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Abstract

Face morphing, a sophisticated presentation attack tech-
nique, poses significant security risks to face recognition
systems. Traditional methods struggle to detect morph-
ing attacks, which involve blending multiple face images to
create a synthetic image that can match different individ-
uals. In this paper, we focus on the differential detection
of face morphing and propose an extended approach based
on fused classification method for no-reference scenario.
We introduce a public face morphing detection benchmark
for the differential scenario and utilize a specific data min-
ing technique to enhance the performance of our approach.
Experimental results demonstrate the effectiveness of our
method in detecting morphing attacks.

1. Introduction

The development of deep learning techniques in re-
cent years has led to significant progress in the field of
face recognition, but sophisticated presentation attack tech-
niques, such as face morphing, continue to pose security
risks that require new protection solutions. Face morphing
involves merging/blending of two or more digital face im-
ages to create a synthetic image that can share the biometric
properties of original images and match different individu-
als. It can be difficult to detect such generated images with
use of traditional human or computer-based face recogni-
tion methods.

The risks associated with face morphing are not hypo-
thetical; they have been demonstrated through real-world
incidents. One notable example occurred in 2018 when a
German activist exploited face morphing techniques to is-
sue an authentic German passport using a morphed face
image of Federica Mogherini (at that time High Repre-
sentative of the Union for Foreign Affairs and Security
Policy) blended with their own photo [28]. This incident

highlighted the potential for face-morphing attacks to de-
ceive identity verification systems and emphasized the need
for effective detection methods. Additionally, face morphs
have been occasionally detected during border control pro-
cedures, raising concerns about the circulation of morphed
documents. Some recent investigations [44] acknowledged
the presence of morphing cases, indicating the tangible risks
and uncertainties surrounding the prevalence of such docu-
ments. These real-world examples underscore the urgency
of robust morphing detection approaches to mitigate the se-
curity risks associated with face morphing attacks. That is
why face morphing and its detection methods have gained
interest in both industry [43] and academia [25].

Morphing detection methods in facial biometric systems
can be categorized into two pipelines based on the process-
ing scenario. The no-reference morphing attack detection
algorithm is designed to detect morphing in a single image,
with a focus on mitigating the risks of accepting manipu-
lated images during the enrollment process, where success-
ful acceptance of forged images can lead to the issuance of
an authentic document that could deceive the face recogni-
tion system.

On the other hand, the differential morphing attack de-
tection algorithms involve acquiring live data from an au-
thentication system to provide reference information for de-
tecting morphing attacks. This usually occurs during auto-
matic border control and such approaches aim to identify
discrepancies between the presented face and the stored bio-
metric data, enabling the system to detect potential morph-
ing attempts in real time and prevent unauthorized access
with malicious ID documents (documents with accepted
face morphs).

In this paper, we focus on differential face morphing
detection and propose a novel deep learning method that
incorporates sophisticated face recognition tasks and em-
ploys a fused classification scheme for morphs classifica-
tion. We follow the no-reference MorDeephy [21] approach
and adopt its methodology and data for the differential case.
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Additionally, we extend benchmark utilities, which are
proposed in [21] with a public face morphing detection
benchmark for differential scenario.

2. Related Work
2.1. Face Recognition

Contemporary face recognition methods heavily rely on
the utilization of deep learning techniques, particularly con-
volutional neural networks (CNNs), which have proven
to be highly effective in extracting discriminative features
from unconstrained facial images. [33]. These networks
possess the ability to learn complex patterns and structures,
making them well-suited for tackling the challenges associ-
ated with facial pattern recognition tasks.

Various deep learning strategies are employed for face
recognition, all aimed at extracting low-dimensional facial
representations - deep face features with high discrimina-
tory capabilities.

For example, metric learning techniques focus on ex-
plicit optimization of the face representation by contrasting
pairs of matched and non-matched samples with similar-
ity metric [38]. Achieving reliable convergence with these
methods necessitates extensive datasets and advanced sam-
ple mining techniques.

Classification-based methods have received major atten-
tion and they are better represented in recent academic re-
search. These methods focus on learning face representa-
tion implicitly through a closed-set identity classification
task [41]. Deep networks in these approaches encapsulate
face representation in the last hidden layer and typically em-
ploy various softmax-based loss functions [41].

