conditions are identical to the ones used by
Zhang et al. (Zhang et al., 2019a), simply to confirm
that the results obtained are consistent with the results
presented by the authors, and give the initial baseline
to which all the following conditions will be com-
pared to. The optimization solver used is Stochastic
Gradient Descent (SGD) with a learning rate of 0.001
for both FeatherNet A and FeatherNet B with a decay
of 0.1 after every 60 epochs and a momentum setting
of 0.9, with FeatherNet A running for 200 epochs and
FeatherNet B for 150. The focal loss function is used
with α = 1 and γ = 3.

The results obtained with depth images are all
very successful and as such don’t leave much room
for improvement, they are in line with the results
presented by Zhang et al. (Zhang et al., 2019a), at
least where comparable. The only direct comparison
possible is between FeatherNet B with γ = 3 using the
CASIA-SURF dataset to which the result presented
was an ACER of 0.00971, most of the other results
presented were obtained with their proposed Multi-
Modal Face Dataset (MMFD) but have results in the
same ballpark. However, from table 3 it is already
possible to draw certain conclusions mostly about the
effects of the different datasets and the effects of the

Table 3: Results obtained from depth images. The best
epoch corresponds to the epoch that achieved the highest
accuracy, not the highest ACER. The value γ is the focusing
parameter used in focal loss function. B.E. stands for best
epoch and Acc. for accuracy.

Model Dataset γ B.E. Acc. ACER
2 4 99.063 0.008

FeatherNet A CASIA-SURF 3 4 99.323 0.007
5 4 98.886 0.012
2 4 99.386 0.005

FeatherNet B CASIA-SURF 3 5 99.042 0.010
5 12 99.178 0.007
2 16 99.972 0.0005

FeatherNet A WMCA 3 57 99.958 0.0004
5 160 99.696 0.005
2 81 99.986 0.0003

FeatherNet B WMCA 3 49 99.958 0.0006
5 122 99.993 0.0001

focusing parameter, but these will be discussed
in detail once all the relevant results are presented.

4.2 Colour Image Tests

With the intent of eventually applying liveness de-
tection to everyday devices, there can’t be a reliance
in forms of information not attainable by said de-
vices. As such the models are retrained using the
RGB images present in the datasets. Again, since
both datasets were obtained using the same camera
there aren’t concerns about differences in quality that
could affect the results. Aside from the change in in-
formation fed to the model, all other conditions are
the same as the ones used initially.

Immediately noticeable in table 4 is the fact that
aside from the experiments using only the WMCA
dataset, none of the best epochs’ accuracy are ever
as high as the ones using depth images by margins of
around 10% while maintaining the fact that the best
accuracy is obtained in the very early epochs. This
could already hint at overfitting but is not a fair as-
sumption since the results of table 3 maintain those
high accuracy values for the remaining epochs, while
this is not the case for the RGB images.

With table 5 the hypothesis of overfitting is con-
firmed for all the experiments involving the CASIA-
SURF dataset while completely not present in the
WMCA experiments. From the very early best epoch
(when considering that the models run for 200 and
150 epochs) the suspicion of overfitting is already
present. The confirmation comes when looking at
the accuracy values presented by the last epochs the
model ran, with the accuracy values of these epochs
being far lower than the one presented for the best
epoch.



Table 4: Results obtained from RGB images. This table presents EER as an additional metric of success and also presents
APCER and BPCER as a means to check if the model fails more in recognising the attacks or the bonafide cases.

