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tri
al Engineering{Polo IIUniversity of Coimbra3030 CoimbraPortugalAbstra
t. In this paper we analyse and 
ompare two methods for the 
omputation of the total 3D velo
ity along theopti
al axis of a stereo system, using the rigid body motion model. One of the methods uses the temporal and spatialderivatives of the depth information and the image 
ows and the other one uses the depth information as well asthe di�erential 
ow between left and right images. Both methods are 
ompared in terms of un
ertainty propagation.The problems of generating ground truth data as well as the problems related to depth resolution are also dis
ussed.Finally the results of our experiments to 
ompute the 3D velo
ity in the opti
al axis using syntheti
 and real imagesare reported.1 Introdu
tionVision is a sensor modality with several advantages for autonomous robots despite the diÆ
ulties in employingit. In parti
ular vision 
an be used to estimate the egomotion of a robot, whi
h is extremely important forthe navigation system.For egomotion estimation several methods have been proposed in the last de
ades, some using mono
ularsequen
es of images and others using stereo sequen
es. We 
onsider 
alibrated 
ameras [2℄. We are spe
iallyinterested in those methods that 
an be easily used in real-time appli
ations. We are also interested inmethods that use sequen
es of stereo images and depth �elds.One of the methods, that was proposed by Harville et al. [4℄, uses a linear depth 
hange 
onstraintequation (DCCE), that is, assumes a model for the 
hange of the depth �elds. If depth measurements areavailable this method 
an be applied to sequen
es of mono
ular images, using the temporal and spatialderivatives of the depth. Otherwise sequen
es of stereo images 
an be used to estimate both depth andegomotion.The se
ond method was proposed by Waxman and Dun
an [7℄, and uses stereo sequen
es to re
over the3D motion parameters. This method, as we shall see, uses the di�erential image 
ow between left and rightimages to 
ompute the motion parameters.Our goal is to 
ompare those methods to re
over the total tridimensional velo
ity in the opti
al axisusing a stereo system. This velo
ity estimate is relevant for the 
omputation of time to 
ollision [3℄, whi
his useful for the robot navigation.We developed the noise propagation equations of both methods 
onsidering independent Gaussian whitenoise for the inputs.To test and 
ompare those methods we used syntheti
 images and also real images. To estimate the image
ow �elds we used both ground truth velo
ities and the Lu
as-Kanade algorithm[1℄.In the next se
tion both methods will be des
ribed. In se
tion 3 the un
ertainty propagation model isderived. Se
tion 4 will dis
uss problems generating ground truth data as well as problems asso
iated todepth resolution. In se
tion 5 we present some results of tests made with syntheti
 images and with realsequen
es of images, in
luding translational and rotational movements. In se
tion 6 we dis
uss the resultsand the 
on
lusions and future enhan
ements are presented.? (nunogon,helder)�isr.u
.pt



