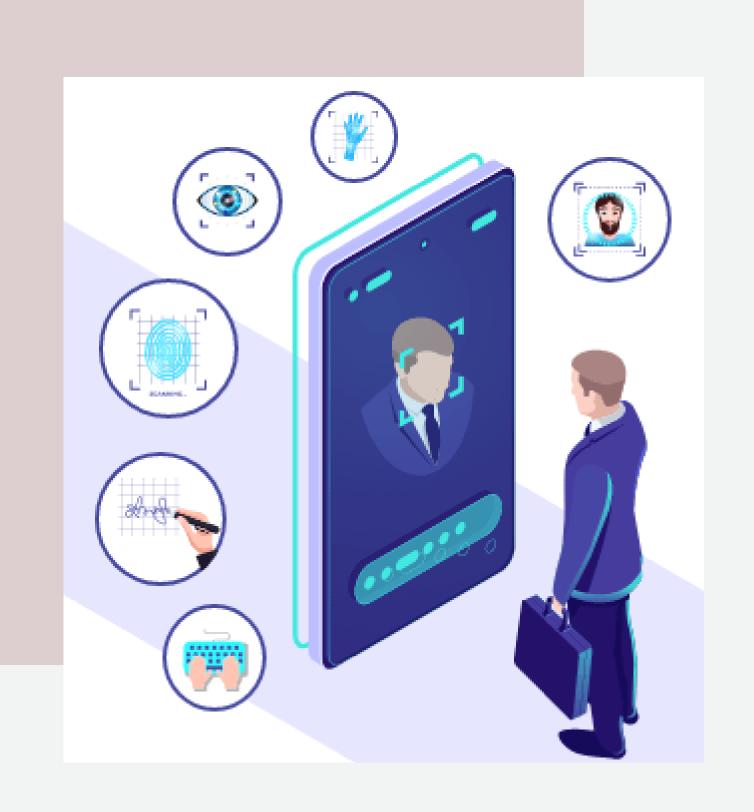


Prova de vida para imagens de faces

Carolina Pedro | Orientadores: Nuno Gonçalves e Luiz Schirmer



Autenticação Biométrica

O que é?

Validação da identidade do utilizador através de características distintivas do corpo humano.

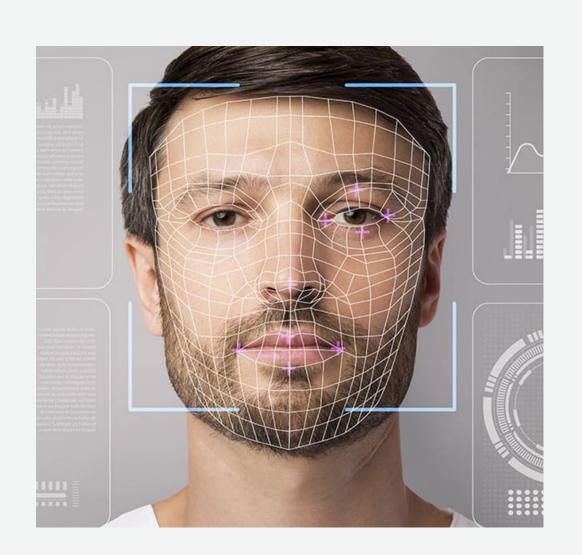
Aplicações

Pagamentos, check-ins, desbloqueio de telemóveis ou computadores, identificação de pessoas.

Desvantagem

Vulnerabilidade a ataques de apresentação.

Reconhecimento facial



Interação pouco intrusiva

2 Rapidez

Baixos custos

O número de aplicações de reconhecimento facial tem aumentado substancialmente.

Surgem cada vez mais tentativas de contornar este tipo de sistemas.

Existe uma grande necessidade de desenvolver técnicas para detetar e impedir ataques de apresentação.

Objetivos do trabalho

- 1. Abordar a aplicação de métodos de deep learning nos métodos de prova de vida.
- 2. Desenvolver um sistema de prova de vida usando redes neuronais convolucionais (CNN's).
- 3. Avaliar a eficácia do sistema, utilizando a base de dados WMCA.

