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Abstract. In this paper we analyse and compare two methods for the computation of the total 3D velocity along the
optical axis of a stereo system, using the rigid body motion model. One of the methods uses the temporal and spatial
derivatives of the depth information and the image flows and the other one uses the depth information as well as
the differential flow between left and right images. Both methods are compared in terms of uncertainty propagation.
The problems of generating ground truth data as well as the problems related to depth resolution are also discussed.
Finally the results of our experiments to compute the 3D velocity in the optical axis using synthetic and real images
are reported.

1 Introduction

Vision is a sensor modality with several advantages for autonomous robots despite the difficulties in employing
it. In particular vision can be used to estimate the egomotion of a robot, which is extremely important for
the navigation system.

For egomotion estimation several methods have been proposed in the last decades, some using monocular
sequences of images and others using stereo sequences. We consider calibrated cameras [2]. We are specially
interested in those methods that can be easily used in real-time applications. We are also interested in
methods that use sequences of stereo images and depth fields.

One of the methods, that was proposed by Harville et al. [4], uses a linear depth change constraint
equation (DCCE), that is, assumes a model for the change of the depth fields. If depth measurements are
available this method can be applied to sequences of monocular images, using the temporal and spatial
derivatives of the depth. Otherwise sequences of stereo images can be used to estimate both depth and
egomotion.

The second method was proposed by Waxman and Duncan [7], and uses stereo sequences to recover the
3D motion parameters. This method, as we shall see, uses the differential image flow between left and right
images to compute the motion parameters.

Our goal is to compare those methods to recover the total tridimensional velocity in the optical axis
using a stereo system. This velocity estimate is relevant for the computation of time to collision [3], which
is useful for the robot navigation.

We developed the noise propagation equations of both methods considering independent Gaussian white
noise for the inputs.

To test and compare those methods we used synthetic images and also real images. To estimate the image
flow fields we used both ground truth velocities and the Lucas-Kanade algorithm][1].

In the next section both methods will be described. In section 3 the uncertainty propagation model is
derived. Section 4 will discuss problems generating ground truth data as well as problems associated to
depth resolution. In section 5 we present some results of tests made with synthetic images and with real
sequences of images, including translational and rotational movements. In section 6 we discuss the results
and the conclusions and future enhancements are presented.
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2 Motion estimation

The recovery of the total 3D velocity along the optical axis is our goal. Before the description of the methods
used to compute the velocity, we shall first introduce the notations and geometry used throughout this paper.

In this paper we will designate a 3D point in space by its coordinate vector P = [X Y Z]T and the world
coordinate system will be coincident with the cyclopean coordinate system, that is, centered in the middle
point between the optical centers of both cameras. The origins of the local camera coordinate systems are
the optical centers at a distance f (focal length) of the image plane. Both cameras are parallel to each other
separated by the baseline b. The flow induced in the image planes is represented by v! = (vl, v;) for the left
image plane and by v" = (v;,vy) for the right image plane.

The figure 1 shows the geometry of the stereo vision system and the world coordinate system.
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Fig. 1. World and stereo coordinate system

The model used for the 3D total velocity of a point P in space is the rigid body motion. Let 7 be the
total 3D velocity of the point P. As any rigid body motion can be expressed by a translation component

given by ? = [tx ty tz]T and a rotational component given by 2 = [2x 2y 27]T we have the 3D velocity
givenby72?+ﬁxP.
Computing the components of the total 3D velocity ?, we obtain the following expression:

tx + 2y Z — 27Y Vyx X
V= |ty + 22X —0xZ| = |W| = |V (1)
tz +02xY — v X Va VA

We are interested in estimating the third component of 7, that is Vz which is the total 3D velocity along
the optical axis.

2.1 Depth Constraint

The depth change of a point or rigid body over time is directly related to its velocity in the 3D space. We
can use this principle to relate the velocity in the optical axis with depth.

For simplicity we will derive the linear depth change constraint equation relative to the left image coor-
dinate system.