2 Motion estimationThe re
overy of the total 3D velo
ity along the opti
al axis is our goal. Before the des
ription of the methodsused to 
ompute the velo
ity, we shall �rst introdu
e the notations and geometry used throughout this paper.In this paper we will designate a 3D point in spa
e by its 
oordinate ve
tor P = [X Y Z℄T and the world
oordinate system will be 
oin
ident with the 
y
lopean 
oordinate system, that is, 
entered in the middlepoint between the opti
al 
enters of both 
ameras. The origins of the lo
al 
amera 
oordinate systems arethe opti
al 
enters at a distan
e f (fo
al length) of the image plane. Both 
ameras are parallel to ea
h otherseparated by the baseline b. The 
ow indu
ed in the image planes is represented by vl = (vlx; vly) for the leftimage plane and by vr = (vrx; vry) for the right image plane.The �gure 1 shows the geometry of the stereo vision system and the world 
oordinate system.
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Fig. 1. World and stereo 
oordinate systemThe model used for the 3D total velo
ity of a point P in spa
e is the rigid body motion. Let �!V be thetotal 3D velo
ity of the point P. As any rigid body motion 
an be expressed by a translation 
omponentgiven by �!t = [tX tY tZ ℄T and a rotational 
omponent given by �!
 = [
X 
Y 
Z ℄T we have the 3D velo
itygiven by �!V = �!t +�!
 �P.Computing the 
omponents of the total 3D velo
ity �!V , we obtain the following expression:�!V = 24tX +
Y Z �
ZYtY +
ZX �
XZtZ +
XY �
YX35 = 24VXVYVZ35 = 24 _X_Y_Z35 (1)We are interested in estimating the third 
omponent of �!V , that is VZ whi
h is the total 3D velo
ity alongthe opti
al axis.2.1 Depth ConstraintThe depth 
hange of a point or rigid body over time is dire
tly related to its velo
ity in the 3D spa
e. We
an use this prin
iple to relate the velo
ity in the opti
al axis with depth.For simpli
ity we will derive the linear depth 
hange 
onstraint equation relative to the left image 
oor-dinate system.Consider a point P = [X Y Z℄T , whi
h proje
ts in a point with 
oordinates (x; y) in the image plane ata time t and in point (x + vx; y + vy) at a time t + 1. So the depth at instant t+ 1 should be the depth atthe instant t plus the amount of spa
e that the point moved along the opti
al axis - VZ . This relationship isgiven by the following expression, the linear Depth Change Constraint Equation - DCCE:Z(x; y; t) + VZ(x; y; t) = Z (x+ vx(x; y; t); y + vy(x; y; t); t+ 1) (2)



where Z(x; y; t) is the depth of the point P at a given time t and Vz(x; y; t) is the total 3D velo
ity in theopti
al axis. vx(x; y; t) and vy(x; y; t) are the 
omponents of the opti
al 
ow.The �rst step is to approximate the equation 2 by a �rst-order Taylor series expansion. Then we obtain:Z(x; y; t) + VZ(x; y; t) = Z(x; y; t)++Zx(x; y; t)vx(x; y; t) + Zy(x; y; t)vy(x; y; t) + Zt(x; y; t) (3)with Zx(x; y; t) and Zy(x; y; t) the depth gradients with respe
t to the bidimensional spatial 
oordinates xand y and Zt(x; y; t) its temporal gradient.Our DCCE equation then redu
es toVZ(x; y; t) = Zx(x; y; t)vx(x; y; t) + Zy(x; y; t)vy(x; y; t) + Zt(x; y; t) (4)In the last equation we relate the depth gradients over time and spa
e with the depth assuming that theimage 
ow is given.As mentioned by Harville et al.[4℄, often motion re
overed with depth information is more a

urate thanthat re
overed from the intensity images be
ause it is less sensitive to illumination and shading problems.2.2 Using Bino
ular Image FlowsIn this subse
tion we will explain the se
ond method to 
ompute the VZ . It is based on the di�eren
esbetween the 
ows indu
ed by the movement of a point in a stereo pair of images [7℄. The parallel stereosystem is again used and is 
onsidered to move rigidly with the s
ene.Consider again a point P = [X Y T ℄T that proje
ts in both image planes as shown in the �gure 1. Theopti
al 
enters of both 
ameras dist b (baseline) from ea
h other and the x� 
oordinate of P is xl in the leftimage and xr in the right image.Point P in �gure 1, its proje
tion in ea
h image plane ((xl; yl) and (xr ; yr)) and the opti
al 
enters (Oland Or) de�ne two similar triangles, so that we 
an write the relationship:Zb = Z � fb� (xl � xr) (5)whi
h 
an be simpli�ed to Z(x; y; t) = bf(xl � xr) (6)Now, if we 
ompute the temporal derivative of the equation 6, we obtain:VZ = � bf(xl � xr)2 � (vlx � vrx) = �Z2bf �vx (7)We now have the relation between the total 3D velo
ity in the opti
al axis (VZ) and the bino
ular image
ow (�Vx).In the next se
tion we will derive the un
ertainty propagation model for both the expressions obtainedfor VZ .3 Un
ertainty PropagationIt is very important to analyse the properties of both expressions obtained for the total 3D velo
ity alongthe opti
al axis in terms of un
ertainty propagation. As we shall see it is possible to determine the 
riti
alindependent variables that in presen
e of un
ertainties a�e
t the re
overy of motion parameters.The �rst step is to de�ne the independent variables for ea
h expression:(VZ = Zt + vxZx + vyZy = f (Zx; Zy; Zt; vx; vy)VZ = �Z2bf �vx = f �Z; vlx; vrx� (8)where we assumed that the geometry parameters where known, that is, the baseline and the fo
al length.So any noise in the values of the depth data, their temporal and spatial derivatives and in the bino
ularimage 
ows will a�e
t the 
omputation of VZ .Let �!F be the ve
tor to be estimated and the ve
tor with the independent variables �!S .For both 
al
ulations we assume that all variables are a�e
ted by Gaussian random white noise, denotedby �2i , where i denotes the variable.