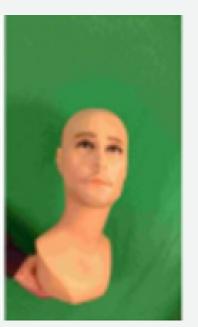
Base de dados

DISPONIBILIZADA PELO IDIAP

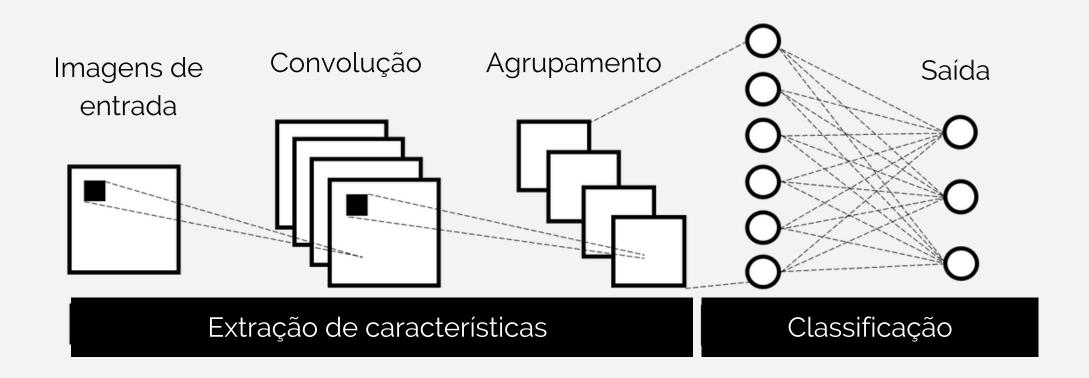
1679 pequenos vídeos347 apresentações genuínas1332 ataques de apresentação







Redes Neuronais Convolucionais



Elevado desempenho com dados multidimensionais, como é o caso das imagens.

Unidade básica: camadas

Redes Neuronais Convolucionais

Aumento do número de camadas

Aumento da profundidade

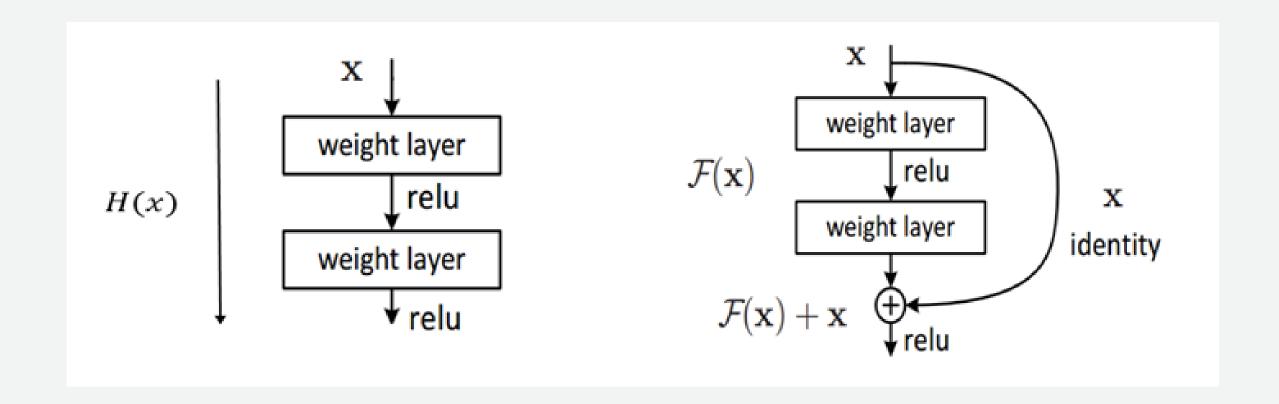
Vantagens

Permite a computação de características mais discriminantes.

Desvantagens

São difíceis de treinar. Apresentam erros de treino crescentes devido a questões na função de otimização e no gradiente de fuga.

Res. Nets



As ResNets têm a capacidade de resolver estes problemas devido à introdução de uma nova camada de rede neuronal, o bloco residual.

Transfer learning

- Acelera o processo de treino.
- Diminui os custos computacionais.
- Reduz o sobre-ajuste de redes de grandes dimensões.

Desafio

Escolher acertadamente o algoritmo para adaptar ao novo problema, sem alterar nenhum aspeto fundamental da rede original que possa influenciar negativamente o resultado.