Consider a point P = [X Y Z]T, which projects in a point with coordinates (z,y) in the image plane at
a time ¢ and in point (z + v,y + v,) at a time ¢ + 1. So the depth at instant ¢ + 1 should be the depth at
the instant ¢ plus the amount of space that the point moved along the optical axis - V. This relationship is
given by the following expression, the linear Depth Change Constraint Equation - DCCE:

Z(z,y,t) + Vz(z,y,t) = Z (z + vz (2,9, 1),y + vy(z,y,t),t + 1) (2)



where Z(z,y,t) is the depth of the point P at a given time ¢ and V. (z,y,t) is the total 3D velocity in the
optical axis. v, (x,y,t) and v, (z,y,t) are the components of the optical flow.
The first step is to approximate the equation 2 by a first-order Taylor series expansion. Then we obtain:

Z(z,y,t) + Vz(2,y,t) = Z(2,y,t)+
+Zx(w7y: t)’l)m (Q?, yvt) + Zy(m: yat)vy(way: t) + Zt(m: yvt) (3)

with Z,(z,y,t) and Z,(z,y,t) the depth gradients with respect to the bidimensional spatial coordinates x
and y and Z;(z,y,t) its temporal gradient.
Our DCCE equation then reduces to

VZ(muyvt) = Zx(xuyvt)vx(muyvt) + Zy(way:t)vy(wvy:t) + Zt(m:yat) (4)

In the last equation we relate the depth gradients over time and space with the depth assuming that the
image flow is given.

As mentioned by Harville et al.[4], often motion recovered with depth information is more accurate than
that recovered from the intensity images because it is less sensitive to illumination and shading problems.

2.2 Using Binocular Image Flows

In this subsection we will explain the second method to compute the V. It is based on the differences
between the flows induced by the movement of a point in a stereo pair of images [7]. The parallel stereo
system is again used and is considered to move rigidly with the scene.

Consider again a point P = [X YV T|]7T that projects in both image planes as shown in the figure 1. The
optical centers of both cameras dist b (baseline) from each other and the z— coordinate of P is 2! in the left
image and z" in the right image.

Point P in figure 1, its projection in each image plane ((z;,y;) and (z,,y,)) and the optical centers (O,
and O,) define two similar triangles, so that we can write the relationship:

Z Z —
3= b_(zi_f (5)
zb —ar)
which can be simplified to

bf
Z 1) = ————= 6
@0nt) = s 9
Now, if we compute the temporal derivative of the equation 6, we obtain:
bf ! 7Z?
Vz = NCETaE x (v —vy) = —Wﬂvx (7)
We now have the relation between the total 3D velocity in the optical axis (Vz) and the binocular image

flow (AV}).
In the next section we will derive the uncertainty propagation model for both the expressions obtained
for Vz.

3 Uncertainty Propagation

It is very important to analyse the properties of both expressions obtained for the total 3D velocity along
the optical axis in terms of uncertainty propagation. As we shall see it is possible to determine the critical
independent variables that in presence of uncertainties affect the recovery of motion parameters.

The first step is to define the independent variables for each expression:

Vz
{Vz (8)

where we assumed that the geometry parameters where known, that is, the baseline and the focal length.
So any noise in the values of the depth data, their temporal and spatial derivatives and in the binocular
image flows will affect the computation of V.

Ly + v, 2y + 'UyZy = f(ZvayaZta'Uac;'Uy)
2
—f—fAvx =f (Z vl vr)

s Y Vo

Let ? be the vector to be estimated and the vector with the independent variables ?
For both calculations we assume that all variables are affected by Gaussian random white noise, denoted
by 0%, where i denotes the variable.



3.1 Depth constraint

For the first expression we have F= [Vz] and S = (Zs Zy Zy v, vy]T
We also assume that the noise in the variables is independent so the covariance matrix for this input

signal ? is given by:

(9)

o 2Zt Z
0 O-'UE Va 9
. o2 .
We can define the Jacobian matrix that maps vector ? to the total 3D velocity in the optical axis ?,
which is given by 8?/8?.
To compute the covariance matrix of the function vector, a first order approximation can be used:

Vg

oF  oF vy
Flzﬁ/llﬁz[vx vy 1 Zy Zy] Ay Zlm (10)

Zy

The resulting covariance matrix is a 1 x 1 matrix given by the expression:

_ 2 2 2 2 2 2 2 2 2
=07, 7,0, +07,2,0,+ 02,2, %0y, %: %0, 4, %5 (11)

As we can see the perturbation in the computation of V; depends on the square of all the variables except
the temporal derivative of depth.

