
Analysis of Two Methods for the Estimation of Partial 3DVeloityNuno Gon�alves and Helder Ara�ujo?Institute of System and RobotisDept. of Eletrial Engineering{Polo IIUniversity of Coimbra3030 CoimbraPortugalAbstrat. In this paper we analyse and ompare two methods for the omputation of the total 3D veloity along theoptial axis of a stereo system, using the rigid body motion model. One of the methods uses the temporal and spatialderivatives of the depth information and the image ows and the other one uses the depth information as well asthe di�erential ow between left and right images. Both methods are ompared in terms of unertainty propagation.The problems of generating ground truth data as well as the problems related to depth resolution are also disussed.Finally the results of our experiments to ompute the 3D veloity in the optial axis using syntheti and real imagesare reported.1 IntrodutionVision is a sensor modality with several advantages for autonomous robots despite the diÆulties in employingit. In partiular vision an be used to estimate the egomotion of a robot, whih is extremely important forthe navigation system.For egomotion estimation several methods have been proposed in the last deades, some using monoularsequenes of images and others using stereo sequenes. We onsider alibrated ameras [2℄. We are speiallyinterested in those methods that an be easily used in real-time appliations. We are also interested inmethods that use sequenes of stereo images and depth �elds.One of the methods, that was proposed by Harville et al. [4℄, uses a linear depth hange onstraintequation (DCCE), that is, assumes a model for the hange of the depth �elds. If depth measurements areavailable this method an be applied to sequenes of monoular images, using the temporal and spatialderivatives of the depth. Otherwise sequenes of stereo images an be used to estimate both depth andegomotion.The seond method was proposed by Waxman and Dunan [7℄, and uses stereo sequenes to reover the3D motion parameters. This method, as we shall see, uses the di�erential image ow between left and rightimages to ompute the motion parameters.Our goal is to ompare those methods to reover the total tridimensional veloity in the optial axisusing a stereo system. This veloity estimate is relevant for the omputation of time to ollision [3℄, whihis useful for the robot navigation.We developed the noise propagation equations of both methods onsidering independent Gaussian whitenoise for the inputs.To test and ompare those methods we used syntheti images and also real images. To estimate the imageow �elds we used both ground truth veloities and the Luas-Kanade algorithm[1℄.In the next setion both methods will be desribed. In setion 3 the unertainty propagation model isderived. Setion 4 will disuss problems generating ground truth data as well as problems assoiated todepth resolution. In setion 5 we present some results of tests made with syntheti images and with realsequenes of images, inluding translational and rotational movements. In setion 6 we disuss the resultsand the onlusions and future enhanements are presented.? (nunogon,helder)�isr.u.pt



2 Motion estimationThe reovery of the total 3D veloity along the optial axis is our goal. Before the desription of the methodsused to ompute the veloity, we shall �rst introdue the notations and geometry used throughout this paper.In this paper we will designate a 3D point in spae by its oordinate vetor P = [X Y Z℄T and the worldoordinate system will be oinident with the ylopean oordinate system, that is, entered in the middlepoint between the optial enters of both ameras. The origins of the loal amera oordinate systems arethe optial enters at a distane f (foal length) of the image plane. Both ameras are parallel to eah otherseparated by the baseline b. The ow indued in the image planes is represented by vl = (vlx; vly) for the leftimage plane and by vr = (vrx; vry) for the right image plane.The �gure 1 shows the geometry of the stereo vision system and the world oordinate system.
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Fig. 1. World and stereo oordinate systemThe model used for the 3D total veloity of a point P in spae is the rigid body motion. Let �!V be thetotal 3D veloity of the point P. As any rigid body motion an be expressed by a translation omponentgiven by �!t = [tX tY tZ ℄T and a rotational omponent given by �!
 = [
X 
Y 
Z ℄T we have the 3D veloitygiven by �!V = �!t +�!