ResNet-18 pré-treinada

72 camadas no total

18 camadas profundas

Nome da camada	Tamanho da saída	ResNet-18	
Conv1	112 x 112 x 64	7x7, passo 2	
Conv2_x	56 x 56 x 64	3x3 Max pool, passo 2	
		$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 2$	
Conv3_x	28 x 28 x 128	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 2$	
Conv4_x	14 × 14 × 256	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2$	
Conv5_x	7 x 7 x 512	$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 2$	
	1 X 1 X 512	Average pool, 1000-d fc, softmax	
FLOP's		1,8 x 10 ⁹	

ABORDAGEM DE FRAME ÚNICO

Processamento de cada frame individualmente.

ABORDAGEM SEQUECIAL

Formação de sequências de frames para cada vídeo, havendo consideração dos frames anteriores em cada etapa.

Pré-processamento

Imagens de treino

Redimensionamento para 224 x 224 Rotação na horizontal aleatória Normalização Transformação em tensor

Imagens para validação

Redimensionamento para 224 x 224 Normalização Transformação em tensor

Implementação do modelo

Abordagem de frame único

Utilização de duas camadas totalmente conectadas e uma função ReLU Alteração da saída para 4, devido às 4 classes

Abordagem sequencial (early fusion)

Alteração na entrada da primeira convolução Adição de uma camada de dropout de probabilidade 0,25 Alteração da saída para 4, devido às 4 classes

