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Abstract: This paper presents a novel approach to the storage of facial images in databases designed for biometric au-
thentication, with a primary focus on user privacy. Biometric template protection encompasses a variety of
techniques aimed at safeguarding users’ biometric information. Generally, these methods involve the appli-
cation of transformations and distortions to sensitive data. However, such alterations can frequently result in
diminished accuracy within recognition systems. We propose a deformation process to generate temporary
codes that facilitate the verification of registered biometric features. Subsequently, facial recognition is per-
formed on these registered features in conjunction with new samples. The primary advantage of this approach
is the elimination of the need to store facial images within application databases, thereby enhancing user pri-
vacy while maintaining high recognition accuracy. Evaluations conducted using several benchmark datasets -
including AgeDB-30, CALFW, CPLFW, LFW, RFW, XQLFW - demonstrate that our proposed approach pre-
serves the accuracy of the biometric system. Furthermore, it mitigates the necessity for applications to retain
any biometric data, images, or sensitive information that could jeopardize users’ identities in the event of a data
breach. The solution code, benchmark execution, and demo are available at: https://bc1607.github.io/FRS-
ProtectingData.

1 INTRODUCTION

The era of digitization has brought several opportuni-
ties, as well as challenges and concerns, especially
when it comes to the security and privacy of per-
sonal data. As the use of Multi-Factor Authentica-
tion (MFA) grows, the integration of technologies like
facial recognition is becoming more prevalent. This
trend gives rise to crucial inquiries regarding the safe-
guarding, utilization, and implementation of security
and privacy measures for biometric data. In the initial
quarter of 2024, critical vulnerabilities were identified
in prominent software systems such as Fortinet’s For-
tiOS (CVE-2024-21762) [Bahmanisangesari, 2024],
Jenkins (CVE-2024-23897) [Gioacchini et al., 2024],
and XZ Utils (CVE-2024-3094) [Wu et al., ]. These
vulnerabilities were officially listed in the Common
Vulnerabilities and Exposures (CVE) database with a
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Common Vulnerability Scoring System (CVSS) score
of 9.8 or higher, meaning the severity of these secu-
rity risks. Despite being different software programs,
these cases pose threats to information privacy as they
can be exploited to gain access to internal data or to
execute unauthorized commands.

Facial recognition systems (FRS) exhibit vulner-
abilities akin to those found in various software ap-
plications, as their design and implementation may
encompass inherent flaws that are susceptible to ex-
ploitation [Abdullahi et al., 2024]. Notably, these
systems are particularly vulnerable to presentation at-
tacks and spoofing techniques, which exploit their in-
trinsic limitations and may lead to erroneous decision-
making processes [Marcel et al., 2023]. Furthermore,
the integrity of facial recognition systems, as well
as other systems that depend on them, can be com-
promised by malicious alterations to the underlying
databases. This underscores that vulnerabilities may
arise not only from the algorithms and methodologies
employed but also from the data management prac-
tices in place [Mousa et al., 2020]. Consequently, de-
cisions regarding the selection of biometric features



for database storage, the required accuracy thresh-
olds, and the established procedural frameworks are
crucial for mitigating recognition errors and address-
ing the growing concerns related to data privacy [Lala
et al., 2021]. This paper proposes a comprehensive
approach that emphasizes considerations of database
privacy alongside the necessity for an appropriate
level of accuracy.

The aim of this paper is to propose an innova-
tive approach to facial recognition technology for au-
thentication purposes in everyday applications, with a
primary focus on maximizing accuracy while imple-
menting a MFA framework. One of the foundational
principles guiding this design is the elimination of the
need to store biometric data in raw or plaintext for-
mats, which could enable unauthorized recognition of
individuals beyond the confines of the application do-
main. To enhance security in the authentication pro-
cess, it is imperative that biometric authentication op-
erates at high levels of accuracy; consequently, the
methodology presented in this paper is designed to
maintain, if not improve, the accuracy of recognition
and authentication processes. Furthermore, the pro-
posed approach must be inherently scalable, facilitat-
ing the integration of various standardized data pro-
tection regulations pertaining to encryption.

Biometric characteristics refer to unique physical
or behavioral traits of an individual, such as facial
features, retina patterns, signatures, or typing pat-
terns [Delac and Grgic, 2004]. Biometric Template
(BT) are digital representations created by extracting
and encoding biometric features [Sarkar and Singh,
2020]. In the scientific literature, Biometric Template
Protection (BTP) algorithms can be categorized into
image-level and feature-level approaches.

In image-level BTP, techniques such as distortion
functions [Kirchgasser et al., 2020], morphing can-
cellation (morphed cancellable face images) [Ratha
et al., 2001], block scrambling [Dong et al., 2019],
XOR operations, permutations, and filters are used to
alter the original image (visual secret sharing) [Man-
isha and Kumar, 2020]. These methods can also
incorporate revocability through user-defined pass-
words in MFA systems [Singh et al., 2021]. Addi-
tionally, images can be protected by employing co-
occurrence matrices to obtain distinct features [Dab-
bah et al., 2007]. In this case, it is not possible to cor-
relate the final image with the initial one [Dang and
Choi, 2020].