3.1 Depth 
onstraintFor the �rst expression we have �!F = [VZ ℄ and �!S = [Zx Zy Zt vx vy℄T .We also assume that the noise in the variables is independent so the 
ovarian
e matrix for this inputsignal �!S is given by: �1 = 2666664�2ZxZx � � � 0�2ZyZy... �2ZtZt ...�2vxvx0 � � � �2vyvy
3777775 (9)We 
an de�ne the Ja
obian matrix that maps ve
tor �!S to the total 3D velo
ity in the opti
al axis �!F ,whi
h is given by ��!F =��!S .To 
ompute the 
ovarian
e matrix of the fun
tion ve
tor, a �rst order approximation 
an be used:�1 = ��!F��!S �1 ��!F��!S = �vx vy 1 Zx Zy ��1 26664 vxvy1ZxZy 37775 (10)The resulting 
ovarian
e matrix is a 1� 1 matrix given by the expression:�1 = �2ZxZxv2x + �2ZyZyv2y + �2ZtZt + �2vxvxZ2x + �2vyvyZ2x (11)As we 
an see the perturbation in the 
omputation of VZ depends on the square of all the variables ex
eptthe temporal derivative of depth.3.2 Bino
ular 
owUsing a similar reasoning we have for the se
ond method the following:�!S = 24 Zvlxvrx35 (12)�2 = 24�2ZZ 0 00 �2vlxvlx 00 0 �2vrxvrx 35 (13)And the Ja
obian matrix is then:��!F��!S = h �VZ�Z �VZ�vlx �VZ�vrx i = h �2Zbf �vx �Z2bf Z2bf i (14)The 
ovarian
e matrix of the fun
tion ve
tor is then:�2 = ��!F��!S �2 ��!F��!S = 4Z2(bf)2 (�vx)2 �2ZZ + Z4(bf)2�2vlxvlx + Z4(bf)2�2vrxvrx (15)whi
h redu
es to the simpler form:�2 = 4VZ�2ZZ + Z4(bf)2 ��2vlxvlx + �2vrxvrx� (16)Both expressions obtained for the 
ovarian
e of the total 3D velo
ity along the opti
al axis 
an be usedto analyse the un
ertainty propagation properties of both methods. Both of them are sensitive to noise inthe depth data but we 
an expe
t that the se
ond method is highly sensitive to the un
ertainty in the image
ows. These results are supported by the experiments, as we shall see.



4 Experimental 
onditionsBefore des
ribing the experimental results it is important to address some pra
ti
al questions. In the followingsubse
tions we will dis
uss the problem of obtaining ground truth data, and the problem of depth resolution.4.1 Ground truthTo test any method ground truth information to 
ompare with is essential. So it is really important to havethe ground truth values of what is to be 
omputed and those ground truth values should be as a