3.2 Binocular flow

Using a similar reasoning we have for the second method the following:

S = {vzé] (12)
L7 ]

A= 0 o3y O (13)
[ 0 0 a?)gvg J
And the Jacobian matrix is then:
8? Vg 8Vy BV _ 2 o
o = |97 5 5| = [Fan -5 F (14)

The covariance matrix of the function vector is then:

oF  0oF 422 5 VA zt
I = ﬁAQﬁ = W (Avx) Ozz + W%;v; + (bf)2 Turor (15)

which reduces to the simpler form:

4
I = 4VZO'QZZ + Z—2 (0',[2)1 ol + 0-12)7‘1)7‘) (16)

Both expressions obtained for the covariance of the total 3D velocity along the optical axis can be used
to analyse the uncertainty propagation properties of both methods. Both of them are sensitive to noise in
the depth data but we can expect that the second method is highly sensitive to the uncertainty in the image
flows. These results are supported by the experiments, as we shall see.



4 Experimental conditions

Before describing the experimental results it is important to address some practical questions. In the following
subsections we will discuss the problem of obtaining ground truth data, and the problem of depth resolution.

4.1 Ground truth

To test any method ground truth information to compare with is essential. So it is really important to have
the ground truth values of what is to be computed and those ground truth values should be as accurate as
possible.

In this study we started to test the Vz computed using synthetic data in a world where the left and right
images were known as well as the ground truth velocities and depth fields. No problems existed with the
computation of the ground truth values to compare with.

Regarding the experiments with real images, what was available were the intensity images (left and

right) and the rigid body motion parameters of the stereo system: ? and B To recover the depth fields we
used the SVS (Small Vision System [5]) software that gives us the disparity for each point in the intensity
images with a resolution of 1/4 of pixel. With the disparity images we calculate the depth using the simple
expression Z = bf/d where d is the disparity. For the image flows we used a very-well known algorithm -
the Lucas-Kanade algorithm. There are obviously several sources of noise.

For that reason we want to calculate the ground truth values of the V; as well as of the image flow true
values.

Let us start with the image flow. Regarding equation 1 we have the total 3D velocity of a point P in
space in cyclopean coordinates.

Using now the perspective projection model (x = fX/Z, y = fY/Z) to project the total 3D velocity in
the image plane, we have:

X _ XL)
y (7)

Replacing equation 1 in equation 17 we obtain the image flow for the cyclopean coordinate system:

NRSENT=R

Umz{f%—l’tjz}+{—%ﬂx+(f+§) Qy—yQZ}
oy ={f% -y} +{- (F+ %) 2x + 0y - 202}

From the expression of the image flow one concludes that it is possible to separate the translational and
rotational terms of the flows. As it is well known the rotational terms of the flow do not depend directly on
depth but only on the image coordinates.

But the translational part depends on the depth and if ground truth image flows are to be computed
the available depth information has to be considered exact which results in introducing error in the ground
truth values.

To compute the image flow equations for left and right cameras we use (z;, y;) and (2, y,) instead of (z,y)
and the motion parameters for each camera that are related with the cyclopean system motion parameters
by the following equation:

(18)
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(19)
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For the right image flow, the image coordinates (z,,y,) are given by y, = y; (because the cameras are
parallel to each other) and z, = z; — d so we use again the depth (disparity) field to calculate the right
image flow.

Since the depth/disparity images are affected by noise, the ground truth velocities computed will be
affected by that noise. For the V; values the conditions are similar. The expressionis V; =tz + 2xY — 2y X.
If the motion has only a translational component the value for V is only ¢z and since that value is known
there is no uncertainty in the ground truth value. But when there is rotational component the computation
of the ground truth is more difficult. To overcome this difficulty X and Y can be computed indirectly by



using the inverse perspective projection model (together with the depth values, therefore introducing again
some error in the ground truth values).