On the other hand, the majority of BTP methods
operate in the feature-level domain, utilizing cance-
lable functions or cryptosystems. For example, some
methods rely on cryptographic functions like Homo-
morphic Encryption (HE) or employ hash functions.

Approaches in [Ma et al., 2017, Boddeti, 2018, Droz-
dowski et al., 2019, Jindal et al., 2020, Drozdowski
et al., 2021a, Drozdowski et al., 2021b, Engelsma
et al., 2022,Osorio-Roig et al., 2021] encrypt the fea-
tures using HE, enabling comparison in the encrypted
domain. However, similar to other encryption algo-
rithms, features can be decrypted with knowledge of
the encryption key [Hahn and Marcel, 2022a]. Algo-
rithms based on hash functions are applied to stable
objects, derived mathematically from features (e.g.
fuzzy commitment scheme [Juels and Wattenberg,
1999]).

In this paper, we propose a method that adheres
to the properties of BTP as delineated in the lit-
erature: irreversibility, revocability, and unlinkabil-
ity [Ramu and Arivoli, 2012]. To leverage artifi-
cial intelligence and facial image discriminators, we
adopt a feature-level approach. For privacy consider-
ations, our methodology employs standard and secure
cryptographic techniques, including hash functions
(SHA-512), encryption algorithms (Advanced En-
cryption Standard (AES) [National Inst Of Standards
And Technology Gaithersburg Md, 2001]), Pseudo-
random Number Generator (PRNG), and Time-based
one-time password (TOTP). Our approach incorpo-
rates MFA that combines TOTP authenticators with
facial recognition algorithms, specifically Convolu-
tional Neural Network (CNN), along with distance
and similarity functions. Moreover, we implement
a process to protect biometric data through hashing
and encryption techniques. This method enables the
generation of secure objects that can subsequently be
stored in application databases. To enhance accuracy
levels, our solution makes facial recognition decisions
based on the domain of biometric features extracted
by the CNN.

In our approach, the irreversibility, revocabil-
ity, and unlinkability of biometric characteristics are
achieved by creating computationally secure crypto-
graphic objects designed to be difficult to reverse,
revocable, and capable of generating multiple in-
stances from the same facial image, while ensuring
unlinkability so that they do not inherently identify
any individual. An implementation of this proposal
was developed using Python libraries and evaluated
against established benchmarks available in the scien-
tific literature for research purposes, namely the La-
beled Faces in the Wild (LFW) [Huang et al., 2008],
Age Database 30 (AgeDB-30) [Moschoglou et al.,
2017], Cross-Age LFW (CALFW) [Zheng et al.,
2017], Crosspose LFW (CPLFW) [Zheng and Deng,
2018], Racial Faces in the Wild (RFW) [Wang et al.,
2019], and CrossQuality Labeled Faces in the Wild
(XQLFW) [Knoche et al., 2021].



The benchmarks presented herein comprise a se-
ries of tests along with their respective outcomes. The
CNN model employed in this study is known as the
MagFace model, as proposed by Meng et al. [Meng
et al., 2021]. The MagFace model was trained uti-
lizing the MSIM-V2 dataset. The facial recognition
model functions as a black box, utilized solely for the
extraction of feature vectors (embeddings). The pri-
mary Python libraries employed in the implementa-
tion include binascii, random, cryptography, secrets,
hashlib, and pyotp.

The primary contributions of this paper focus on
the design of an approach and methodology aimed at
fulfilling four essential quality requirements. Specifi-
cally, our approach has been crafted to satisfy the fol-
lowing criteria: (1) MFA integrated with facial recog-
nition; (2) user registration through cryptographic ob-
jects that ensure irreversibility, revocability, and un-
linkability; (3) the creation of a database that does not
contain biometric data while still enabling the con-
firmation and assurance of accurate facial authentica-
tion; and (4) the solution must not compromise the
accuracy of the FRS defined by the CNN. In this pa-
per, we implement the proposed approach and con-
duct benchmarks using available tests and metrics to
evaluate a FRS, as outlined in the scientific litera-
ture. This evaluation aims to analyze and ascertain
whether our proposed solution meets the established
objectives.

The Section 2 addresses the relevant literature and
prior research essential for the formulation of the pro-
posed approach.

2 RELATED WORK

FRS must adhere to various quality attributes, includ-
ing accuracy, computational efficiency, security, pri-
vacy, and usability [Hahn and Marcel, 2022b, Ekka
et al., 2022]. In our approach, the primary focus lies
on privacy, with data confidentiality being of utmost
importance. Thus, in this study, methods that incorpo-
rate BTP at the feature level using cryptographic sys-
tems or utilizing cancelable functions are considered
appropriate. Generally, BTP aims to achieve proper-
ties such as accuracy, irreversibility, renewability, and
unlinkability [Hahn and Marcel, 2022b]. Rui et al.
has introduced the Mission Success Rate property as
a new addition to the biometric privacy criteria [Rui
and Yan, 2019]. This property focuses on the sys-
tem’s ability to withstand attacks while also maintain-
ing the confidentiality of biometric data, in addition to
the existing properties of irreversibility, renewability,
and unlinkability.