To achieve better discriminate properties of deep facial
features various techniques are used. For instance, explicit
compacting of intra-class features to their center [46] or
several types of marginal restrictions, which address inter-
class discrepancy [11,40]. Many recent works were focused
on investigating sample-specific learning strategies, which
are driven by various characteristics, such as sample qual-
ity [22], hardness of classification [15]. Some works use
on properties of embedding as a proxy for the image qual-
ity (like norm of the features) [19, 23], or rely on artificial
assignment by known data augmentation [39]. These ap-
proaches try the control the feature distribution in the dis-
criminative feature domain.

2.2. Face Morphing

Modern face recognition systems can very accurately
match images of individuals however, they are still vulner-
able to various malicious presentation attacks. Face morph-
ing allows to design such attacks and drastically increases
the probability for the face recognition network to return
matched embeddings for unmatched biometric samples, es-

pecially in cases when the thresholds of face recognition
systems are not set to support critically low false match
rates.

Basic landmark-based face morphs were first investi-
gated by Ferrara et al. [12]. Face morphing was performed
directly in the image spatial domain by the face landmark
alignment, image warping, and blending. Various morph-
ing algorithms mentioned in the literature follow this strat-
egy [3].

The field of face morphing has witnessed significant ad-
vancements with recent breakthroughs in Deep Learning
techniques, leading to the development of several inno-
vative tools and methodologies. Face morphing has wit-
nessed significant advancements with recent breakthroughs
in Deep Learning techniques. Generative Adversarial Net-
works (GANs) have emerged as a prominent and widely uti-
lized approach in various generative tasks, including face
morphing. MorGAN [7] approach pioneered this tool for
face morphing generation. The StyleGAN [17] approach
introduced a latent domain representation to control various
aspects of the generated image, which enables the genera-
tion of high-quality face morphs without blending artifacts.
The MIPGAN [47] method optimized StyleGAN specifi-
cally for face morphing, preserving the identity of the gen-
erated morphed face image. The diffusion autoencoders for
face morphing were proposed by MorDIFF [6] to generate
smooth and high-fidelity face morphing attacks.

2.3. Face Morphing Detection

Initially, the problem of face morphing detection focused
on the no-reference scenario, where validation decisions
were based on single image presentations. However, con-
sidering practical concerns, it became valuable to explore a
differential approach that simulates the process of document
verification by border control officers.

No-reference face morphing detection algorithms ini-
tially relied on analyzing local image characteristics like
Binarized Statistical Image Features (BSIF) [29] or sensor
noise (Photo Response Non-Uniformity) [9], texture fea-
tures [32], local features in frequency and spatial image do-
main [24] or fusion of various features [35]. Deep learn-
ing methods for the no-reference case typically involve bi-
nary classification of pretrained face recognition features
[30], which can be combined with local texture characteris-
tics [45]. Additional pixel-wise supervision [8] or attention
mechanism [1] can be applied. MorDeephy method [21]
generalized single image morphing detection to unseen at-
tacks by additional feature regularisation with face recogni-
tion task.

In contrast to no-reference case, differential face mor-
phing detection is closely correlated with face recognition,
as the discriminability of deep face representation usually
helps combating attacks in this scenario.
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For instance, many differential approaches rely on clas-
sification of pretrained deep features for face recognition
[36].

Borghi et al. [4] conducted differential morphing detec-
tion through the fine-tuning of pretrained networks within a
sophisticated framework involving identity verification and
artifacts detection modules.

Qin et al. [27] proposed a method for detecting and locat-
ing face morphing attacks for both (single-image and differ-
ential) scenarious. The authors utilise feature-wise super-
vision, which provides better characterization of morphing
patterns and localization of morphed areas.

Ferrara et al. [13] presented an alternative approach to
the differential scenario, which involves reverting morph-
ing by retouching the testing face image using a trusted live
capture. This technique aims to unveil the true identity of
the legitimate document owner.

In this work we propose to extend the no-reference
MorDeephy [21] approach for the differential morphing de-
tection scenario by adopting the methodology and data min-
ing techniques to the differential pipeline.