The ground truth values for V; can also be computed by using the image flows and the exact equation
of the second method V; = —Z2Av, /bf whose ground truth values are also corrupted by noise and in that
situation what is indeed being compared are the velocities and not V.

Therefore for rotational motion the exact structure of the world has to be known to obtain the true
values of V, which is difficult. For the moment we considered the depth data computed by SVS as being
unaffected by error.

4.2 Resolution of the Depth Data

The software used to obtain the disparity fields has a resolution of 1/4 of pixel. So, some changes in the real
depth of a point do not produce any change in the disparity and since depth is inversely proportional to the
disparity its value is calculated with decreasing resolution as the value of the depth itself increases.

Let Ad be the minimum change in disparity. Then for the minimum change in depth to produce change
in disparity we have:

bf Ad  bf
d d+Ad d
So, let us consider bf = 468, Ad = 0.25 and the pixel width pw = 0.012. All values are in mm.
In that particular case we have, for example:

(20)

—d=1— AZ = -7800 mm

d=5— AZ = -371.43 mm
d=10 — AZ = -95.12 mm
—d=20 — AZ = -24.07 mm

It can be seen that the low resolution in disparity/depth data can produce large errors with increasing
distance to the optical center of the camera.

5 Experiments

Two groups of experimental tests were done. The first group of tests used synthetic images, therefore enabling
the use of ground truth values for all the parameters. The second group of experiments was done with real
images obtained with known motion parameters.

5.1 Synthetic images

To generate the synthetic images a virtual world was designed. This virtual world consisted on a ground, a
front wall, left and right walls and two objects in the middle of the scenario. Using a stereo pair of virtual
cameras every point was projected in the image planes. Their disparities and image flows were also computed.
Figure 2 shows an example of the intensity and disparity images obtained.

(a) Left image (b) Disparity (c) Right image

Fig. 2. Intensity images and disparity field for synthetic world



The stereo system motion is made up of sequences with only translational velocity along the optical
axis and also combined with translational components along the other two axis and sections with rotational
motion over the vertical axis and the horizontal axis (pan-and-tilt motion). There are also some sequences
with combined translational and rotational motion.

Each sequence measurements were also computed considering that the stereo system moved not one image
forward but 5 images (parameter STEP) in order to see the effect of having bigger motion parameters.

To approximate the experiments with synthetic images with those with real images we computed both
methods when the depth fields are exactly the ground truth values and also when we round off the depth
data to the closest resolution step in order to see the effect of the limited resolution in depth fields (discussed
in subsection 4.2).

The results obtained were very close to the ground truth values and are shown below. Three statistical
measurements were computed: the relative error of the mean value of V, the mean value of the relative
error (actually the mean of absolute value of the relative error) and the standard deviation of the relative
error. All those measurements were computed in all points of the image where there were sufficient data to
compute V. The first measurement - the relative error of the mean value of V; will be plotted in a graph
for each sequence showing the value calculated in each frame with STEP equal to 1 and 5 and also rounding
off and not the depth data.

The results of three sequences are reported: (A) only translation over the optical axis; (B) only rotation
over the vertical axis; (C) translation over all axis and rotation over vertical and horizontal axis. Other
sequences were tested but for lack of space we only report those three. Figure 3 show the mean value of Vy
for those sequences in all the variations.
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Fig. 3. Error of the mean value of Vz in synthetic images (in percentage): (a) sequence A (b) sequence B (c)
sequence C (d) sequence A with rounded off depths (e) sequence B with rounded off depths (f) sequence C
with rounded off depths.



The other two measurements are shown in table 1. Note that all values are in percentage.