In [Li and Kot, 2010], a fingerprint authentication
system is proposed which utilizes data hiding and em-
bedding techniques to securely conceal private user
information within a fingerprint template. In the reg-
istration process, a user’s identity is embedded within
their unique fingerprint template. This template, con-
taining the encrypted data, is subsequently stored in
a database for authentication purposes. This proce-
dure outlines a methodology for concealing user data
within images using steganography. In [Li and Kot,
2012], the template is generated by combining two
fingerprints in a way that extracting a single finger-
print would be computationally challenging. Random
and dynamic identifiers can be utilized for the purpose
of associating and disassociating users with random
objects. These random objects help to introduce en-
tropy when combined with biometric characteristics.

In [Dang and Choi, 2020, Smith and Xu, 2011],
the face-based key generation approach is described.
This approach is a deterministic procedure that en-
sures zero-uncertainty key generation by leveraging
auxiliary data storage. The key generation process in-
volves preprocessing, distorting, and extracting facial
features from the photograph, followed by utilizing
randomization to construct a stable template and ul-
timately generate the key. This process is similar to
generating a hash, with the distinction that it allows
for intra-class variances (variations within images of
the same face). The distortion step involves the appli-
cation of cancelable functions before feature extrac-
tion, while the randomization step involves introduc-
ing entropy to the generated data.

In [El-Shafai et al., 2021], a novel authentication
framework based on a genetic encryption algorithm
is proposed. This algorithm takes an image and gen-
erates a cancelable biometric image. The algorithm
utilizes permutation matrices, random number gener-
ator functions, divides the image into parts, processes
the parts, applies crossover and mutation operations
repeatedly. The final output hides the discriminative
features of the biometric templates. It also achieves a
high accuracy, with an average Area Under the Curve
(AUC) of 0.9998. For authentication purposes, the
database will store the cancelable biometric images.
This approach is not exactly what is desired for our
proposal, as it involves storing cancelable biometric
images in a database. Additionally, it is important in
our approach to have direct access to the face photo-
graph for applying active liveness detection (involves
requiring the user to perform a specific action, ensur-
ing their active participation in the authentication pro-
cess) and validating the International Civil Aviation
Organization (ICAO) security list. The International
Organization for Standardization (ISO) 19794-5 stan-



dard1 outlines rules for taking a passport-style face
photograph.

There are several approaches in the literature that
utilize BTP algorithms following the extraction of
features. This preference can be attributed to the
availability of various pre-trained neural networks
that have demonstrated the ability to extract and dis-
criminating facial features from face images [Hahn
and Marcel, 2022a]. Some examples of neural net-
works that act as feature discriminators and have
an implemented version available are the Inception
ResNet model [Schroff et al., 2015], the ResNet 50
model (ArcFace) [Deng et al., 2019], the QualFace
model [Tremoço et al., 2021], the Idiap model [Hahn
and Marcel, 2022b], and MagFace [Meng et al.,
2021]. The MagFace model was selected for its high
levels of accuracy.

Data: 1999
Result: Recognition system decision
protected BT = registration BT− codeword;
codeword’ = validation BT−protected BT;
if hash(codeword) == hash(codeword’) then

The recognition is successful;
else

The recognition is not successful;
end

Algorithm 1: Fuzzy Commitment scheme

After feature extraction, various BTP algorithms
can be applied, such as the Fuzzy Commitment
scheme [Juels and Wattenberg, 1999]. The Fuzzy
Commitment scheme is a recognition procedure in-
volving registration and validation phases. During the
registration phase, a codeword is generated and linked
with the user. A codeword is a value that is used
to achieve a certain security goal, such as encryp-
tion, decryption, or authentication. The difference be-
tween the registration BT and the codeword produces
the protected BT. The BT registration, along with the
hash of the codeword, is stored in the database. In the
validation phase, the aim is to recover the codeword’
executing the inverse operation. If the retrieved hash
of the codeword’ matches the stored hash, the recog-
nition is successful (see alg. 1). Error correction
functions can rectify a certain number of errors in
the codeword’, but the hashes must match precisely.
This algorithm was found to be insecure, as subse-
quent studies revealed the possibility of reversing the
process and obtaining the template without knowl-
edge of the codeword [Keller et al., 2020,Keller et al.,
2021, Hahn and Marcel, 2022a]. Nevertheless, the
essence of this method is to present a challenge where

1https://www.iso.org/standard/50867.html

the user must provide a validation object identical to
the registration object.

3 RESEARCH PROPOSAL

This section outlines a facial authentication approach
that employs MFA and ensures the irreversibility, re-
vocability, and unlinkability of registration objects.
It advocates for a database devoid of biometric data,
facilitating secure and effective authentication via
CNN-defined FRS. The approach enhances existing
systems by adding validation steps to improve the se-
curity and privacy of biometric data both in transit and
within stored databases.

In the following Subsection 3.1, we will present
a detailed overview of the proposed system, which
encompasses two primary functional requirements:
the Registration Phase and the Validation Phase.
These phases involve interactions between the Client
and two designated servers responsible for biomet-
ric recognition and authentication: the Registration
Server and the Authentication Server. This interac-
tion is illustrated in Fig. 1.