 �P.Computing the omponents of the total 3D veloity �!V , we obtain the following expression:�!V = 24tX +
Y Z �
ZYtY +
ZX �
XZtZ +
XY �
YX35 = 24VXVYVZ35 = 24 _X_Y_Z35 (1)We are interested in estimating the third omponent of �!V , that is VZ whih is the total 3D veloity alongthe optial axis.2.1 Depth ConstraintThe depth hange of a point or rigid body over time is diretly related to its veloity in the 3D spae. Wean use this priniple to relate the veloity in the optial axis with depth.For simpliity we will derive the linear depth hange onstraint equation relative to the left image oor-dinate system.Consider a point P = [X Y Z℄T , whih projets in a point with oordinates (x; y) in the image plane ata time t and in point (x + vx; y + vy) at a time t + 1. So the depth at instant t+ 1 should be the depth atthe instant t plus the amount of spae that the point moved along the optial axis - VZ . This relationship isgiven by the following expression, the linear Depth Change Constraint Equation - DCCE:Z(x; y; t) + VZ(x; y; t) = Z (x+ vx(x; y; t); y + vy(x; y; t); t+ 1) (2)



where Z(x; y; t) is the depth of the point P at a given time t and Vz(x; y; t) is the total 3D veloity in theoptial axis. vx(x; y; t) and vy(x; y; t) are the omponents of the optial ow.The �rst step is to approximate the equation 2 by a �rst-order Taylor series expansion. Then we obtain:Z(x; y; t) + VZ(x; y; t) = Z(x; y; t)++Zx(x; y; t)vx(x; y; t) + Zy(x; y; t)vy(x; y; t) + Zt(x; y; t) (3)with Zx(x; y; t) and Zy(x; y; t) the depth gradients with respet to the bidimensional spatial oordinates xand y and Zt(x; y; t) its temporal gradient.Our DCCE equation then redues toVZ(x; y; t) = Zx(x; y; t)vx(x; y; t) + Zy(x; y; t)vy(x; y; t) + Zt(x; y; t) (4)In the last equation we relate the depth gradients over time and spae with the depth assuming that theimage ow is given.As mentioned by Harville et al.[4℄, often motion reovered with depth information is more aurate thanthat reovered from the intensity images beause it is less sensitive to illumination and shading problems.2.2 Using Binoular Image FlowsIn this subsetion we will explain the seond method to ompute the VZ . It is based on the di�erenesbetween the ows indued by the movement of a point in a stereo pair of images [7℄. The parallel stereosystem is again used and is onsidered to move rigidly with the sene.Consider again a point P = [X Y T ℄T that projets in both image planes as shown in the �gure 1. Theoptial enters of both ameras dist b (baseline) from eah other and the x� oordinate of P is xl in the leftimage and xr in the right image.Point P in �gure 1, its projetion in eah image plane ((xl; yl) and (xr ; yr)) and the optial enters (Oland Or) de�ne two similar triangles, so that we an write the relationship:Zb = Z � fb� (xl � xr) (5)whih an be simpli�ed to Z(x; y; t) = bf(xl � xr) (6)Now, if we ompute the temporal derivative of the equation 6, we obtain:VZ = � bf(xl � xr)2 � (vlx � vrx) = �Z2bf �vx (7)We now have the relation between the total 3D veloity in the optial axis (VZ) and the binoular imageow (�Vx).In the next setion we will derive the unertainty propagation model for both the expressions obtainedfor VZ .3 Unertainty PropagationIt is very important to analyse the properties of both expressions obtained for the total 3D veloity alongthe optial axis in terms of unertainty propagation. As we shall see it is possible to determine the ritialindependent variables that in presene of unertainties a�et the reovery of motion parameters.The �rst step is to de�ne the independent variables for eah expression:(VZ = Zt + vxZx + vyZy = f (Zx; Zy; Zt; vx; vy)VZ = �Z2bf �vx = f �Z; vlx; vrx� (8)where we assumed that the geometry parameters where known, that is, the baseline and the foal length.So any noise in the values of the depth data, their temporal and spatial derivatives and in the binoularimage ows will a�et the omputation of VZ .Let �!F be the vetor to be estimated and the vetor with the independent variables �!S .For both alulations we assume that all variables are a�eted by Gaussian random white noise, denotedby �2i , where i denotes the variable.