Implementação do modelo

Optimizador: ADAM com learning rate de 0,0005

Função perda: Cross Entropy Loss

Métricas de avaliação

Exatidão

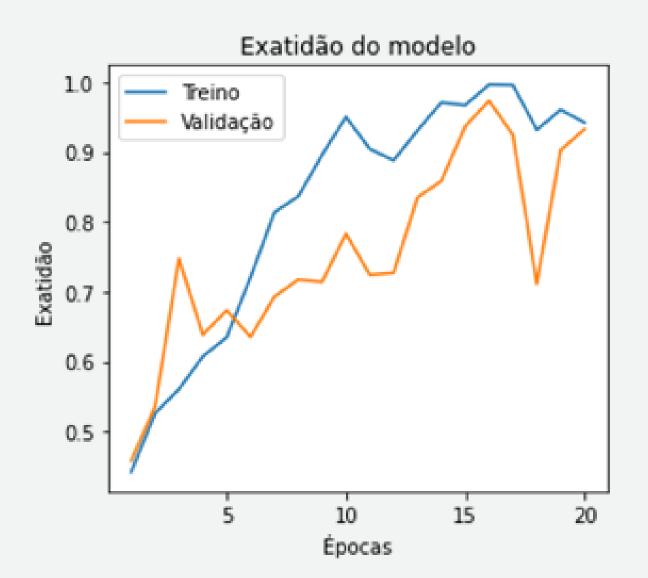
Sensibilidade

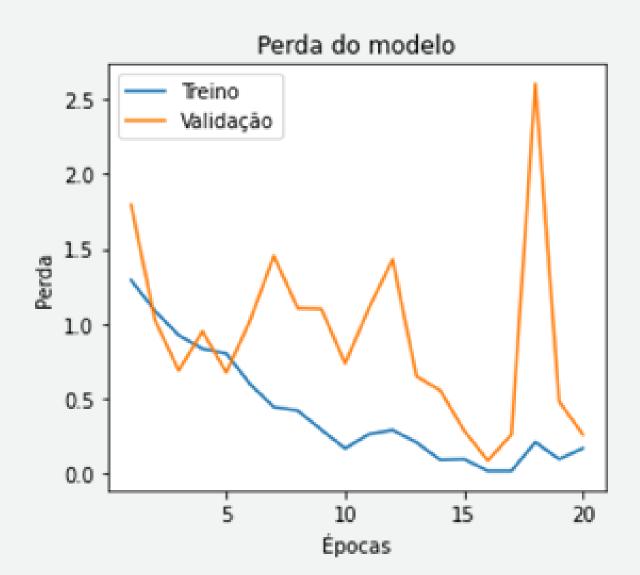
Precisão

F1-score

Análise do modelo

Abordagem de frame único

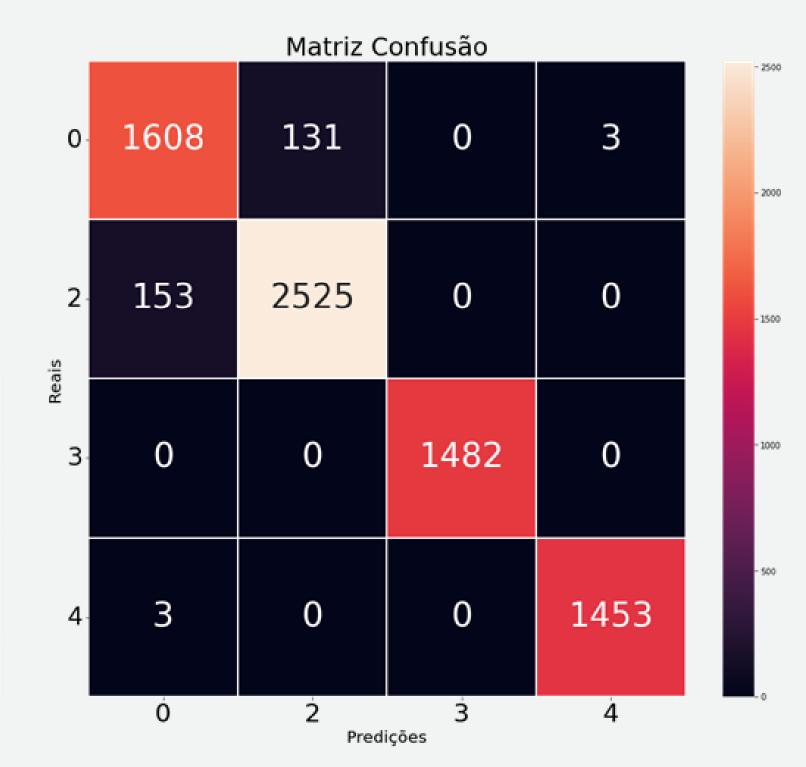




Análise do modelo

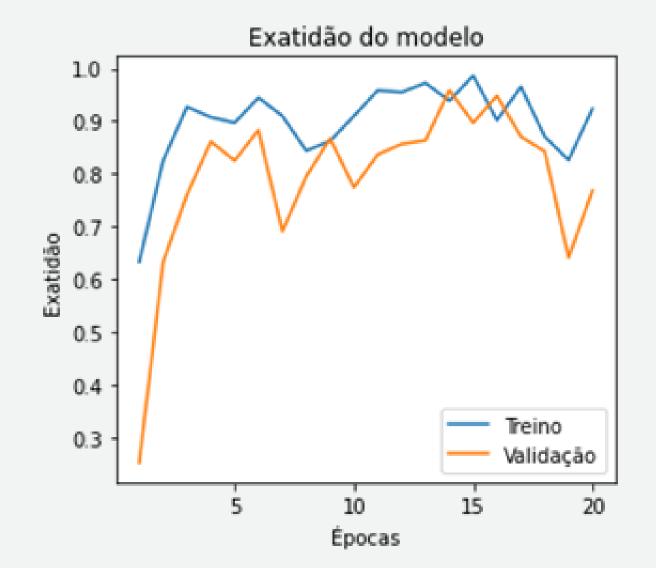
Abordagem de frame único

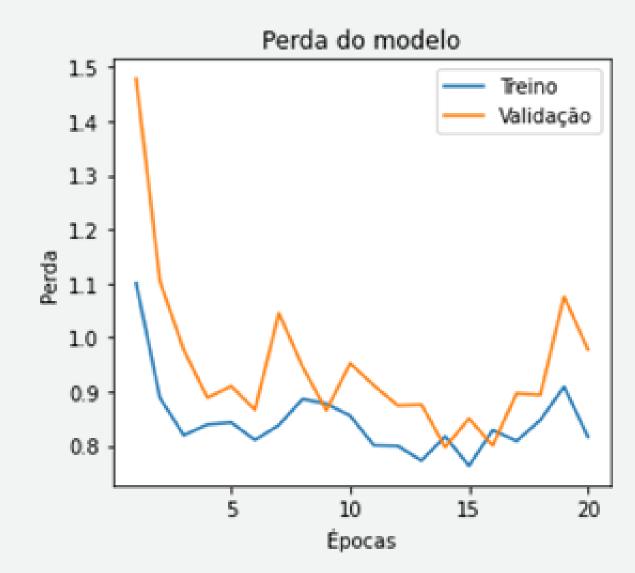
Classes	Precisão	Sensibilidade	F1-score
0	0,91	0,92	0,92
2	0,95	0,94	0,95
3	1,00	1,00	1,00
4	1,00	0,99	1,00