3.1 Overview of the approach

Our facial authentication system consists of three key
entities: the Client, the Registration server, and the
Authentication server. The system operates in two
distinct phases: the Registration Phase (RP) and the
Validation Phase (VP). Below, we present these two
phases.

The RP begins when a Client makes a request
to the Registration server. The Client submits a fa-
cial image, referred to as Frame 1 (F1). The Regis-
tration server validates F1 against a security check-
list, which may include requirements outlined by the
International Civil Aviation Organization (ICAO). If
F1 is determined to represent a valid and coherent
human face, the Registration of the client proceeds.
This Registration process entails the creation of sev-
eral cryptographic objects, including the username,
opt key, biometric key, user hash, user key, and au-
thentication proo f , which will be elaborated upon in
Sections 3.2 and 3.3.

The Registration and Authentication servers com-
municate, allowing the Authentication server to store
the relevant cryptographic objects. Subsequently,
the Registration server shares the cryptographic ob-
jects with the Client, excluding the user hash, the
user key, and the proo f , which remain solely with
the servers. The RP concludes when the Registration
Server deletes F1 and all previously generated crypto-



Figure 1: Architecture of the proposed approach: an illustration of the Registration (blue) and the Validation Phase (orange).

graphic objects, ensuring it retains no persistent mem-
ory of these items.

The Authentication server and the Client do not
have the responsibility to generate cryptographic keys
(e.g., opt key, biometric key, user key). This re-
sponsibility is delegated to the Registration server,
which selects appropriate and secure cryptographic
functions for generating these objects. These ob-
jects, including user key and authentication proo f ,
are unique to each registration and exist solely on
the server side. The authentication proo f is crucial
for authentication during the validation phase, which
relies on hashing functions. This approach utilizes
hashing to prevent the storage of biometric data on
the server side, thereby mitigating the risk of expos-
ing sensitive biometric information from the client’s
facial data F1. In the event of a database breach,
it should not be possible to retrieve any biometric
information from the authentication proo f . Conse-
quently, the photograph used for registration, F1, may
be reused to create new and unique cryptographic ob-
jects.

Table 1 presents the data recorded by each entity
upon the completion of the RP.

The VP occurs between the Client and the Au-
thentication server. In a secure manner, the Client
submits their username and a new facial image, re-
ferred to as Frame 2 (F2). Initially, authentication is
conducted through a challenge presented by the Au-
thentication server, wherein the Client proves their
identity using the opt key, resulting in Proof 1 (P1).

Table 1: Attributes required in the registration phase.

Parameters Registration Authentication Client

F1 × × X
username × X X
ot p key × X X
biometric key × X X
user hash × X ×
user key × X ×
proo f × X ×

Subsequently, the Client generates Proof 2 (P2) by
extracting biometric features from F2 and utilizing
their biometric key, which was obtained during the
RP. The Authentication server utilizes P2 to verify
that the Client has accurately extracted the biomet-
ric features from F2 and applied their biometric key.
Following this, the Client produces a parameter that
we designated by delta, which enables the Authen-
tication server to recalculate the registered biomet-
ric features (through mathematical functions detailed
in Section 3.3). The Authentication server then pro-
cesses these biometric features and decrypts the proof
to validate its integrity. Upon successful validation,
the Client will be authenticated if the biometric tem-
plates from Frame 1 (F1) and Frame 2 (F2) are found
to be identical, exceeding a predefined threshold.

In the literature, various proposals for biometric
recognition and authentication utilize biometric tem-
plates, applying distance or similarity functions. Our
approach also validates similarity; however, it strate-
gically incorporates cryptographic functions to ensure



that biometric templates are neither stored nor trans-
mitted over the network. Table 2 presents the param-
eters required during the VP.

For authentication to be considered valid, four
conditions must be met: (1) the biometric registra-
tion features, BT1, and the biometric validation fea-
tures, BT2 are similar, as the similarity function’s re-
sult exceeds the threshold; (2) the Client presents P2
to demonstrate that they have created a valid protected
version of the biometric validation template, BT P2,
using their unique biometric key; (3) the Authentica-
tion server utilizes the delta to obtain the biometric
registration features BT1. Subsequently, it recalcu-
lates the protected version of the biometric registra-
tion template BT P1, since both BT1 and BT P1 are not
stored in the server database; (4) the Authentication
server utilizes BT P1 to decrypt and validate the con-
tents of the authentication proo f .

Table 2: Attributes required in the validation phase.

Parameters Authentication Client

username X X
ot p key X X
P1 X X
biometric key X X
F1 × X
BT1 × X
BT P1 × X
F2 X X
BT2 × X
BT P2 × X
delta X X
P2 X X
BT ′2 X ×
BT P′2 X ×
BT P′1 X ×
proo f X ×
user hash X ×
user key X ×
BT ′1 X ×
threshold X ×

The Subsections 3.2 and 3.3 detail this approach,
including the algorithm and the messages exchanged
between entities during the registration and validation
phases, respectively.