3. Methodology
From the original work [21] we inherit the S-MAD

methodology, which requires several modifications for the
differential case. Recall that the face morphing detection
here is made by the behavior of deep face features, which
is achieved by regularizing the morphing detection with the
face recognition task. The definition of the task is motivated
by the ubiquity of classifying the face morphs (since they
belong to 2 or more identities). This leads to the setup of
two separate CNN-based deep networks that treat bona fide
samples similarly but handle morphed samples differently.
These networks do not share weights and are not trained in
a contrastive manner, where positive and negative pairs are
matched. Both networks learn high-level features through
classification tasks, with each network assigning different
identity labels to face morphs. The First Network labels
them based on the original identity from the first source im-
age, while the Second Network labels them according to the
second original label.

In comparison to the S-MAD scenario, where the same
image is sent to both networks, the D-MAD case imply pro-
cessing a pair of images. That is why the fused classification
strategy is adopted to the D-MAD in the following way (see
Figure 1).

We keep the assumption of associating each image with
two identity labels y1 and y2, which are defined basing on
the image origin. For the Bona Fide samples those labels
are the same (copied from the original face image label),
when for the Morphs those labels are different and are taken
from the source face images. The sampling process for the
First Network is not changed. For instance the image İ with

ẏ1İ and ẏ2İ is sampled for the input. For the input of the
Second Network the image Ï (complementary to İ) with ÿ1Ï
and ÿ2Ï is selected with a condition that ÿ1Ï = ẏ1İ . The
loss function components require the following rules. The
identity classification for the First Network is made by the
ẏ1İ , and by the ÿ2Ï for the Second Network. The ground
truth cross label for the morphing binary classification is
made by matching ẏ2İ and ÿ2Ï .

It is important to note that such formulation allow both
images İ and Ï to be Morphs. However to match the D-
MAD scenario, where the Live Enrollment image is genuine
and trusted, we supervise selecting the Ï as a Bona Fide
sample.

Due to the above modifications the formulation of the
identity classification softmax-based loss components is
transformed as follows:

L1 = − 1

N

N∑
i

log(
eẆ

T
ẏ1i

ḟi+ḃẏ1i∑C
j eḟẏ1j

) (1)

L2 = − 1

N

N∑
i

log(
eẄ

T
ÿ2i

f̈i+b̈ÿ2i∑C
j ef̈ÿ2j

), (2)

where
{
ḟi, f̈i

}
denote the deep features of the i−th sample

pair,
{
Ẇ , Ẅ

}
and

{
ḃ, b̈

}
are weights and biases of last

fully connected layer (respectively for the {First, Second}
networks). N is the number of samples in a batch and C is
the total number of classes.

For the morph binary classification component only the
definition of the cross label is changed:

L3 = − 1

N

N∑
i

t log
1

1 + e−D
+(1−t) log

(
1− 1

1 + e−D

)
,

(3)
where D = ḟ · f̈ is a dot product of high level features
extracted by First and Second backbones and the cross-label
t = abs(sgn(ẏ2i − ÿ2i)) of the i− th sample pair.

The above strategy imply pushing morph samples to-
wards their original classes differently by First and Second
networks. This allow to increase the distance between the
morph samples in the feature domain.

In this work we also consider a modification of the above
approach. We propose to allocate separate classes for the
morphs samples. The formulation of such case means re-
defining the classification labels for the morph samples and
doubling the number of identity classes C: ẏ1∗i = ẏ1i +C;
ÿ2∗i = ÿ2i + C.

Such class allocation is made differently by First and
Second in and does not impact the differentiating morphs
by these networks. However, since it also pushes the morph
samples away from their original classes it can help to in-
crease discriminative power of deep face features. Further
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Figure 1. Schematic of the proposed D-MAD method. For simplicity of visualization batch contains a single image pair.

in the work we make experiments with both cases and mark
the original strategy with the label V1 and the modified
strategy with V2

4. Data Mining
With the adopted methodology the training can be pro-

ceeded on the same data as S-MAD. The only sampling of
this data is different. Recall that VGGFace2 dataset [5], is
used as a source of original bona fide images. We repeat the
quality based filtering of this dataset and generate respective
morphs.

4.1. Morph dataset

In this work we utilize two automatic methods for gen-
erating morphs. First we use a customized landmark-based
morphing approach with blending coefficient 0.5. Second
we generate GAN-based morphs with use of the StyleGAN
[17] method. To synthesize such morphs for two original
images, they are first projected to a latent domain and then
their deep representations are interpolated. The resulting
morph is generated from such interpolated latent embed-
ding.