Análise do modelo

Abordagem sequencial

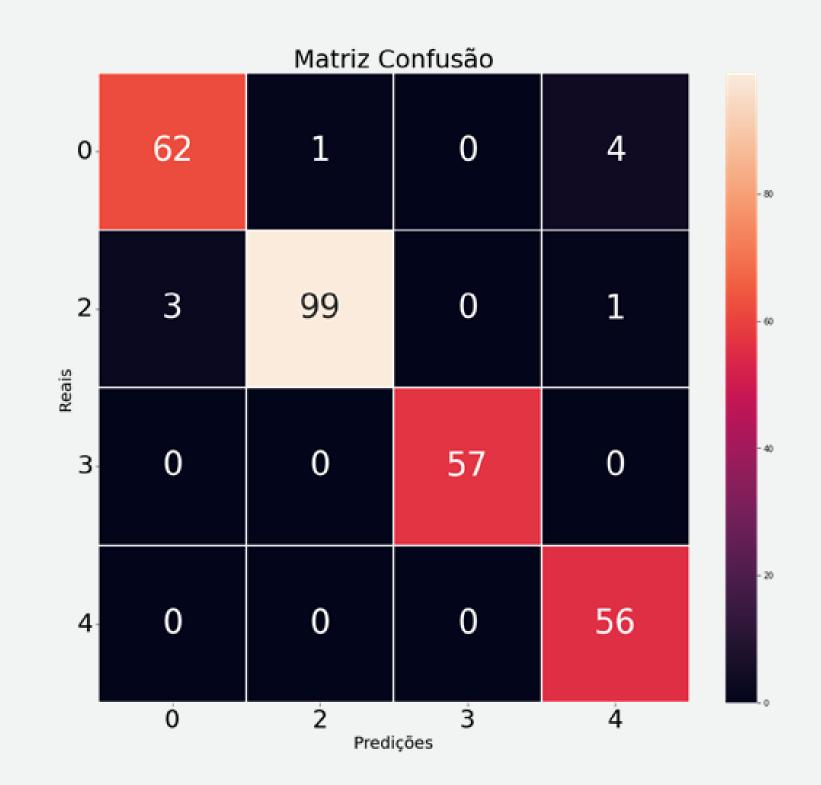




Análise do modelo

Abordagem sequencial

Classes	Precisão	Sensibilidade	F1-score
О	0,95	0,93	0,94
2	0,99	0,96	0,98
3	1,00	1,00	1,00
4	0,92	1,00	0,96



Classificação binária

Pré-processamento

Imagens de treino

Redimensionamento para 224 x 224 Rotação na horizontal aleatória Normalização Transformação em tensor

Imagens para validação

Redimensionamento para 224 x 224 Normalização Transformação em tensor

Classificação binária

Implementação do modelo

Alterações na rede pré-treinada:

Alteração na entrada da primeira convolução Adição de uma camada de dropout de probabilidade 0,25 Alteração da saída para 2, devido às 2 classes

Optimizador: ADAM com learning rate de 0,0005

Função perda: Cross Entropy Loss

Métricas de avaliação

Exatidão

Precisão

Sensibilidade

F1-score

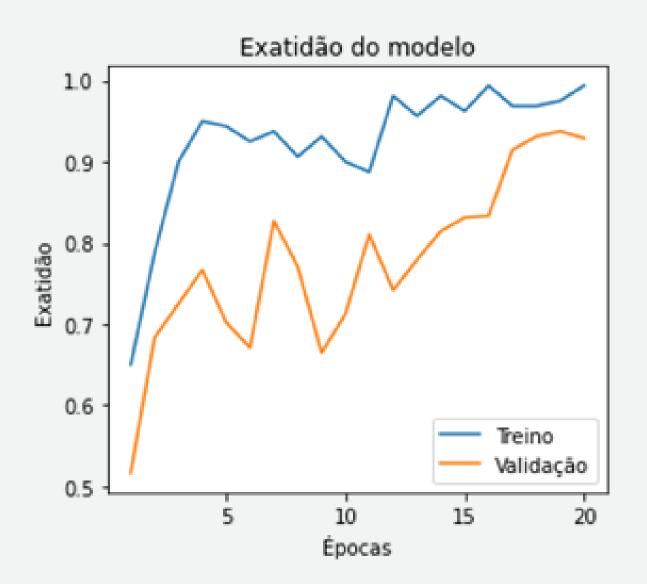
ACER - Taxa Média de Erros de Classificação

