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rotation, translation, depth resolution is the 3D motion of the vehicle in the deptA)(di-
rection. Given the depth information the problem
Abstract becomes the estimation d;.

In_robotics applications it is very important to avoid

Thl's ptapefr anal){sef two tmethcr)]ds ':jo.c%r?pgte the ?‘rPe collision with obstacles and the TTI performs
velocity of a navigating stereo head in the degh ( an important role in that matter. Physiological re-

direction. Both methods, which are function of thgearchers [7] stated that in the human (and animal,

optical flow and disparity maps, are presented in Y9 general) visual system the speed of self-motion

approaches: dlﬁerentla}l and discrete. A” the expre an not be determined visually using only the optical
sions of both methods in both formulations are stu

ow pattern. TTI, however, can be directly measured

surements should be taken. Different paths (trans-

lational, rotational and mixed) as well as differerféolombo [1] points out that often the TTI is con-
types of surfaces are compared. fused with scaled depth (which considers only the

translational motion). This approximation is reason-
able when a narrow field of view is used but at the
image periphery gross estimation errors should be

Motion estimation has been studied mainly withigxpected. To avoid this model error, both transla-
the framework of rigid body motion. However, irfional and rotational components of rigid body mo-
robotics literature it is easy to find the motion estion should be considered.

mation problem also stated in a different way: the this paper we are interested in the computation of
estimation of the time-to-impact (TTI) or time-t0the denominator of expression 1, that is the 3D ve-
collision. locity of the navigating system in th& direction.

This quantity yields the time needed to |mpadfh|3 velocity is a function of the rigid body transla-
with the nearest obstacle if the motion remains ufional and rotational velocities which are in general

changed. It can be computed with the expression:unknown. Two methods ([9, 5, 2, 4]) are presented
to computéd/,, using optical flow and disparity maps

(which provide the depth information used both for
7 Vz and for TTI) in stereo sequences. Both meth-
TTI = — (1) ods are formulated in a differential and discrete ap-

1 Introduction
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proaches. v v

This paper analyses those methods within the scope
of uncertainty propagation. Errors in the input vari- ! :
ables used to computg, will inevitably corrupt = g %
their results. Even very small errors in the optical ’,’ f <x|,y|,,~”'//
flow and disparity information can produce a high /mvyr)

level of uncertainty in the values df;. This fact =z

reduces the accuracy and the interest of such a com-

putation (it also suggests that a high number of mea-

surements have to be done) and that is why the quan-

tification of the uncertainty if fundamental. Py 7

Zl

The aim of this work is to quantify the variance of
the computed values fdr; which provides a mean
to point out the critical input variables in the meth-

ods. Those critical factors indicate which measure- ]
ments should be carefully done. The model used for the 3D total velocity of a paiht

in space is the rigid body motion. L&t be the total
In the next section the problem of motion estimatiogp velocity of the poinP. As any rigid body motion
is stated and in the fO"OW|ng two sections the d|ffercan be expressed by a translational Component given
ential and discrete approaches are presented. §gg; — [tx ty tz]T and a rotational component given
tion 5 derives the uncertainty propagation expregy 0 — [y Qy Q7]” the 3D velocity is given by
sions for both methods (two approaches) and in seg-— ¢ + O x P.

tion 6 some experiments are described and results

are presented. Section 7 presents some conclusigff§Puting the components of the total 3D velocity
of the work. V, itis obtained the following expression:

Figure 1: World and stereo coordinate system

2 Motion Estimation tx +QyZ — QY Vy X

. V=|ty+Q0X-QxZ|=|W|=1|Y]
Before the description of the methods used to com- Y z X Y )
P ty 4 OyY — Oy X v, 7

pute the 3D velocity, we shall first introduce the no-

tations and geometry used throughout this paper.
g y g Pap The third component of the 3D velocity#; - is the

In this paper a 3D point in space is designated by {§glocity of the scene points in the direction of the
coordinate vectoP = [X Y Z]" and the world co- gptical axis which is the quantity to be estimated

ordinate system is coincident with the cyclopean cproviding a mean to compute the time-to-impact
ordinate system, that is, centred in the middle poipt77 = 7/17,)).

between the optical centres of both cameras. The

origins of the local camera coordinate systems aig&deilthat, ;[Sere are t\_/vo.pg_?fsmle geprog\(;hes o
the optical centres at a distant¢focal length) of the problem ofl’z estimation: diterential and dis-

the image plane. Both cameras are parallel to eddfte- d‘rher;[wo method; in both approaches are pre-
other separated by the baselimeThe flow induced sented in the next sections.
in the image planes is representeddy= (v}, v!)

for the left image plane and by = (v7, ) forthe 3  Differential approach

right image plane. ) i ) ) L .
g gep In this section 3D motion estimation is considered

Figure 1 shows the geometry of the stereo vision s\fgom a differential standpoint. The correspondences
tem and the world coordinate system. across time are not known and the differential optical
flow is available. Two methods to estimate the 3D



velocity in theZ direction -V are presented. The4 Discrete Formulation

details and proofs of those methods are available iﬂ- . . .
3,2, 9, 5]. This section presents the discrete versions of both

methods to computg;,.