Model Dataset γ B.E. EER Acc. APCER BPCER ACER
2 1 0.093 91.996 0.039 0.172 0.105

FeatherNet A CASIA-SURF 3 9 0.081 89.748 0.129 0.044 0.087
5 20 0.080 90.466 0.117 0.048 0.082
2 12 0.093 89.675 0.117 0.073 0.095

FeatherNet B CASIA-SURF 3 3 0.093 91.674 0.068 0.117 0.092
5 19 0.067 92.038 0.093 0.049 0.071
2 16 0.0005 99.972 0.0001 0.001 0.0005

FeatherNet A WMCA 3 69 0.043 96.988 0.024 0.051 0.038
5 160 0.004 99.696 0.001 0.008 0.005
2 81 0.0005 99.986 0.000 0.005 0.0003

FeatherNet B WMCA 3 63 0.026 98.529 0.009 0.033 0.021
5 122 0.0003 99.993 0.000 0.0003 0.0001

Table 5: Average of the 50 last epochs obtained from RGB images. This table presents the averages of the last 50 epochs of
each test (epoch 149-199 for FeatherNet A and epoch 99-149 for FeatherNet B) as to display at which values the model settles.
The standard deviation of the accuracy average is displayed as to observe the consistency of the results and the APCER and
BPCER averages are presented as to be compared to the ones of the best epoch for each experiment to draw conclusions on
what is the class with more classification errors.

Model Dataset γ Avg. Acc. Std. APCER Avg. BPCER Avg.
2 52.306 0.888 0.692 0.002

FeatherNet A CASIA-SURF 3 53.179 0.877 0.679 0.002
5 60.866 1.422 0.566 0.004
2 56.582 1.275 0.630 0.002

FeatherNet B CASIA-SURF 3 58.762 1.170 0.598 0.001
5 57.667 1.328 0.614 0.002
2 99.392 0.061 0.005 0.010

FeatherNet A WMCA 3 95.984 0.165 0.032 0.067
5 99.449 0.085 0.005 0.008
2 99.868 0.073 0.001 0.001

FeatherNet B WMCA 3 97.479 0.298 0.015 0.060
5 99.917 0.089 0.001 0.0003

Figure 3: Results obtained with CASIA-SURF, RGB im-
ages, FeatherNetA and γ = 3.

Based on the accuracy scores, the use of RGB
images is a downgrade from the depth information,
more so when looking at the final averages of the
model. This is not an issue of colour information per

Figure 4: Results obtained with WMCA, RGB images,
FeatherNetA and γ = 3.

se, but the lack of supervision from additional infor-
mation, as explained previously. There are some con-
clusions to be taken from, that while using RGB im-
ages, CASIA-SURF related experiments fail to main-



tain the results obtained with depth images, WMCA
related experiments don’t, as shown in figures 3 and 4.
They will be taken in consideration when discussing
the differences between the two datasets, but for now,
explaining why CASIA-SURF fails to maintain re-
sults is quite simple.

Depth images are capable of giving information
that is not very perceptible otherwise, easily spotting
attacks that alter the depth of a regular face. Since
CASIA-SURF only presents print attacks, which con-
sist in covering an individual’s face with a sheet of pa-
per (as far as a depth image is concerned), the model’s
capability for distinguishing between the two cases is
very high. However if the model only has the RGB
images, and supposing that the quality of the print is
very high, an image of someone’s face and an image
of someone holding someone else’s picture might not
be as distinguishable and this problem is exacerbated
if the image is cropped.

Figure 5: Comparison between RGB and depth images of
a print attack (left) and a bonafide face (right). Note that
the depth images aren’t of great quality, not being able to
capture the eyes cut out of the print attack and not giv-
ing much detail to the bonafide case, but being possible to
notice the differences. Images selected from the CASIA-
SURF dataset (Zhang et al., 2019b).

4.3 Cross Dataset Tests

Cross dataset testing, as the name might suggest, sim-
ply entails in testing the model on a different dataset
than the one that was use in its training. Being already
aware of the differences between CASIA-SURF and
WMCA, cross dataset testing was used to check how
the model succeeded and how the larger variety of
spoofs affects the results, being trained in CASIA-
SURF and tested on WMCA and then vice versa.