3.1 Depth onstraintFor the �rst expression we have �!F = [VZ ℄ and �!S = [Zx Zy Zt vx vy℄T .We also assume that the noise in the variables is independent so the ovariane matrix for this inputsignal �!S is given by: �1 = 2666664�2ZxZx � � � 0�2ZyZy... �2ZtZt ...�2vxvx0 � � � �2vyvy
3777775 (9)We an de�ne the Jaobian matrix that maps vetor �!S to the total 3D veloity in the optial axis �!F ,whih is given by ��!F =��!S .To ompute the ovariane matrix of the funtion vetor, a �rst order approximation an be used:�1 = ��!F��!S �1 ��!F��!S = �vx vy 1 Zx Zy ��1 26664 vxvy1ZxZy 37775 (10)The resulting ovariane matrix is a 1� 1 matrix given by the expression:�1 = �2ZxZxv2x + �2ZyZyv2y + �2ZtZt + �2vxvxZ2x + �2vyvyZ2x (11)As we an see the perturbation in the omputation of VZ depends on the square of all the variables exeptthe temporal derivative of depth.3.2 Binoular owUsing a similar reasoning we have for the seond method the following:�!S = 24 Zvlxvrx35 (12)�2 = 24�2ZZ 0 00 �2vlxvlx 00 0 �2vrxvrx 35 (13)And the Jaobian matrix is then:��!F��!S = h �VZ�Z �VZ�vlx �VZ�vrx i = h �2Zbf �vx �Z2bf Z2bf i (14)The ovariane matrix of the funtion vetor is then:�2 = ��!F��!S �2 ��!F��!S = 4Z2(bf)2 (�vx)2 �2ZZ + Z4(bf)2�2vlxvlx + Z4(bf)2�2vrxvrx (15)whih redues to the simpler form:�2 = 4VZ�2ZZ + Z4(bf)2 ��2vlxvlx + �2vrxvrx� (16)Both expressions obtained for the ovariane of the total 3D veloity along the optial axis an be usedto analyse the unertainty propagation properties of both methods. Both of them are sensitive to noise inthe depth data but we an expet that the seond method is highly sensitive to the unertainty in the imageows. These results are supported by the experiments, as we shall see.



4 Experimental onditionsBefore desribing the experimental results it is important to address some pratial questions. In the followingsubsetions we will disuss the problem of obtaining ground truth data, and the problem of depth resolution.4.1 Ground truthTo test any method ground truth information to ompare with is essential. So it is really important to havethe ground truth values of what is to be omputed and those ground truth values should be as aurate aspossible.In this study we started to test the VZ omputed using syntheti data in a world where the left and rightimages were known as well as the ground truth veloities and depth �elds. No problems existed with theomputation of the ground truth values to ompare with.Regarding the experiments with real images, what was available were the intensity images (left andright) and the rigid body motion parameters of the stereo system: �!t and �!