Seq.|Frame|DCCE|DCCE} Awv, Av, JDCCE|DCCE Av, Av, [|DCCE}J Av, JDCCE Avy

(a) | (a) (a) (a) (b) | (b) (b) (b) () () (d | (d
ME | SD [ ME | SD [ ME | SD | ME SO [ ME [ ME | ME [ ME

20 79.0 | 65.0 12.2 5.5 150.3 | 93.2 12.3 7.0 28.2 12.2 85.7 12.3
30 51.7 | 38.9 8.4 1.6 122.5 | 63.5 8.1 3.0 26.6 8.4 85.2 8.1
40 58.1 | 45.0 6.8 0.0 130.5 | 70.5 5.3 0.2 29.0 6.8 168.0 5.3
50 43.2 | 31.0 6.2 0.0 112.2 | 37.4 7.6 0.2 28.5 6.2 82.3 7.6

20 | 546.4 | 856.6 23.9 19.0 877.0 |1442.1 24.8 18.9 632.1 23.9 927.0 § 248
30 | 723.7 (1195.2Q 24.1 19.4 899.1 |1487.6 24.4 19.3 983.1 241 J1193.3) 244
40 | 630.9 |1009.8§ 23.7 19.2 761.1 1121798 23.8 19.2 748.2 23.7 892.9 § 23.8
50 | 419.6 | 597.1 24.0 19.3 501.4 | 731.9 24.1 19.3 475.7 24.0 557.2 | 24.1
20 [123.9] 61.3 18.1 16.9 145.3 | 74.5 19.3 18.2 121.9 18.1 138.5 | 19.3
30 | 118.3 | 53.4 17.8 16.4 140.1 | 66.0 19.7 18.8 121.1 17.8 139.1 | 19.7
40 | 121.1 | 57.9 17.2 15.6 142.3 | 70.8 19.0 17.7 119.2 17.2 138.5 | 19.0
50 |120.1| 56.7 17.4 15.8 137.0 | 70.1 19.3 18.2 118.5 17.4 135.7 | 19.3

QO Q| Q| | | | I »=| 3| =| =

Table 1. Mean relative error (ME) and its standard deviation (SD) in synthetic images: (a) STEP=1 without
rounding off depth; (b) STEP=1 rounding off depth; (¢) STEP=5 without rounding off depth; (d) STEP=5
rounding off depth. All values in percentage.

In the next subsection we report the results using real image sequences and in the next section we discuss
the results.

5.2 Real images

To analyse the performance of both methods with real images a pair of cameras with 3.6 mm focal length and
a baseline of 130 mm was used. The pixelwidth is 12.5 um. The stereo head was attached to a manipulator
with high precision allowing complex paths to be performed. In this paper the results presented correspond
to sequences of images with translational motion, rotational and both types of motion. Figure 4 shows a pair
of intensity images and the corresponding disparity image.

(a) Left image (b) Disparity (c) Right image

Fig. 4. Intensity images and disparity field

For the computation of the several input variables needed to the methods, we used well known techniques.
The temporal and spatial gradients of depth were obtained by difference equations and the image flows were
obtained by the Lucas-Kanade algorithm.

In figure 5 we show the error of the mean value of V; like we did in the previous subsection. Four
sequences are presented: (B) with only rotational motion along vertical axis; (H) with translational motion
over the optical axis; (L) with translation in both the optical and vertical axis and (O) with both rotation in
the vertical axis and translation in the optical and vertical axis. For each sequence were computed the three
measures explained in the previous subsection for Lucas-Kanade velocities and for ground truth velocities
calculated by equation 18.

In table 2 we report the other two measurements for real image sequences. In the next section we interpret
the results and make the conclusions of our work.



Percentage of error of mean value of Vz - Real Sequence B Percentage of erfor of mean value of Vz - Real Sequence H
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Fig.5. Error of the mean value of V in real images (in percentage): (a) sequence B ;(b) sequence H ;(c)
sequence L ;(d) sequence O. In sequence B the values for binocular flow method with Lucas-Kanade velocities
and DCCE with ground truth velocities were truncated because they were very high.

6 Discussion and Conclusions

In this paper we analysed and compared two methods that compute the total 3D velocity along the optical
axis (Vz) using a stereo system. Both methods use image flows and depth fields. We also derived the
uncertainty propagation models for both methods and conclude that the second method (based on the
differential image flow) is much more unstable in the presence of noise than the first one.