3.2 Registration Phase

Clients and Authentication servers rely on Registra-
tion servers for critical functions in recognition and
authentication processes. The Registration servers
evaluate whether the submitted images meet the nec-
essary security requirements and generate reliable
proofs for authentication. Clients trust Registration
servers to protect their biometric data, while Authen-

ticators depend on these servers to verify that a sub-
mitted image is a true representation of the client. As
a result, both Clients and Authenticators have a vested
interest in ensuring transparency in the operational
procedures of Registration servers and supporting the
adoption of open-source code.

In the RP, the Registration server will need a set
of random parameters to decompose biometric data
and transform it into a fixed code, referred to as the
authentication proo f . To achieve this, the Registra-
tion server utilizes a PRNG to generate the parame-
ters known as biometric key, ot p key and user key in
a pseudo-random manner.

The RP begins when the Client submits an image,
denoted as F1. This image undergoes processing to
recognize the face and extract biometric features. An
algorithm is then applied to evaluate whether the im-
age meets several required criteria (ICAO), including
sufficient lighting, absence of shadows, full visibility
of the face, and acceptable facial expressions. This as-
sessment is conducted using neural networks that val-
idate the client’s face and ultimately generate a vector
containing the extracted facial characteristics. Sub-
sequently, from F1, a feature vector BT1 comprising
1024 floats is produced using a CNN. This embed-
ding encapsulates the sensitive biometric information
that we aim to protect in this study.

To safeguard biometric characteristics, we employ
a decomposition and transformation process to obfus-
cate the biometric embeddings. The resulting values
are decomposed, shuffled, and then combined with a
biometric key, yielding a fixed-size code. This pro-
cess functions similarly to a hash function; any mod-
ification to either the biometric template BT1 or the
biometric key results in a distinctly different output.
Nevertheless, the data remains transformed, allowing
for subsequent facial recognition within this modified
domain, which contrasts with traditional hash func-
tions. In this context, we utilize the Biometric Tem-
plate Protection Function known as PolyProtect, as
proposed in [Hahn and Marcel, 2022b], to generate
cryptographic keys and initialization vectors for the
AES-256 symmetric encryption algorithm used in this
study. This deterministic implementation ensures that
identical inputs consistently produce the same output.
This design choice is intentional, as it aims to main-
tain the accuracy of the recognition system, which
will be evaluated in Section 4.

In our implementation, the function accepts a fea-
ture vector BT1 and a biometric key as inputs to gen-
erate a cryptographic key and an initialization vec-
tor (IV) for the encryption process. This protection
function, similar to PolyProtect [Hahn and Marcel,
2022b], irreversibly distorts biometric information,



thereby increasing its entropy and transforming it into
a fixed code that deviates from the distribution of the
original biometric features. We have implemented a
modified version of the PolyProtect algorithm. Ini-
tially, the embedding V , which contains 1024 val-
ues, is divided into 32 non-overlapping sets (m = 32),
analogous to the case in which there is zero overlap in
the PolyProtect algorithm [Hahn and Marcel, 2022b].
The values of the embedding are then mapped using
random coefficients c and exponents e, which are de-
rived from the biometric key generated by the PRNG.

A total of 32 terms are generated from a vector of
1024 values. Equation 1 corresponds to the genera-
tion of the first two terms, where V represents the ini-
tial embedding. For each subsequent term, the most
significant digit of the float value is retained, while
the remaining digits are discarded. For instance, if a
float value is 0.00005678, the digit ’5’ is retained, and
all other digits are disregarded. In cases where the se-
lected digit is zero, a random digit is generated using
the PRNG, with the biometric key serving as the seed.
These selected digits are then concatenated to form a
key and IV for the AES-256 encryption algorithm.

T1 =
m

∑
i=1

ci ·V ei
i , T2 =

2m

∑
i=m+1

ci ·V ei
i (1)

The Registration server extracts the biometric
characteristics, generating a biometric template BT1
(eq.2), which is then transformed and canceled to
create the protected biometric template BT P1 (eq.3).
This transformation is conducted through our Biomet-
ric Template Protection method, BT P, initialized with
the biometric key (based on the PolyProtect strategy).

CNN(valid f rame) = BT1 (2)
BTP(biometric key,BT1) = BT P1 (3)

A hash function is applied to the BT P1 to generate
the user hash parameter (eq.4). Finally, the proo f is
the encryption (E) of the user key combined with the
user hash, using BT P1 as the key (eq.5).

hash function(BT P1) = user hash (4)
proo f = E(BT P1,user key + user hash) (5)

The Authentication server stores username,
opt key, biometric key, user hash, user key, and
proo f , and is unaware of the biometric charac-
teristics, which prevents it from decrypting the
proo f . The Client stores the username, opt key and
biometric key in a successful registration. Finally, all
parameters are discarded on the Registration server.

3.3 Validation Phase

The validation phase aims to authenticate a legitimate
Client who has been previously registered. In a se-
cure communication, the Client sends their username
and a new facial image F2, which differs from the
previously submitted, F1. Subsequently, the authen-
tication server retrieves the corresponding user key
and ot p key from the database using the provided
username. The server then generates a Hash based
Message Authentication Code (HMAC) by applying
an HMAC function that uses the user key along with a
randomly generated string produced by a PRNG func-
tion: MAC = HMAC(user key, PRNG()).