urate aspossible.In this study we started to test the VZ 
omputed using syntheti
 data in a world where the left and rightimages were known as well as the ground truth velo
ities and depth �elds. No problems existed with the
omputation of the ground truth values to 
ompare with.Regarding the experiments with real images, what was available were the intensity images (left andright) and the rigid body motion parameters of the stereo system: �!t and �!
 . To re
over the depth �elds weused the SVS (Small Vision System [5℄) software that gives us the disparity for ea
h point in the intensityimages with a resolution of 1=4 of pixel. With the disparity images we 
al
ulate the depth using the simpleexpression Z = bf=d where d is the disparity. For the image 
ows we used a very-well known algorithm -the Lu
as-Kanade algorithm. There are obviously several sour
es of noise.For that reason we want to 
al
ulate the ground truth values of the VZ as well as of the image 
ow truevalues.Let us start with the image 
ow. Regarding equation 1 we have the total 3D velo
ity of a point P inspa
e in 
y
lopean 
oordinates.Using now the perspe
tive proje
tion model (x = fX=Z, y = fY=Z) to proje
t the total 3D velo
ity inthe image plane, we have: � vxvy � = f " _�XZ �_�YZ � # = 24f � _XZ �X _ZZ2�f � _YZ � Y _ZZ2� 35 (17)Repla
ing equation 1 in equation 17 we obtain the image 
ow for the 
y
lopean 
oordinate system:8<:vx = �f tXZ � x tZZ 	+ n�xyf 
X + �f + x2f �
Y � y
Zovy = �f tYZ � y tZZ 	+ n��f + y2f �
X + xyf 
Y � x
Zo (18)From the expression of the image 
ow one 
on
ludes that it is possible to separate the translational androtational terms of the 
ows. As it is well known the rotational terms of the 
ow do not depend dire
tly ondepth but only on the image 
oordinates.But the translational part depends on the depth and if ground truth image 
ows are to be 
omputedthe available depth information has to be 
onsidered exa
t whi
h results in introdu
ing error in the groundtruth values.To 
ompute the image 
ow equations for left and right 
ameras we use (xl; yl) and (xr ; yr) instead of (x; y)and the motion parameters for ea
h 
amera that are related with the 
y
lopean system motion parametersby the following equation: 8><>:�!
l = �!
r = �!
�!tl = �!t +�!
 � b2 î�!tr = �!t ��!
 � b2 î (19)For the right image 
ow, the image 
oordinates (xr; yr) are given by yr = yl (be
ause the 
ameras areparallel to ea
h other) and xr = xl � d so we use again the depth (disparity) �eld to 
al
ulate the rightimage 
ow.Sin
e the depth/disparity images are a�e
ted by noise, the ground truth velo
ities 
omputed will bea�e
ted by that noise. For the VZ values the 
onditions are similar. The expression is VZ = tZ+
XY �
YX .If the motion has only a translational 
omponent the value for VZ is only tZ and sin
e that value is knownthere is no un
ertainty in the ground truth value. But when there is rotational 
omponent the 
omputationof the ground truth is more diÆ
ult. To over
ome this diÆ
ulty X and Y 
an be 
omputed indire
tly by