To ensure effective learning in the fused classification
task (see Figure 1), it is crucial to have unambiguous class
labeling in our training dataset of morphs, which are gen-

erated from face images from different classes. To address
this, we follow the original S-MAD approach [21] and em-
ploy a strategy where the dataset is split into two disjoint
parts attributed to the First and Second networks. When
generating face morphs, we randomly pair images from
these identity subsets and label the morphed images accord-
ingly for classification by the respective networks. This
approach acts as a regularization technique and enhances
the performance of morphing detection. By separating the
dataset into two disjoint identity sets, we ensure consistent
classification of morphed combinations by the networks.

4.2. Selfmorphing

Fully automatic landmark morphing methods often in-
troduce visible artifacts to the generated images, which can
bias the learning process towards these artifacts. However,
real fraudulent morphs are retouched to remove such per-
ceptual artifacts. To address this, we utilize selfmorphs,
generated by applying face morphing to images of the same
identity. We follow the original S-MAD approach [21] and
use selfmorphs as bona fide samples to focus on the behav-
ior of deep face features rather than detecting artifacts. We
assume that the deep discriminative face features remain in-
tact after selfmorphing.

In our work selfmorphs are generated for both landmark-
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Table 1. Comparison of Fused Classification (FC) with the Binary Classification (BC) by APCER@BPCER = (0.1, 0.01) in several
protocols.

Method

APCER@BPCER = δ
protocol-asml protocol-facemorpher protocol-webmorph protocol-stylegan
δ = δ = δ = δ = δ = δ = δ = δ =
0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01

BC 0.315 0.729 0.245 0.649 0.391 0.701 0.913 0.997
FCV1 0.063 0.351 0.066 0.514 0.135 0.529 0.556 0.959
FCV2 0.039 0.275 0.061 0.315 0.102 0.4595 0.501 0.957
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Figure 2. DET curves for the D-MAD algorithms by NIST FRVT MORPH benchmark. a) protocol Visa-Border; b) protocol Manual; c)
protocol MIPGAN-II; d) protocol Print + Scanned.

based and GAN-based morphing approaches.

4.3. Result dataset

Our resulting dataset consist of ∼500k original images
from VGGFace2, ∼250k their landmark-based selfmorphs,
∼250k their GAN-based selfmorphs, ∼500k landmark-
based morphs and ∼500k GAN-based morphs. The overall
dataset is balanced by the amount of bona fides and morphs.

5. Benchmarking.

One commonly used metric for evaluating single image
morphing detection is the relationship between the Bona
fide Presentation Classification Error Rate (BPCER) and
the Attack Presentation Classification Error Rate (APCER)
as specified by ISO/IEC 30107-3 [16]. This relationship
can be visualized using a Detection Error Trade-off (DET)
curve.

For this work we adopt the public Face Morphing Detec-
tion benchmark utilities [21]1 for the differential case. We
develop the functionality for generation verification proto-
cols in the differential pipeline and generate several proto-
cols basing on the public data. Bona fide pairs in all the

1https://github.com/iurii-m/MorDeephy

protocols are combined from the frontal faces of the fol-
lowing public datasets: FRLL Set [10], FEI [2], Aberdeen
and Utrecht [37] (∼500 pairs in total). Morph pairs are
combined by pairing images from the morphs from FRLL-
Morphs dataset [34] and bona fides from FRLL Set [10].
We propose several protocols for different type of morphs
(protocol names correspond to the FRLL-Morph subset
names): protocol-asml (∼ 4.5k morph pairs); protocol-
facemorpher (∼ 2.5k morph pairs); protocol-webmorph (∼
2.5k morph pairs); protocol-stylegan (∼ 2.5k morph pairs).

Several benchmarks (with restricted data and protocols)
available for evaluating the performance of morphing de-
tection or morphing resistant algorithms: The NIST FRVT
MORPH [26] and FVC-onGoing MAD [31]. They accept
both no-reference and differential morphing algorithms,
however they are proprietary and managed by a specific en-
tity, leading to submission restrictions and limited accessi-
bility. In this work we will use the public results of NIST
FRVT MORPH to compare with our approach.