The MAC code is encrypted (E) using disposable
codes generated by the TOTP function, which is ini-
tialized with the client’s ot p key (eq. 6), producing
the cryptographic object P1 (eq. 7). The TOTP func-
tion creates an authentication mechanism using tem-
porary unique codes that are valid for a short period,
specifically 30 seconds.

TOTP(ot p key) = unique codei (6)
E(unique codei,MAC) = P1 (7)

The Client begins by decrypting (D) the object P1
with the disposable code (eq. 8) obtained from the
TOTP function initialized with the ot p key (eq. 9).
Next, the CNN model is used to process two pho-
tographs, the registration photo F1 and the validation
photo F2, to obtain their respective embeddings BT1
(eq. 10) and BT2 (eq. 11). The delta is then calcu-
lated as the distance between these two embeddings
(eq. 12). Our transformation function BT P initialized
with the biometric key is applied to BT2, canceling
out the biometric characteristics and producing BT P2
(eq. 13). Subsequently, the Client encrypts (E) the
MAC with the BT P2, producing the encrypted object
P2 (eq. 14). P2 and delta are subsequently transmitted
to the Authentication server.

D(unique codei, P1) = MAC (8)
TOTP(ot p key) = unique codei (9)

CNN(F1) = BT1 (10)
CNN(F2) = BT2 (11)

dist(BT1,BT2) = delta (12)
BTP(biometric key,BT2) = BT P2 (13)

E(BT P2, MAC) = P2 (14)

The Authentication server uses the CNN model to
generate BT ′2 from F2, previously received (eq. 15).
The biometric features BT ′2 are transformed using our
BT P function initialized with the biometric key, pro-
ducing BT P′2 (eq. 16). The server decrypts (D) P2
with BT P′2 (eq. 17) and validates if this result matches



the MAC constructed previously (eq. 18). If it is not
possible to obtain the exact same MAC, then the pro-
cedure is terminated as unauthorized. Next, the server
obtains the biometric characteristics BT ′1 by applying
the delta to the vector BT ′2 (eq. 19). To produce BT P′1,
the biometric characteristics BT ′1 are canceled using
the BT P function initialized with the biometric key
(eq. 20). The server decrypts (D) the proo f with the
BT P′1 (eq. 21) and tests if the result is equal to the
user key combined with the user hash. Finally, the
procedure is concluded as authorized if the similarity
between BT ′1 and BT ′2 is above a certain threshold (eq.
22).

Upon successful validation, the Authentication
server acquires the biometric characteristics BT1 and
BT2 for facial recognition purposes, which are not
stored in the server database. By utilizing distinct
keys, it is feasible to generate new and different
proo f s for the same image F1.

This approach was designed to support various
hashing and encryption methods; thus, the selected
cryptographic functions and their implementation will
be discussed in Subsection 3.4.

CNN(F2) = BT ′2 (15)
BTP(biometric key,BT ′2) = BT P′2 (16)

D(BT P′2, P2) = MAC′ (17)
MAC ⇐⇒ MAC′ (18)

dist(BT ′2 ,delta) = BT ′1 (19)
BTP(biometric key, BT ′1) = BT P′1 (20)

D(BT P′1, proo f ) == user key′ + user hash′ (21)
similarity(BT ′1 , BT ′2)> threshold (22)

3.4 Implementation details

The approach presented was implemented using
Python and evaluated on a server running Ubuntu
20.04, equipped with an AMD Ryzen 7 5700G pro-
cessor and 58GB of RAM. As PRNG, we utilized the
SystemRandom function to produce the necessary ran-
dom parameters. For symmetric encryption, we chose
AES-256, which is available through the cryptogra-
phy library. Additionally, we utilized SHA-512 as
hashing function, imported from the hashlib library.
The BTP function, as previously detailed in Subsec-
tion 3.2, was developed by our team, using the strat-
egy of [Hahn and Marcel, 2022b].

Biometric features are typically evaluated through
a similarity function, as demonstrated in prior studies.
In our proposed approach, however, we introduce de-
formations to these data. In Section 4, we present the
impact of this approach on the effectiveness of facial

authentication.

4 CRITICAL ANALYSIS

This section outlines the evaluation plan for the pro-
posed approach, detailing the benchmarks and se-
lected datasets, as well as presenting the results of the
experiments conducted in subsection 4.1. In subsec-
tion 4.2, a critical assessment of the method is pro-
vided, justifying the design choices made and dis-
cussing the advantages and disadvantages that these
choices impose on FRS.

4.1 Experiments and Results

The Subsection is structured into datasets, CNN
model, and results.

Datasets. The criterion for selecting the data was
the preference for high-quality datasets with mini-
mal noise, along with the availability. Therefore, this
work utilizes models trained on the MSIM-V2 dataset
[Deng et al., 2019], known for its lower noise lev-
els compared to datasets such as the MS-Celeb-1M
dataset [Guo et al., 2016]. The datasets used for val-
idation include LFW [Huang et al., 2008], AgeDB-
30 [Moschoglou et al., 2017], CALFW [Zheng
et al., 2017], CPLFW [Zheng and Deng, 2018],
RFW [Wang et al., 2019], and XQLFW [Knoche
et al., 2021]. These validation datasets present a chal-
lenge as they consist of in-the-wild data, where many
frames may not meet quality standards (such as blur,
pixelation, or closed eyes). The images are 112x112
in size and are aligned with the guidelines set forth in
ArcFace [Deng et al., 2019]. Each dataset comprises
6000 test cases.