using the inverse perspe
tive proje
tion model (together with the depth values, therefore introdu
ing againsome error in the ground truth values).The ground truth values for VZ 
an also be 
omputed by using the image 
ows and the exa
t equationof the se
ond method VZ = �Z2�vx=bf whose ground truth values are also 
orrupted by noise and in thatsituation what is indeed being 
ompared are the velo
ities and not VZ .Therefore for rotational motion the exa
t stru
ture of the world has to be known to obtain the truevalues of VZ , whi
h is diÆ
ult. For the moment we 
onsidered the depth data 
omputed by SVS as beinguna�e
ted by error.4.2 Resolution of the Depth DataThe software used to obtain the disparity �elds has a resolution of 1=4 of pixel. So, some 
hanges in the realdepth of a point do not produ
e any 
hange in the disparity and sin
e depth is inversely proportional to thedisparity its value is 
al
ulated with de
reasing resolution as the value of the depth itself in
reases.Let �d be the minimum 
hange in disparity. Then for the minimum 
hange in depth to produ
e 
hangein disparity we have: Z = bfd �! �Z = � �dd+�d � bfd (20)So, let us 
onsider bf = 468, �d = 0:25 and the pixel width pw = 0:012. All values are in mm.In that parti
ular 
ase we have, for example:{ d = 1 �! �Z = �7800 mm{ d = 5 �! �Z = �371:43 mm{ d = 10 �! �Z = �95:12 mm{ d = 20 �! �Z = �24:07 mmIt 
an be seen that the low resolution in disparity/depth data 
an produ
e large errors with in
reasingdistan
e to the opti
al 
enter of the 
amera.5 ExperimentsTwo groups of experimental tests were done. The �rst group of tests used syntheti
 images, therefore enablingthe use of ground truth values for all the parameters. The se
ond group of experiments was done with realimages obtained with known motion parameters.5.1 Syntheti
 imagesTo generate the syntheti
 images a virtual world was designed. This virtual world 
onsisted on a ground, afront wall, left and right walls and two obje
ts in the middle of the s
enario. Using a stereo pair of virtual
ameras every point was proje
ted in the image planes. Their disparities and image 
ows were also 
omputed.Figure 2 shows an example of the intensity and disparity images obtained.
(a) Left image (b) Disparity (
) Right imageFig. 2. Intensity images and disparity �eld for syntheti
 world



The stereo system motion is made up of sequen
es with only translational velo
ity along the opti
alaxis and also 
ombined with translational 
omponents along the other two axis and se
tions with rotationalmotion over the verti
al axis and the horizontal axis (pan-and-tilt motion). There are also some sequen
eswith 
ombined translational and rotational motion.Ea
h sequen
e measurements were also 
omputed 
onsidering that the stereo system moved not one imageforward but 5 images (parameter STEP) in order to see the e�e
t of having bigger motion parameters.To approximate the experiments with syntheti
 images with those with real images we 
omputed bothmethods when the depth �elds are exa
tly the ground truth values and also when we round o� the depthdata to the 
losest resolution step in order to see the e�e
t of the limited resolution in depth �elds (dis
ussedin subse
tion 4.2).The results obtained were very 
lose to the ground truth values and are shown below. Three statisti
almeasurements were 
omputed: the relative error of the mean value of VZ , the mean value of the relativeerror (a
tually the mean of absolute value of the relative error) and the standard deviation of the relativeerror. All those measurements were 
omputed in all points of the image where there were suÆ
ient data to
ompute VZ . The �rst measurement - the relative error of the mean value of VZ will be plotted in a graphfor ea
h sequen
e showing the value 
al
ulated in ea
h frame with STEP equal to 1 and 5 and also roundingo� and not the depth data.The results of three sequen
es are reported: (A) only translation over the opti
al axis; (B) only rotationover the verti
al axis; (C) translation over all axis and rotation over verti
al and horizontal axis. Othersequen
es were tested but for la
k of spa
e we only report those three. Figure 3 show the mean value of VZfor those sequen
es in all the variations.
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(f)Fig. 3. Error of the mean value of VZ in syntheti
 images (in per
entage): (a) sequen
e A (b) sequen
e B (
)sequen
e C (d) sequen
e A with rounded o� depths (e) sequen
e B with rounded o� depths (f) sequen
e Cwith rounded o� depths.