 . To reover the depth �elds weused the SVS (Small Vision System [5℄) software that gives us the disparity for eah point in the intensityimages with a resolution of 1=4 of pixel. With the disparity images we alulate the depth using the simpleexpression Z = bf=d where d is the disparity. For the image ows we used a very-well known algorithm -the Luas-Kanade algorithm. There are obviously several soures of noise.For that reason we want to alulate the ground truth values of the VZ as well as of the image ow truevalues.Let us start with the image ow. Regarding equation 1 we have the total 3D veloity of a point P inspae in ylopean oordinates.Using now the perspetive projetion model (x = fX=Z, y = fY=Z) to projet the total 3D veloity inthe image plane, we have: � vxvy � = f " _�XZ �_�YZ � # = 24f � _XZ �X _ZZ2�f � _YZ � Y _ZZ2� 35 (17)Replaing equation 1 in equation 17 we obtain the image ow for the ylopean oordinate system:8<:vx = �f tXZ � x tZZ 	+ n�xyf 
X + �f + x2f �
Y � y
Zovy = �f tYZ � y tZZ 	+ n��f + y2f �
X + xyf 
Y � x
Zo (18)From the expression of the image ow one onludes that it is possible to separate the translational androtational terms of the ows. As it is well known the rotational terms of the ow do not depend diretly ondepth but only on the image oordinates.But the translational part depends on the depth and if ground truth image ows are to be omputedthe available depth information has to be onsidered exat whih results in introduing error in the groundtruth values.To ompute the image ow equations for left and right ameras we use (xl; yl) and (xr ; yr) instead of (x; y)and the motion parameters for eah amera that are related with the ylopean system motion parametersby the following equation: 8><>:�!
l = �!
r = �!
�!tl = �!t +�!
 � b2 î�!tr = �!t ��!
 � b2 î (19)For the right image ow, the image oordinates (xr; yr) are given by yr = yl (beause the ameras areparallel to eah other) and xr = xl � d so we use again the depth (disparity) �eld to alulate the rightimage ow.Sine the depth/disparity images are a�eted by noise, the ground truth veloities omputed will bea�eted by that noise. For the VZ values the onditions are similar. The expression is VZ = tZ+
XY �
YX .If the motion has only a translational omponent the value for VZ is only tZ and sine that value is knownthere is no unertainty in the ground truth value. But when there is rotational omponent the omputationof the ground truth is more diÆult. To overome this diÆulty X and Y an be omputed indiretly by



using the inverse perspetive projetion model (together with the depth values, therefore introduing againsome error in the ground truth values).The ground truth values for VZ an also be omputed by using the image ows and the exat equationof the seond method VZ = �Z2�vx=bf whose ground truth values are also orrupted by noise and in thatsituation what is indeed being ompared are the veloities and not VZ .Therefore for rotational motion the exat struture of the world has to be known to obtain the truevalues of VZ , whih is diÆult. For the moment we onsidered the depth data omputed by SVS as beinguna�eted by error.4.2 Resolution of the Depth DataThe software used to obtain the disparity �elds has a resolution of 1=4 of pixel. So, some hanges in the realdepth of a point do not produe any hange in the disparity and sine depth is inversely proportional to thedisparity its value is alulated with dereasing resolution as the value of the depth itself inreases.Let �d be the minimum hange in disparity. Then for the minimum hange in depth to produe hangein disparity we have: Z = bfd �! �Z = � �dd+�d � bfd (20)So, let us onsider bf = 468, �d = 0:25 and the pixel width pw = 0:012. All values are in mm.In that partiular ase we have, for example:{ d = 1 �! �Z = �7800 mm{ d = 5 �! �Z = �371:43 mm{ d = 10 �! �Z = �95:12 mm{ d = 20 �! �Z = �24:07 mmIt an be seen that the low resolution in disparity/depth data an produe large errors with inreasingdistane to the optial enter of the amera.5 ExperimentsTwo groups of experimental tests were done. The �rst group of tests used syntheti images, therefore enablingthe use of ground truth values for all the parameters. The seond group of experiments was done with realimages obtained with known motion parameters.5.1 Syntheti imagesTo generate the syntheti images a virtual world was designed. This virtual world onsisted on a ground, afront wall, left and right walls and two objets in the middle of the senario. Using a stereo pair of virtualameras every point was projeted in the image planes. Their disparities and image ows were also omputed.Figure 2 shows an example of the intensity and disparity images obtained.