CNN model. The MagFace model was selected
because, based on our current knowledge, it consis-
tently produces results that are at the forefront of the
field. The neural network was instantiated using the
checkpoint files provided by the authors of MagFace
after training with the MSIM-V2 dataset, employing
stochastic gradient descent as the optimization algo-
rithm [Meng et al., 2021]. The cosine distance was
utilized as the similarity metric for comparing the fea-
ture embeddings.

Results. The results obtained for the AgeDB-30,
CALFW, LFW, RFW (African, Caucasian, Indian),
and XQLFW benchmarks are presented in Table 3.
Our approach performed well on most benchmarks in
terms of accuracy, with the highest accuracy achieved
on LFW at 99.43%, followed closely by AgeDB-
30 and RFW African/Caucasian/Indian at 98%. The
Equal Error Rate (EER) values were relatively low for



Table 3: Our approach evaluated in different benchmarks
by the following metrics: accuracy, standard deviation (std),
EER, and AUC.

Dataset Accuracy +-std EER AUC

AGEDB30 0.981 +-0.009 0.02320 0.99176
CALFW 0.958 +-0.036 0.52459 0.42706
LFW 0.994 +-0.004 0.00624 0.99647
African 0.986 +-0.004 0.01587 0.99323
Asian 0.976 +-0.006 0.02358 0.99474
Caucasian 0.989 +-0.003 0.01289 0.99515
Indian 0.982 +-0.007 0.02032 0.99436
XQLFW 0.837 +-0.019 0.17128 0.90987

most datasets, indicating good performance in terms
of false match rate and false non-match rate. The
LFW dataset had the lowest EER at 0.62%, while
CALFW and XQLFW had the highest, with rates of
52% and 17%, respectively. The AUC values were
also high on most datasets, with LFW again lead-
ing with an AUC of 99.65%. The other datasets, in-
cluding AgeDB-30, RFW African, RFW Asian, RFW
Caucasian, and RFW Indian, also showed high AUC
values above 99%. Overall, the findings suggest that
our approach excelled on the benchmark datasets,
particularly on LFW, demonstrating high accuracy
and discriminative performance across various demo-
graphic groups. The ROC curve in Fig. 2 further
illustrates the system’s performance. Although the
proposed technique maintains a high level of accu-
racy without compromising overall performance, fu-
ture research efforts should focus on enhancing per-
formance on datasets with lower accuracy and higher
Equal Error Rate (EER) values, such as the XQLFW
dataset. However, it is important to note that tests on
low-quality datasets should be approached with cau-
tion. Further investigation is necessary to improve
performance in others benchmarks.

Figure 2: ROC curve evaluating our approach across differ-
ent benchmarks.

Table 4 presents the True Acceptance Rate (TAR)

at a False Acceptance Rate (FAR) ranging from
0.0001 to 0.1 for various validation datasets. The
AgeDB-30 dataset demonstrates a high TAR of
98.94%, whereas the CALFW dataset shows a TAR
of 94.17% at a FAR of 0.0001. The CPLFW dataset
initially exhibits a lower TAR of 28.95%, which in-
creases substantially to 98.25% at a FAR of 0.01.
On the other hand, the LFW dataset starts with a
modest TAR of 28.3% at a FAR of 0.0001 but im-
proves significantly to 99.91% at a FAR of 0.01. The
RFW dataset generally displays high TAR values at
a FAR of 0.0001, ranging from 97.47% to 99.75%.
In comparison, the XQLFW initially shows a TAR of
52.10% at a FAR of 0.0001 but increases as the FAR
values rise. The diverse performance of face recogni-
tion systems across different datasets is highlighted,
with some datasets achieving high TAR even at low
FAR values, while others exhibit substantial enhance-
ments as FAR increases.
Table 4: Accuracy of our approach (%) presenting TAR in
FARs ranging from 0.0001 to 0.1 across different bench-
marks.

Validation TAR@FAR
Datasets 0.0001 0.001 0.01 0.1

AGEDB30 98.94 99.49 99.49 99.53
CALFW 94.17 98.99 98.99 98.99
CPLFW 28.95 97.78 98.25 98.25
LFW 28.3 53.19 99.91 99.91
RFW African 99.31 99.79 99.88 99.91
RFW Asian 97.47 99.16 99.88 99.93
RFW Caucasian 99.75 99.89 99.94 99.94
RFW Indian 99.22 99.73 99.84 99.84
XQLFW 52.10 74.42 75.19 86.18

The results demonstrate that our approach
achieves performance levels that are comparable to
the current state of the art. When compared to
MagFace [Meng et al., 2021] as a baseline, our
method exhibits minimal differences of 0.08, 1.36,
2.84, and 5.38 on LFW, AgeDB-30, CALFW, and
CPLFW datasets, respectively (see Table 5). Our
design integrates various protective strategies for fa-
cial recognition while facilitating accurate decision-
making through a systematic comparison process.