To further observe how more spoofs affect a
model’s performance, a ”new” dataset ”GRAFTSET”
1 was created by adding, to the initial CASIA-SURF,
spoof cases from WMCA. Only Replay and Mask at-
tacks were added being that Print attacks are already
prevalent in CASIA-SURF as it is, and were added by
1%, 5% and 10% of the number of files of CASIA-
SURF, initially with only one type of attack added,

1The name was chosen from the botanical activity of
grafting which consists of joining tissues of different plants,
for example a branch from an olive tree to the trunk of an
apple tree. In this analogy CASIA-SURF is the trunk, and
the selected attacks from WMCA are the branches.

and then both at the same time. With the new dataset
constructed, new cross dataset tests were conducted,
with training being done with the GRAFTSETS and
testing on WMCA.

Explaining why WMCA shows no overfitting at
all while CASIA-SURF’s poor final averages indicate
that overfitting occurred, consists basically in the fact
that even though the problem is still approached with
a binary point of view, there is a larger distinction be-
tween the bonafide cases, which the model is trying to
categorize as such, and the attacks that between them
have more variability.

To emphasize the effects of more attacks we
analyze the results obtained from the cross-dataset
tests which include not only the ones with the basic
CASIA-SURF and WMCA but also the ones involv-
ing the various GRAFTSETs. The results from the
initial cross dataset tests are almost identical to the re-
sults obtained from the intra dataset experiments, this
of course since the training set is maintained and only
the testing set is changed. A more diverse training is
bound to achieve better results, in fact, Liu et al. de-
veloped their dataset SiW-M with 13 different spoof
types with the intent of training models to be able
to then correctly identify different attack types not
present in the initial training set. It is from these con-
clusions that the idea for the GRAFTSET tests take
place, by adding different spoof cases to the training
set of CASIA-SURF there is a slight improvement to
the final average of the last epochs of the model. The
inclusion of just one type of attack or both achieve
similar results in terms of just the average, but having
both types of attacks reduces the standard deviation
indicating more consistent results.

4.4 Focus Parameter Tests

These experiments entail an ablation study of the fo-
cusing parameter, which is initially decreased to 2 and
increased to 5 in order to take note on how it affects
the results. These values were chosen from the ones
used by Lin et al. (Lin et al., 2020) being the ones
closest to the one used by Zhang et al. (Zhang et al.,
2019a).

The discrepancy between the APCER averages
and the BPCER averages has to be addressed. For
most experiments, while the BPCER averages are
quite low showing very few cases of bonafide cases
being labelled as spoofs, the APCER averages are
very high reaching values above 50%. This can be
considered the worst case scenario since if hypothet-
ically this model would be used for a security oper-
ation, an unauthorized access would be made. If the
values were inverted with very high BPCER and low



Table 6: Results obtained from cross dataset testing. The first two results are the obtained from the unaltered datasets with the
first name presented being the train set and the second the test set. Important to note that the ”GRAFTSET” tests are all cross
dataset tests with the training with GRAFTSET and testing with WMCA.

Model Dataset γ B.E. EER Acc. APCER BPCER ACER
FeatherNet A CASIA-SURF - WMCA 3 1 0.107 90.477 0.050 0.195 0.122
FeatherNet A WMCA - CASIA-SURF 3 56 0.032 97.635 0.019 0.039 0.029

GRAFTSET - 1% Replay 5 0.104 90.416 0.084 0.122 0.103
FeatherNet A GRAFTSET - 5% Replay 3 11 0.080 89.91 0.126 0.044 0.085

GRAFTSET - 10% Replay 7 0.089 90.674 0.102 0.072 0.087
GRAFTSET - 1% Mask 5 0.087 89.489 0.125 0.061 0.093

FeatherNet A GRAFTSET - 5% Mask 3 18 0.083 88.828 0.144 0.035 0.090
GRAFTSET - 10% Mask 2 0.106 88.594 0.124 0.091 0.107
GRAFTSET - 1% Both 0 0.145 87.776 0.069 0.243 0.156

FeatherNet A GRAFTSET - 5% Both 3 9 0.065 89.913 0.131 0.025 0.078
GRAFTSET - 10% Both 3 0.087 91.62 0.080 0.094 0.090

Table 7: Average of the 50 last epochs obtained from cross dataset tests. The observations made referencing the naming and
the presence of certain values, in both table 5 and 6 are valid for this table.