(a) Left image (b) Disparity () Right imageFig. 2. Intensity images and disparity �eld for syntheti world



The stereo system motion is made up of sequenes with only translational veloity along the optialaxis and also ombined with translational omponents along the other two axis and setions with rotationalmotion over the vertial axis and the horizontal axis (pan-and-tilt motion). There are also some sequeneswith ombined translational and rotational motion.Eah sequene measurements were also omputed onsidering that the stereo system moved not one imageforward but 5 images (parameter STEP) in order to see the e�et of having bigger motion parameters.To approximate the experiments with syntheti images with those with real images we omputed bothmethods when the depth �elds are exatly the ground truth values and also when we round o� the depthdata to the losest resolution step in order to see the e�et of the limited resolution in depth �elds (disussedin subsetion 4.2).The results obtained were very lose to the ground truth values and are shown below. Three statistialmeasurements were omputed: the relative error of the mean value of VZ , the mean value of the relativeerror (atually the mean of absolute value of the relative error) and the standard deviation of the relativeerror. All those measurements were omputed in all points of the image where there were suÆient data toompute VZ . The �rst measurement - the relative error of the mean value of VZ will be plotted in a graphfor eah sequene showing the value alulated in eah frame with STEP equal to 1 and 5 and also roundingo� and not the depth data.The results of three sequenes are reported: (A) only translation over the optial axis; (B) only rotationover the vertial axis; (C) translation over all axis and rotation over vertial and horizontal axis. Othersequenes were tested but for lak of spae we only report those three. Figure 3 show the mean value of VZfor those sequenes in all the variations.
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(f)Fig. 3. Error of the mean value of VZ in syntheti images (in perentage): (a) sequene A (b) sequene B ()sequene C (d) sequene A with rounded o� depths (e) sequene B with rounded o� depths (f) sequene Cwith rounded o� depths.



The other two measurements are shown in table 1. Note that all values are in perentage.Seq. Frame DCCE DCCE �vx �vx DCCE DCCE �vx �vx DCCE �vx DCCE �vx(a) (a) (a) (a) (b) (b) (b) (b) () () (d) (d)ME SD ME SD ME SD ME SD ME ME ME MEA 20 79.0 65.0 12.2 5.5 150.3 93.2 12.3 7.0 28.2 12.2 85.7 12.3A 30 51.7 38.9 8.4 1.6 122.5 63.5 8.1 3.0 26.6 8.4 85.2 8.1A 40 58.1 45.0 6.8 0.0 130.5 70.5 5.3 0.2 29.0 6.8 168.0 5.3A 50 43.2 31.0 6.2 0.0 112.2 37.4 7.6 0.2 28.5 6.2 82.3 7.6B 20 546.4 856.6 23.9 19.0 877.0 1442.1 24.8 18.9 632.1 23.9 927.0 24.8B 30 723.7 1195.2 24.1 19.4 899.1 1487.6 24.4 19.3 983.1 24.1 1193.3 24.4B 40 630.9 1009.8 23.7 19.2 761.1 1217.9 23.8 19.2 748.2 23.7 892.9 23.8B 50 419.6 597.1 24.0 19.3 501.4 731.9 24.1 19.3 475.7 24.0 557.2 24.1C 20 123.9 61.3 18.1 16.9 145.3 74.5 19.3 18.2 121.9 18.1 138.5 19.3C 30 118.3 53.4 17.8 16.4 140.1 66.0 19.7 18.8 121.1 17.8 139.1 19.7C 40 121.1 57.9 17.2 15.6 142.3 70.8 19.0 17.7 119.2 17.2 138.5 19.0C 50 120.1 56.7 17.4 15.8 137.0 70.1 19.3 18.2 118.5 17.4 135.7 19.3Table 1. Mean relative error (ME) and its standard deviation (SD) in syntheti images: (a) STEP=1 withoutrounding o� depth; (b) STEP=1 rounding o� depth; () STEP=5 without rounding o� depth; (d) STEP=5rounding o� depth. All values in perentage.In the next subsetion we report the results using real image sequenes and in the next setion we disussthe results.5.2 Real imagesTo analyse the performane of both methods with real images a pair of ameras with 3.6 mm foal length anda baseline of 130 mm was used. The pixelwidth is 12.5 �m. The stereo head was attahed to a manipulatorwith high preision allowing omplex paths to be performed. In this paper the results presented orrespondto sequenes of images with translational motion, rotational and both types of motion. Figure 4 shows a pairof intensity images and the orresponding disparity image.