Table 5: Verification accuracy (%) on the LFW, AgeDB-30,
CALFW, and CPLFW benchmarks for the ArcFace [Deng
et al., 2019], MagFace [Meng et al., 2021], and our pro-
posed method.

Datasets ArcFace MagFace Our Gain

LFW 99.81 99.83 99.91 0.08
AgeDB30 98.05 98.17 99.53 1.36
CALFW 95.96 96.15 98.99 2.84
CPLFW 92.72 92.87 98.25 5.38



4.2 Critical Evaluation

The registration server operates as a Trusted Third-
Party (TTP), managing temporary and revocable bio-
metric records. To ensure its trustworthiness, it is
essential that our approach is both open-source and
transparent. This transparency facilitates analysis, en-
hancement, and the detection of vulnerabilities.

The advantage of this approach lies in the fact that
the database does not store biometric data. As a re-
sult, it is not possible to recognize users unless they
can be linked to the parameters username, user key,
or biometric key. To mitigate this risk, it is essen-
tial to adopt best practices by generating random pa-
rameters for these attributes. This way, identifying
clients through the database becomes challenging or
even impossible without additional sources of infor-
mation, such as network traffic captures or system
logs.

Brute force attacks on servers can be mitigated
through the implementation of Completely Auto-
mated Public Turing test to tell Computers and Hu-
mans Apart (CAPTCHA), which are designed to dif-
ferentiate between human users and automated algo-
rithms. We recommend hCaptcha2 due to its strong
emphasis on user privacy, which can be particularly
advantageous for companies that prioritize compli-
ance with data protection regulations such as the Gen-
eral Data Protection Regulation (GDPR). Addition-
ally, protection against Distributed Denial-of-Service
(DDoS) attacks is enhanced by leveraging an external
service, thereby preventing the extensive exploitation
of computational resources associated with FRS.

In FRS, it is crucial to achieve a balance between
the accuracy of authentication and the protection of
biometric data privacy. A drawback of the current
approach is that the authentication server is required
to compute the biometric features of the client, re-
ferred to as BT1 and BT2. This necessity creates a
compromise between the client’s privacy and the ap-
plication’s functionality, facilitating client authentica-
tion through facial recognition. The complexities of
this authentication process revolve around the server’s
ability to determine whether delta and BT2 are de-
rived from the same client data represented by BT1.
This verification relies on the assumption that BT1 and
BT2 exhibit similar statistical distributions and that
they diverge from one another by a defined parameter,
delta. As a result, the system aims to achieve reliable
authentication while simultaneously safeguarding the
privacy of the biometric data stored in its persistent
database.

To successfully impersonate a user, an attacker

2https://www.hcaptcha.com

would need to obtain the user’s registration photo-
graph F1, a second validation photograph F2, the
username, the opt key, the biometric key, and the
corresponding CNN model to generate BT1, BT2,
delta, and BT P2. This could be achievable if the at-
tacker gains unauthorized access to the client’s de-
vice or the authentication server. A Man-in-the-
Middle (MITM) position would only be feasible if the
communications were not conducted securely, for in-
stance, without the use of Transport Layer Security.

The proposed solution has several drawbacks that
suggest areas for future research. First, the registra-
tion photo is stored on the client side, meaning that
losing it would necessitate a new photo submission
for biometric registration. Second, compliance with
guidelines such as the ICAO standard is crucial to en-
sure the photo meets biometric requirements. Third,
both F1 and F2 are static objects; if an attacker ac-
cesses the client device, these could be exploited for
spoofing.

As a future direction, the solution could incor-
porate Active Liveness Detection, utilizing dynamic
video and audio inputs to enhance security against
spoofing. Lastly, refining the registration process to
better align with ICAO standards could improve reli-
ability.

5 CONCLUSIONS

In conclusion, our approach to MFA for facial recog-
nition technology prioritizes the privacy of biomet-
ric data by not storing biometric data. Instead, it
employs cryptographic algorithms to generate signa-
tures (proofs) confirming the user’s identity. The re-
sults indicate excellent performance in face recogni-
tion tasks across various benchmark datasets, demon-
strating high accuracy and AUC values, particularly
on the LFW dataset. The TAR at different FAR lev-
els further underscores the reliability of the method,
placing it on par with state-of-the-art solutions, albeit
with slight variances in performance metrics.

Overall, our approach excels by integrating mul-
tiple techniques to enhance precision and efficacy
of FRS, paving the way for advanced applications
across numerous domains. Notably, it avoids the stor-
age of biometric data and its representations within
a database; the generated proofs do not contain any
biometric information and can be revoked or recre-
ated by simply changing the key. Additionally, the
use of standard algorithms and hash functions facili-
tates the creation of robust proofs, leveraging flexibil-
ity in combination with other CNN and cryptographic
algorithms.



Nevertheless, certain limitations persist, as secu-
rity depends on the careful validation of data submit-
ted by the client. Future work could focus on incorpo-
rating methods for image assessment and live detec-
tion techniques to further enhance the security of our
approach.
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