The other two measurements are shown in table 1. Note that all values are in per
entage.Seq. Frame DCCE DCCE �vx �vx DCCE DCCE �vx �vx DCCE �vx DCCE �vx(a) (a) (a) (a) (b) (b) (b) (b) (
) (
) (d) (d)ME SD ME SD ME SD ME SD ME ME ME MEA 20 79.0 65.0 12.2 5.5 150.3 93.2 12.3 7.0 28.2 12.2 85.7 12.3A 30 51.7 38.9 8.4 1.6 122.5 63.5 8.1 3.0 26.6 8.4 85.2 8.1A 40 58.1 45.0 6.8 0.0 130.5 70.5 5.3 0.2 29.0 6.8 168.0 5.3A 50 43.2 31.0 6.2 0.0 112.2 37.4 7.6 0.2 28.5 6.2 82.3 7.6B 20 546.4 856.6 23.9 19.0 877.0 1442.1 24.8 18.9 632.1 23.9 927.0 24.8B 30 723.7 1195.2 24.1 19.4 899.1 1487.6 24.4 19.3 983.1 24.1 1193.3 24.4B 40 630.9 1009.8 23.7 19.2 761.1 1217.9 23.8 19.2 748.2 23.7 892.9 23.8B 50 419.6 597.1 24.0 19.3 501.4 731.9 24.1 19.3 475.7 24.0 557.2 24.1C 20 123.9 61.3 18.1 16.9 145.3 74.5 19.3 18.2 121.9 18.1 138.5 19.3C 30 118.3 53.4 17.8 16.4 140.1 66.0 19.7 18.8 121.1 17.8 139.1 19.7C 40 121.1 57.9 17.2 15.6 142.3 70.8 19.0 17.7 119.2 17.2 138.5 19.0C 50 120.1 56.7 17.4 15.8 137.0 70.1 19.3 18.2 118.5 17.4 135.7 19.3Table 1. Mean relative error (ME) and its standard deviation (SD) in syntheti
 images: (a) STEP=1 withoutrounding o� depth; (b) STEP=1 rounding o� depth; (
) STEP=5 without rounding o� depth; (d) STEP=5rounding o� depth. All values in per
entage.In the next subse
tion we report the results using real image sequen
es and in the next se
tion we dis
ussthe results.5.2 Real imagesTo analyse the performan
e of both methods with real images a pair of 
ameras with 3.6 mm fo
al length anda baseline of 130 mm was used. The pixelwidth is 12.5 �m. The stereo head was atta
hed to a manipulatorwith high pre
ision allowing 
omplex paths to be performed. In this paper the results presented 
orrespondto sequen
es of images with translational motion, rotational and both types of motion. Figure 4 shows a pairof intensity images and the 
orresponding disparity image.
(a) Left image (b) Disparity (
) Right imageFig. 4. Intensity images and disparity �eldFor the 
omputation of the several input variables needed to the methods, we used well known te
hniques.The temporal and spatial gradients of depth were obtained by di�eren
e equations and the image 
ows wereobtained by the Lu
as-Kanade algorithm.In �gure 5 we show the error of the mean value of VZ like we did in the previous subse
tion. Foursequen
es are presented: (B) with only rotational motion along verti
al axis; (H) with translational motionover the opti
al axis; (L) with translation in both the opti
al and verti
al axis and (O) with both rotation inthe verti
al axis and translation in the opti
al and verti
al axis. For ea
h sequen
e were 
omputed the threemeasures explained in the previous subse
tion for Lu
as-Kanade velo
ities and for ground truth velo
ities
al
ulated by equation 18.In table 2 we report the other two measurements for real image sequen
es. In the next se
tion we interpretthe results and make the 
on
lusions of our work.
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(d)Fig. 5. Error of the mean value of VZ in real images (in per
entage): (a) sequen
e B ;(b) sequen
e H ;(
)sequen
e L ;(d) sequen
e O. In sequen
e B the values for bino
ular 
ow method with Lu
as-Kanade velo
itiesand DCCE with ground truth velo
ities were trun
ated be
ause they were very high.6 Dis
ussion and Con
lusionsIn this paper we analysed and 
ompared two methods that 
ompute the total 3D velo
ity along the opti
alaxis (VZ) using a stereo system. Both methods use image 
ows and depth �elds. We also derived theun
ertainty propagation models for both methods and 
on
lude that the se
ond method (based on thedi�erential image 
ow) is mu
h more unstable in the presen
e of noise than the �rst one.We performed several tests with both syntheti
 images and real images for sequen
es with only translation,only rotation and both motions. For translation sequen
es the results were very good for syntheti
 imagesfor both methods and good for real images. In that 
ase the DCCE method seems to be better in real imagesand worst in syntheti
 images. We 
an explain this by noting that in syntheti
 images the velo
ities are very
lose to the real ones and so the bino
ular 
ow method has few sour
es of noise. When we use velo
itiesa�e
ted by noise the bino
ular 
ow method seems to be less a