(a) Left image (b) Disparity () Right imageFig. 4. Intensity images and disparity �eldFor the omputation of the several input variables needed to the methods, we used well known tehniques.The temporal and spatial gradients of depth were obtained by di�erene equations and the image ows wereobtained by the Luas-Kanade algorithm.In �gure 5 we show the error of the mean value of VZ like we did in the previous subsetion. Foursequenes are presented: (B) with only rotational motion along vertial axis; (H) with translational motionover the optial axis; (L) with translation in both the optial and vertial axis and (O) with both rotation inthe vertial axis and translation in the optial and vertial axis. For eah sequene were omputed the threemeasures explained in the previous subsetion for Luas-Kanade veloities and for ground truth veloitiesalulated by equation 18.In table 2 we report the other two measurements for real image sequenes. In the next setion we interpretthe results and make the onlusions of our work.
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(d)Fig. 5. Error of the mean value of VZ in real images (in perentage): (a) sequene B ;(b) sequene H ;()sequene L ;(d) sequene O. In sequene B the values for binoular ow method with Luas-Kanade veloitiesand DCCE with ground truth veloities were trunated beause they were very high.6 Disussion and ConlusionsIn this paper we analysed and ompared two methods that ompute the total 3D veloity along the optialaxis (VZ) using a stereo system. Both methods use image ows and depth �elds. We also derived theunertainty propagation models for both methods and onlude that the seond method (based on thedi�erential image ow) is muh more unstable in the presene of noise than the �rst one.We performed several tests with both syntheti images and real images for sequenes with only translation,only rotation and both motions. For translation sequenes the results were very good for syntheti imagesfor both methods and good for real images. In that ase the DCCE method seems to be better in real imagesand worst in syntheti images. We an explain this by noting that in syntheti images the veloities are verylose to the real ones and so the binoular ow method has few soures of noise. When we use veloitiesa�eted by noise the binoular ow method seems to be less aurate.When we analyse rotation sequenes the results are ompletely di�erent. Both in syntheti images andreal images these methods give us bad results for the VZ . The error is really very high for real images. TheDCCE method seems to be worst in that ase even when we use ground truth veloities. The binoular owmethod yields very bad results for Luas-Kanade veloities and reasonable values with ground truth ow.For omplex motion with translation and rotation motion, the results are lose to those obtained in onlytranslation sequenes, speially when the rotation parameters are not as signi�ant as the translation ones.Both methods present similar results. In the absene of noise in the ow the binoular ow method seemsto be more aurate and less sensitive to the depth �eld but when the noise is not negligible the DCCEmethods presents better results.In real images we observed an interesting fat. The mean value of the VZ is reasonably loser to theground truth values in several sequenes but the mean relative error and the standard deviation are veryhigh, speially in the seond method (as was expeted). This is relevant fat sine it suggests that when



DCCE DCCE �vx �vx DCCE DCCE �vx �vx Observations(a) (a) (a) (a) (b) (b) (b) (b)Frame ME SD ME SD ME SD ME SDB 16 714.3 685.9 3438.2 2415.5 2720.0 4363.3 32.8 32.2 