Model Dataset γ Avg. Acc. Std. APCER Avg. BPCER Avg.
FeatherNet A CASIA-SURF - WMCA 3 53.272 0.870 0.678 0.001
FeatherNet A WMCA - CASIA-SURF 3 96.479 0.250 0.032 0.046

GRAFTSET - 1% Replay 53.863 0.725 0.666 0.002
FeatherNet A GRAFTSET - 5% Replay 3 59.541 1.017 0.574 0.004

GRAFTSET - 10% Replay 59.117 2.061 0.569 0.007
GRAFTSET - 1% Mask 52.679 0.853 0.684 0.001

FeatherNet A GRAFTSET - 5% Mask 3 55.249 0.829 0.635 0.003
GRAFTSET - 10% Mask 59.497 6.063 0.568 0.009
GRAFTSET - 1% Both 55.048 0.695 0.647 0.001

FeatherNet A GRAFTSET - 5% Both 3 58.647 0.761 0.577 0.001
GRAFTSET - 10% Both 59.471 0.492 0.553 0.003

APCER, legitimate users would be barred from ac-
cess but very few successful attacks could occur, a far
too restrictive system but secure nonetheless.

Figure 6: Results obtained with CASIA-SURF, RGB im-
ages, FeatherNetA and γ = 5.

Since Focal Loss results in a model that is more
focused in the spoof cases and won’t learn as much
from what would be considered a bonafide one, it
would be expected that it would be able to more suc-

cessfully categorize spoofs as such. The reality is
that through the differences explained in the transi-
tion from depth images to colour images, the RGB
spoofs don’t offer as much as the depth ones and as
a consequence, the ”focus” is squandered. Reducing
the focusing parameter doesn’t appear to have much
effect on overfitting but increasing it does seem to de-
lay it slightly, as is noticeable when comparing figures
3 and 6.

To confirm this observation, it’s only required to
further reduce the focusing parameter, eventually re-
moving the modulating factor with γ= 0. Tables 8 and
9 display these results that when compared to their
counterparts using the same datasets and model, are
pretty much the same without much improvement or
degradation. There is however an observation to be
made that without the focusing parameter, the model
is still able to achieve great results on the WMCA
dataset further solidifying the conclusion that with
more variability within a dataset, there is less need
to implement precautions against overfitting.



Table 8: Results obtained with γ = 0 and γ = 1. With the focusing parameter turned to 0, the model is no longer using focal
loss but simply a weighted version of binary cross-entropy.

Model Dataset γ B.E. EER Acc. APCER BPCER ACER
FeatherNet A CASIA-SURF 0 1 0.094 91.07 0.078 0.115 0.096

1 1 0.095 91.861 0.035 0.184 0.110
FeatherNet A WMCA 0 108 0.009 99.153 0.009 0.007 0.008

1 47 0.022 98.8 0.0005 0.051 0.026

Table 9: Average of the 50 last epochs obtained with γ = 0 and γ = 1. These results are presented to comment on how these
changes affect overfitting.

Model Dataset γ Avg. Acc. Std. APCER Avg. BPCER Avg.
FeatherNet A CASIA-SURF 0 51.705 0.571 0.701 0.012

1 55.466 0.686 0.646 0.001
FeatherNet A WMCA 0 98.766 0.148 0.012 0.013

1 97.474 0.210 0.022 0.037

4.5 Precision Recall Tests

To construct the precision-recall (PR) curve, the ap-
proach is running the model at different thresholds
between 1, where no image can be considered as
bonafide and 0 where all predictions will be bonafide.
Once all these values are obtained the points can be
plotted in a graph and then a curve adjusted to them.
From this curve a point can be picked out as what is
considered ideal, in this case the closest point to what
be considered perfect i.e. (precision,recall) = (1,1),
however the threshold value needs to be inferred from
where the ideal point stands in the graph. This ab-
lation study was conducted using the CASIA-SURF
dataset on FeatherNet A with γ = 3 with the thresh-
old values being selected as the experiments went on
attempting to achieve the most interesting PR curve.
These values and the resulting precision and recall
values are presented in table 10 and result in the curve
presented in figure 7.