6. Experiments
6.1. Differential Benchmarking

We performed experiments of the fused classification
strategy with the binary classification baseline and tested
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Table 2. Comparison with differential image morphing detection methods by APCER@BPCER = (0.1, 0.01) from the NIST FRVT MORPH
benchmark.

Method
APCER@BPCER = δ

Visa-Border Manual MIPGAN-II Print+Scan
δ = δ = δ = δ = δ = δ = δ = δ =
0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01

Scherhag et al. [36] 0.013 0.212 0.055 0.357 0.004 0.134 0.012 0.176
Kashiani et al. [18] 0.447 0.901 0.873 0.989 0.182 0.481 0.842 0.996
Lorenz et al. [20] 0.432 1.000 0.634 1.000 0.168 1.000 0.732 1.000
Ferrara et al. [14] 0.966 0.999 0.689 0.969 0.004 0.751 0.070 0.280

Ours 0.232 0.555 0.531 0.872 0.359 0.859 0.680 0.926
Ours(FR) 0.087 0.453 - - - - 0.125 0.568

Scherhag et al. Kashiani et al. Lorenz et al. Ferrara et al. Ours Ours(FR).

a b c d

Figure 3. DET curves for the D-MAD algorithms by NIST FRVT MORPH benchmark. a) protocol Visa-Border; b) protocol Manual; c)
protocol MIPGAN-II; d) protocol Print + Scanned.

those cases in our custom benchmarks. The baseline is im-
plemented on the same setup (see Figure 1) where the iden-
tity classification components are disabled and the training
is driven by a single loss component in Eq. 3.

In all the cases we use the EfficientNetB3 [42] backbone
network with input image size 300×300. It is trained with
SGD optimizer for 5 epochs with momentum 0.9 and lin-
early decreasing learning rate from 0.01 to 0.0001. The
batch size is 28.

Our results (see Figure 2, and Table 1) demonstrate the
superiority of our approach over the baseline. Fused clas-
sification allow to generalize the detection performance to
the unseen data and scenarios. Also we conclude that the V2
strategy (where morphs are disentangled from their original
classes) is superior then the V1 and allow to achieve better
MAD performance.

6.2. NIST FRVT MORPH

We evaluate the performance of our top-performing
model (Fused Classification V3) by comparing it with sev-
eral state-of-the-art (SOTA) D-MAD approaches, which
have public results on the FRVT NIST MORPH Benchmark
[26]. We perform comparison in several protocols: Visa-
Border (25727 Morphs); Manual (323 Morphs); MIPGAN-
II (2464 Morphs); Print + Scanned (3604 Morphs). All
protocols in the comparison utilize a substantial collec-
tion of ∼1M bona fide images. The performance evalua-
tion is conducted using the metrics APCER@BPCER =
(0.1, 0.01).

Our performance results (see Table 2, Figure 3) are com-
parable to the leaders in several benchmarks. Also, our
method does not demonstrate bias to a particular morph-
ing generative strategy and has the most stable performance
across all protocols in comparison to other approaches.

We also present the algorithm (Ours(FR))(see Table 2),
where the morphing detection signal of our fused classifica-
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tion detector is multiplied with the similarity, which is given
by a face recognition model. This algorithm indeed demon-
strates a superior result in all the benchmarks, where it was
tested. This indicates that currently differential face morph-
ing benchmarks share many similarities with 1-1 face veri-
fication protocols and can be approached with only a strong
face recognition model in hands. Such an approach is rea-
sonable from the practical security perspective of detecting
impostors, but not very correct from the academic perspec-
tive, since the face morphing detector in differential cases is
prompted to detect identity non-matched pairs that may not
have face morphs at all.

Despite the fact that this feature does not pose signifi-
cant risks, it should be taken into account when develop-
ing algorithms for differential face morphing detection or
benchmarks for their evaluation.

7. Conclusion

In this paper, we focus on differential face morphing de-
tection and propose a novel deep learning method that in-
corporates sophisticated face recognition tasks and employs
a fused classification scheme for morphs classification. We
propose public benchmark utilities for differential face mor-
phing detection. Additionally, we raise several questions on
the differences in the vision of differential face morphing
detection from academic and security application perspec-
tives.
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