urate.When we analyse rotation sequen
es the results are 
ompletely di�erent. Both in syntheti
 images andreal images these methods give us bad results for the VZ . The error is really very high for real images. TheDCCE method seems to be worst in that 
ase even when we use ground truth velo
ities. The bino
ular 
owmethod yields very bad results for Lu
as-Kanade velo
ities and reasonable values with ground truth 
ow.For 
omplex motion with translation and rotation motion, the results are 
lose to those obtained in onlytranslation sequen
es, spe
ially when the rotation parameters are not as signi�
ant as the translation ones.Both methods present similar results. In the absen
e of noise in the 
ow the bino
ular 
ow method seemsto be more a

urate and less sensitive to the depth �eld but when the noise is not negligible the DCCEmethods presents better results.In real images we observed an interesting fa
t. The mean value of the VZ is reasonably 
loser to theground truth values in several sequen
es but the mean relative error and the standard deviation are veryhigh, spe
ially in the se
ond method (as was expe
ted). This is relevant fa
t sin
e it suggests that when



DCCE DCCE �vx �vx DCCE DCCE �vx �vx Observations(a) (a) (a) (a) (b) (b) (b) (b)Frame ME SD ME SD ME SD ME SDB 16 714.3 685.9 3438.2 2415.5 2720.0 4363.3 32.8 32.2 
Y = ��=360 rad/frameB 20 668.3 657.2 5339.8 3516.6 2591.8 4149.4 33.8 33.0 idemH 7 66.9 54.0 220.1 184.3 82.5 65.2 2.7 2.9 tZ = �20 mm/frameH 12 68.0 57.6 228.5 187.8 88.1 75.6 2.8 3.1 idemL 4 125.8 106.7 327.3 251.9 167.5 145.4 3.3 4.0 tY = 10, tZ = �20 mm/frameL 7 117.7 96.7 269.1 215.9 156.2 128.8 2.3 2.2 idemO 11 498.2 632.2 3676.1 4482.9 1900.9 2992.1 23.0 32.4 
Y = �=900, tY = 5, tZ = �5O 14 461.0 571.0 4028.3 4614.8 1184.6 1721.8 28.1 41.0 idemTable 2. Mean relative error (ME) and its standard deviation (SD) in real images: (a) Lu
as-Kanade velo
ities;(b) ground truth velo
ities. All values in per
entage.
omputing VZ , a high number of measurements has to be done, in order to allow the 
an
ellation of the errorwhen all points in the image are used.Another measurements made are when we multiply by 5 the motion, that is, we analyse ea
h 5 framesinstead of the one and the next. We noted that the bino
ular 
ow method is relatively insensitive to this
hange but the DCCE method in
reases the a

ura
y in both translation and rotation sequen
es. This 
anbe explained by the fa
t that the DCCE method depends on the gradients of depth �elds and as the depth
hange in
reases we expe
t that the limited resolution in depth be
ome less important (see subse
tion 4.2).For seeing the impa
t of the depth resolution in both methods, we rounded o� the depth value forthe 
losest step in syntheti
 images so introdu
ing quantization error in the depth data. We saw that thebino
ular 
ow method is almost insensitive to this 
hange and that the DCCE method deteriorates its resultsbe
ause the depth gradients 
hange radi
ally.Con
luding, the bino
ular 
ow method seems to be better when syntheti
 images are used and so thenoise in the image velo
ities is little or when real images are used and the image velo
ity is a

urate andthe DCCE method reveals to be better in real images with ina

urate image velo
ities. Both methods havebad results with rotation motion and the DCCE method is more sensitive to the resolution in depth data.In
reasing the translation parameters tends to minimize this e�e
t.We expe
t in the future to use those methods to 
ompute the 
omplete motion parameters and study the
riti
al ones and those that we 
an a
quire with reasonable a

ura
y. By our experien
e with VZ we expe
tthat rotation parameters are less a

urate.7 A
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