Figure 7: Precision-Recall curve. The curve was ob-
tained using Matlab’s polyfit() function. The threshold cho-
sen was obtained by using Euclidean distance to find the
closest point to the perfect (1,1) which resulted in point
(0.8913,0.7828) which corresponds to a threshold value of
roughly 0.9675.

4.6 Final Tests

With the ”ideal” threshold calculated threshold =
0.9675, it is only a matter of repeating the initial ex-
periments of interest with this new value and see if it
improves and how.

Immediately noticeable is how the best epoch oc-
curs later over the 200 epochs of FeatherNet A which
should already indicate some amount of success in re-
ducing overfitting but is of course not a guaranteed
conclusion. Also noticeable is when the model is
tested on WMCA there are no false positive predic-
tions, demonstrated by APCER = 0, while also in-
creasing the false negative cases since the BPCER
value increased by quite a lot. Considering such a
high threshold value this makes sense, but demon-
strates that for different datasets, different PR curves
should be calculated since the ”ideal” threshold will
most certainly vary between them. To confirm if there
is no overfitting, once again, the average values of the
last epochs are presented.

The high averages presented in table 12 confirm
that, in fact, no overfitting has occurred, but the higher
standard deviation also indicates that while overall
these results can be considered satisfactory, there is
a certain degree of variability to the model’s results
that needs to be considered. The most ”stable” and
improved results come from the GRAFTSET exper-
iment which maintains the close results during the
later epochs as demonstrated by the lower standard
deviation that was only noted when the dataset in-
cluded both extra spoof types and achieving a lower
APCER than BPCER.

Overall, the adaptation of the threshold that deter-
mines what prediction is made, resulted in the con-
siderable decrease of the overfitting when it was pre-
viously presented, while unfortunately giving worse
results for the cases where there was no previous over-



Table 10: Values used to obtain the Precision-Recall curve. Note that for threshold = 1 the precision formula results in
a division by 0 and as such would not be valid, the 100% precision comes from the interpretation that since no positive
classifications were made, technically none of them are wrong. The TN, FP, FN and TP values were not obtained from the
best epoch but from the average of the final 50 results, as to keep consistency in analyzing the overfitting effect.

Threshold TN FP FN TP Precision Recall Accuracy
1 6614 0 2994 0 1.000 0.000 68.838
0.99 6587.8 16.2 2644.04 349.96 0.956 0.117 72.312
0.9825 6448.5 165.5 1258.9 1735.1 0.913 0.580 85.175
0.975 5886.12 727.88 493.22 2500.78 0.775 0.835 87.291
0.95 5405.44 1208.56 161.9 2832.1 0.701 0.946 85.736
0.925 4601.4 2012.6 120.64 2873.36 0.588 0.960 77.797
0.9 4401.98 2212.02 73.04 2920.96 0.569 0.976 76.217
0.875 3880.28 2733.72 55.9 2938.1 0.518 0.981 70.966
0.85 3760.78 2853.22 47.66 2946.34 0.508 0.984 69.808
0.825 3233.82 3380.18 27.82 2966.18 0.467 0.991 64.530
0.8 3922.44 2691.56 20.66 2973.34 0.525 0.993 71.771
0.7875 3382.96 3231.04 43.02 2950.98 0.477 0.986 65.924
0.775 3282.98 3331.02 22.06 2971.94 0.472 0.993 65.101
0.75 3088.64 3525.36 21.4 2972.6 0.457 0.993 63.085
0.71 2797.72 3816.28 34.48 2959.52 0.437 0.988 59.921
0.67 2805.36 3808.64 20.62 2973.38 0.438 0.993 60.145
0.5 2120.22 4493.78 4.74 2989.26 0.399 0.998 53.179
0.33 1682.02 4931.98 0 2994 0.378 1.000 48.668
0.25 1482.88 5131.12 1.92 2992.08 0.368 0.999 46.577
0 0 6614 0 2294 0.312 1.000 31.161

Table 11: Results obtained with the final threshold. All these experiments were conducted in the same conditions as previously
only changing the threshold used.