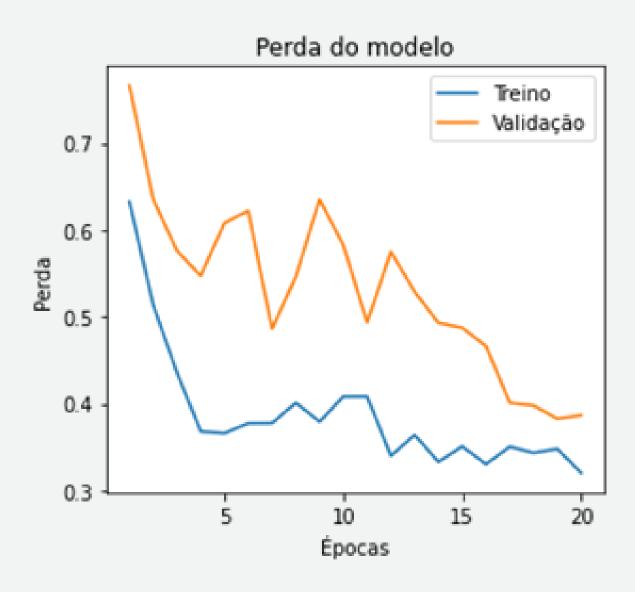
BPCER

APCER

Classificação binária

Análise do modelo





Classificação binária

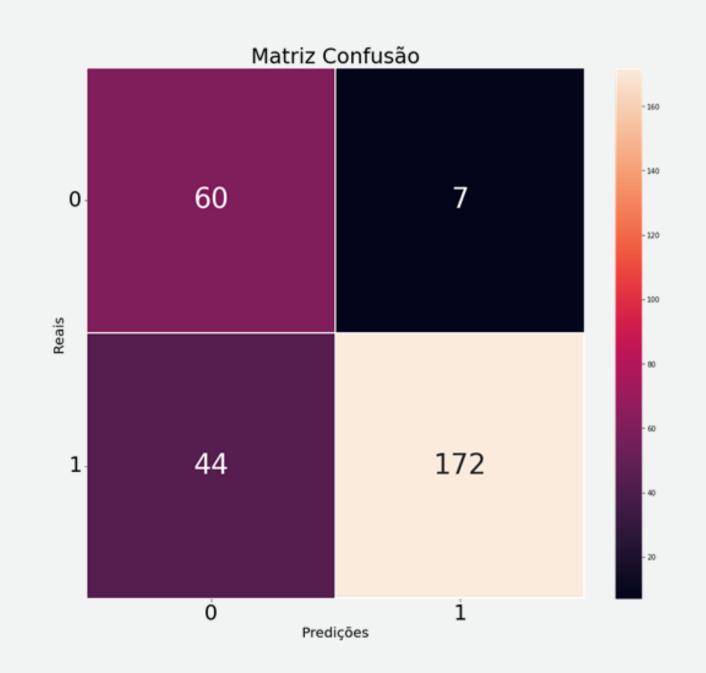
Análise do modelo

Classes	Precisão	Sensibilidade	F1-score
0	0,58	0,90	0,70
1	0,96	0,80	0,87

APCER = 0,204

ACER = 0,104

BPCER = 0.154



Conclusão

Os modelos evidenciam irregularidades na fase treino e validação.

Na fase de teste, os modelos de classificação multiclasse apresentam resultados satisfatórios, já o modelo binário apresenta uma incapacidade de assumir uma grande parte de ataques de apresentação como tal.

Poderiam ser alvo de algumas melhorias, o que reflete o facto de prova de vida ser ainda um problema em aberto, havendo uma constante necessidade de evolução.