Y = ��=360 rad/frameB 20 668.3 657.2 5339.8 3516.6 2591.8 4149.4 33.8 33.0 idemH 7 66.9 54.0 220.1 184.3 82.5 65.2 2.7 2.9 tZ = �20 mm/frameH 12 68.0 57.6 228.5 187.8 88.1 75.6 2.8 3.1 idemL 4 125.8 106.7 327.3 251.9 167.5 145.4 3.3 4.0 tY = 10, tZ = �20 mm/frameL 7 117.7 96.7 269.1 215.9 156.2 128.8 2.3 2.2 idemO 11 498.2 632.2 3676.1 4482.9 1900.9 2992.1 23.0 32.4 
Y = �=900, tY = 5, tZ = �5O 14 461.0 571.0 4028.3 4614.8 1184.6 1721.8 28.1 41.0 idemTable 2. Mean relative error (ME) and its standard deviation (SD) in real images: (a) Luas-Kanade veloities;(b) ground truth veloities. All values in perentage.omputing VZ , a high number of measurements has to be done, in order to allow the anellation of the errorwhen all points in the image are used.Another measurements made are when we multiply by 5 the motion, that is, we analyse eah 5 framesinstead of the one and the next. We noted that the binoular ow method is relatively insensitive to thishange but the DCCE method inreases the auray in both translation and rotation sequenes. This anbe explained by the fat that the DCCE method depends on the gradients of depth �elds and as the depthhange inreases we expet that the limited resolution in depth beome less important (see subsetion 4.2).For seeing the impat of the depth resolution in both methods, we rounded o� the depth value forthe losest step in syntheti images so introduing quantization error in the depth data. We saw that thebinoular ow method is almost insensitive to this hange and that the DCCE method deteriorates its resultsbeause the depth gradients hange radially.Conluding, the binoular ow method seems to be better when syntheti images are used and so thenoise in the image veloities is little or when real images are used and the image veloity is aurate andthe DCCE method reveals to be better in real images with inaurate image veloities. Both methods havebad results with rotation motion and the DCCE method is more sensitive to the resolution in depth data.Inreasing the translation parameters tends to minimize this e�et.We expet in the future to use those methods to ompute the omplete motion parameters and study theritial ones and those that we an aquire with reasonable auray. By our experiene with VZ we expetthat rotation parameters are less aurate.7 AknowledgeThe authors gratefully aknowledge the support of projet PRAXIS/P/EEI/10252/1998, funded by thePortuguese Foundation for Siene and Tenology.Referenes1. Barron, J.L.; Fleet, D.J. and Beauhemin, S.S. Performane of Optial Flow Tehniques. IEEE InternationalJournal of Computer Vision, 12(1):43{77, 1994.2. Batista, Jorge; Ara�ujo, Helder and Almeida, An��bal T. Iterative Multistep Expliit Camera Calibration. IEEETransations on Robotis and Automation, 15(5):897{917, Otober 1999.3. Colombo, C and Del Bimbo, A. Generalized Bounds for Time to Collision from First-Order Image Motion. In 7thIEEE International Conferene on Computer Vision, pages 220{226, Corfu, Greee, September 1999. IEEE.4. Harville, M; Rahimi, A.; Darrel, T.; Gordon, G. and Wood�ll, J. 3D Pose Traking with Linear Depth andBrightness Constraints. In IEEE International Conferene on Computer Vision, 1999.5. Konolige, Kurt. Small Vision System - Development System. http://www.ai.sri.om/ konolige/svs/svs.htm.6. Shieh, Jen-Yu; Zhuang Hanqi and Sudhakar, R. Motion Estimation from a Sequene of Stereo Images: A DiretMethod. IEEE Transations on System, Man and Cybernetis, 24(7):1044{1053, July 1994.7. Waxman, Allen M. and Dunan, James H. Binoular Image Flows: Steps Toward Stereo-Motion Fusion. IEEETransations on Pattern Analysis and Mahine Intelligene, PAMI-8(6):715{729, November 1986.This artile was proessed usingthe TEX maro pakage with SIRS2001 style