Model Dataset γ B.E. EER Acc. APCER BPCER ACER
FeatherNet A CASIA-SURF 3 36 0.117 89.373 0.049 0.232 0.141
FeatherNet A GRAFTSET - 10% Both 3 59 0.110 90.377 0.046 0.217 0.131
FeatherNet A WMCA 3 189 0.018 91.165 0 0.385 0.193

fitting, keeping in mind that if the threshold tuning
was made with WMCA this would not happen but
most likely the improvement for the other two would
not be so good or would not occur.

5 CONCLUSION AND FUTURE
WORKS

With machine learning being used ever more often for
liveness detection solutions, it comes with the prob-
lem of overfitting where the model adapts to data
incorrectly due to outliers or a minimal set of data.
While there are several approaches to attempt to re-
duce the overfitting effect, these are usually made at
an implementation level directly on the model that is
constructed. This paper presented some alternatives
more focused in the input and output of the model by
approaching the datasets used for the input and the
loss function and how the output is interpreted.

These alternatives showed the importance of a var-
ied dataset and how these variations are able to com-
pensate for loss of information associated with the
multiple modalities an image can be presented with.
From this loss of information, the overfitting effect
present in the model became considerably noticeable
with a difference between the best result, obtained at
epoch 9 with an accuracy of 89.75%, and the average
accuracy of the last fifty epoch’s, equal to 36.57%. By
adjusting the threshold that defined bonafide or spoof,
this difference was reduced to 3.63%.

The results obtained during this work present pos-
sible considerations that could be helpful in the devel-
opment of future solutions, both regarding the size,
diversity and applicability of the datasets, as well as
the modality given to the model. One of the con-
clusions that was met is the importance of diverse
datasets, which entails that a great benefit to the com-
munity would be the development of a dataset that
could boost both the quality and dimension of the
CASIA-SURF dataset with the number of diverse



Table 12: Average of the 50 last epochs obtained with the final threshold. These results are presented to comment on how
these changes affect overfitting.

Model Dataset γ Avg. Acc. Std. APCER Avg. BPCER Avg.
FeatherNet A CASIA-SURF 3 85.746 1.003 0.160 0.105
FeatherNet A GRAFTSET - 10% Both 3 87.478 0.401 0.113 0.155
FeatherNet A WMCA 3 88.446 1.012 0 0.504

cases both in presentation attacks and ambient condi-
tions of WMCA. Not only would this dataset be much
closer to what a real day-to-day use of a PAD appli-
cation would encounter, it would also benefit the gen-
eralization of models developed with it. Hence mean-
ing, that with a more diverse dataset, the number of
studies that deviate from the binary approach to live-
ness detection by categorizing each attack individu-
ally could grow with different insights on what dif-
ferent attacks are more challenging with what modal-
ities.

On a final note, and trying to be straightforward
on the best approach regarding the information given
to the model, on a regular application, the conclusion
was moving away from depth or infra red, on both
direct input, or only as a supervision for the model,
as well as sticking with the regular color informa-
tion, proving that the way the model is constructed
is of great importance. The building of a new model
that, like FeatherNets, tries to be as light as possible,
achieving great results and not requiring extra infor-
mation could benefit from some of the considerations
made here. This model would require a new approach
to its construction since many of the choices made
for FeatherNets were taken considering the depth in-
put. Since this new theoretical model would return
to the more common use RGB images but forego the
supervision provided by the extra modalities (depth,
infra red), techniques that were successful for these
types of models might not benefit this one, being per-
haps beneficial to consider the approaches used before
the extra modalities were available while considering
not only the more complex dataset as well as the ap-
proaches demonstrated in this paper.
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