We performed several tests with both synthetic images and real images for sequences with only translation,
only rotation and both motions. For translation sequences the results were very good for synthetic images
for both methods and good for real images. In that case the DCCE method seems to be better in real images
and worst in synthetic images. We can explain this by noting that in synthetic images the velocities are very
close to the real ones and so the binocular flow method has few sources of noise. When we use velocities
affected by noise the binocular flow method seems to be less accurate.

When we analyse rotation sequences the results are completely different. Both in synthetic images and
real images these methods give us bad results for the V. The error is really very high for real images. The
DCCE method seems to be worst in that case even when we use ground truth velocities. The binocular flow
method yields very bad results for Lucas-Kanade velocities and reasonable values with ground truth flow.

For complex motion with translation and rotation motion, the results are close to those obtained in only
translation sequences, specially when the rotation parameters are not as significant as the translation ones.
Both methods present similar results. In the absence of noise in the flow the binocular flow method seems
to be more accurate and less sensitive to the depth field but when the noise is not negligible the DCCE
methods presents better results.

In real images we observed an interesting fact. The mean value of the Vy is reasonably closer to the
ground truth values in several sequences but the mean relative error and the standard deviation are very
high, specially in the second method (as was expected). This is relevant fact since it suggests that when



DCCE DCCE Avy Avg DCCE DCCE Avy Avg Observations
(a) (a) (a) (a) (b) (b) (b) (b)

Frame ME SD ME SD ME SD ME SD
B| 16 714.3 685.9 3438.2 | 2415.5 2720.0 4363.3 32.8 32.2 2y = —7/360 rad/frame
B| 20 668.3 657.2 5339.8 | 3516.6 2591.8 4149.4 33.8 33.0 idem
H 7 66.9 54.0 220.1 184.3 82.5 65.2 2.7 2.9 tz = —20 mm/frame
H| 12 68.0 57.6 228.5 187.8 88.1 75.6 2.8 3.1 idem
L 4 125.8 106.7 327.3 | 251.9 167.5 145.4 3.3 4.0 ty =10, tz = —20 mm/frame
L 7 117.7 96.7 269.1 215.9 156.2 128.8 2.3 2.2 idem
O 11 498.2 632.2 3676.1 | 4482.9 1900.9 2992.1 23.0 32.4 2y =7/900, ty =5,tz = -5
O 14 461.0 571.0 4028.3 | 4614.8 1184.6 1721.8 28.1 41.0 idem

Table 2. Mean relative error (ME) and its standard deviation (SD) in real images: (a) Lucas-Kanade velocities;
(b) ground truth velocities. All values in percentage.

computing V, a high number of measurements has to be done, in order to allow the cancellation of the error
when all points in the image are used.

Another measurements made are when we multiply by 5 the motion, that is, we analyse each 5 frames
instead of the one and the next. We noted that the binocular flow method is relatively insensitive to this
change but the DCCE method increases the accuracy in both translation and rotation sequences. This can
be explained by the fact that the DCCE method depends on the gradients of depth fields and as the depth
change increases we expect that the limited resolution in depth become less important (see subsection 4.2).

For seeing the impact of the depth resolution in both methods, we rounded off the depth value for
the closest step in synthetic images so introducing quantization error in the depth data. We saw that the
binocular flow method is almost insensitive to this change and that the DCCE method deteriorates its results
because the depth gradients change radically.

Concluding, the binocular flow method seems to be better when synthetic images are used and so the
noise in the image velocities is little or when real images are used and the image velocity is accurate and
the DCCE method reveals to be better in real images with inaccurate image velocities. Both methods have
bad results with rotation motion and the DCCE method is more sensitive to the resolution in depth data.
Increasing the translation parameters tends to minimize this effect.

We expect in the future to use those methods to compute the complete motion parameters and study the
critical ones and those that we can acquire with reasonable accuracy. By our experience with V; we expect
that rotation parameters are less accurate.
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