V - Depth Constraint In the discrete formulation of DCCE and binocular
. . o flow methods the depth information is assumed to
The change in the depth of a point or rigid body ov§je ayailable and so the disparity in timandt’ (d

time is directly related to its velocity in 3D space. I§nd7) are known. Feature correspondences are also
can be used this principle to relate the velocity in thgzilable.

Z direction with depth.

The depth at instarit of a point should be the depthVz - Discrete DCCE

at the instant plus the displacement in thé direc- o . .
tion - V. This relationship is given by the foIIow-T,he DCCE equation in the discrete formulation is
ing expression, the linear Depth Change Constrafit®" by:
Equation - DCCE (first order Taylor series approxi-

mation): Vy = Zy+ ZyAw + Z,Ay (6)
whereZ, = Z(x,y,t') — Z(x,y,t).
Vo= Zi+ Zy vy + Z, v, 3) In the discrete formulation of the DCCE equation,

the image velocities were replaced by the finite dif-

. ) ) ferences of the point image coordinates.
whereZ(z,y,t) is the depth at a given timg 7, P g

Z, andZ, its spatial-temporal derivatives, andv,

are the components of the optical flow. Vz Binocular Flow

The discrete binocular flow method equation is given

Vz - Binocular Flow Constraint by:
The second method to complutg is based on the )
differences between the flows induced by the move- Vy & 2z (Az, — Az)) 7)
ment of a point in a stereo pair of images [9]. The bf
parallel stereo system is again used and is considegedin a easier way to compute, after rearranging the
to move rigidly with the scene. terms:
Point P in figure 1, its projection in each image
I d(z,, yr, dth tical - YA
plane (z;, y;, f) and(z,, y,, f)) and the optical cen V, (d — d) ()

tres (O, andO,) define two similar triangles, so that bf
the following relationship can be written:

5 Uncertainty Propagation

Z Z—_f (4) Given the two models fol’z, both in the differen-

b b— (2" —a') tial and discrete approaches, it is important to anal-
yse the uncertainty propagation in the equations due
Now, computing the temporal derivative of the equag uncertainty in the data inputs. As we shall see,
tion 4, it yields: it is possible to determine the critical independent
variables that in presence of uncertainties affect the
recovery of motion.

Vy = __ (v —vl) = —ZAv, (5) The first step is to define the independent variables
bf for each expression:
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ents. So, before analysing each equation, the uncer-
tainty propagation in the depth is first derived.

Voo (Zyy Zy, Zy, 03, 0y) = Zy + Zyvg + Zyvy

Voo (2,05, 07) = =fpAv, , 0Z , 0z z'

Vo, (Zy Zy, Z 3,y 3" y') = Zy + Zu Az + Z,Ay 722 = g "% g ~ oy (12)
V2 (Z,2',d,d') = —2Z (d' — d)

(9) For the gradients of depth in relation to the variable

where the geometric parameters are assumed td He€ {%;¥,1}) we have:
known, that is, the baseline and the focal length.

Any noise in the values of the disparity maps, depth 7 = 2 <%> = _% -d; (13)
data, their temporal and spatial derivatives and in the 0i \ d d
binocular image flows affect the computationlgf. so that
To study the uncertainty propagation, the covariance
matrix of an expression that depends on an input

. . . 0Z;
variable vector is computed. L&t be the function 2 0 od

) : ) 2 _[0%Z; 0%; Odd

vector to be estimated arithe vector with the in- 9%,z = [5¢  5d) { 0 o2 } . (14)
dependent variables. Considgi n-vector random didi Bd;

variable andF a m-vector random variable function

of the n-vectorS. Notice that the relation between]'he depth covariance expression becomes:
F andS is nonlinear. If it is considered the mean

point of the random variables and computed the first

order approximation it can be written the covariance 2 2
. . ; _ 2 2bf 2 bf 2
matrix " of the function vectoF in the form [6]: Og.7, = ?dz cOg ) O (15)
OF OF T : . .
I = (10) Itis now possible to concentrate the attention in the

S 08 expressions of, for both the DCCE and DV meth-
whereA is the covariance matrix of the input variods.
ablesS. OF/0S is the Jacobian matrix that maps

vectorS to F. 5.1 Depth Constraint - Differential

Itis assumed that all variables are affected by Gayss, the first expression it yield®; = [V] andS, =
sian random white noise with zero mean and stan,

dard deviation denoted hy;, wherei denotes the = °
variable. Also the noise in the variables is assumdfé covariance matrix for this input sign&h is
to be independent so the covariance matrix for tHiéven by:

input signalS is given by:

Zy Zy vy vy]T.

. 0
2 — for j=k 0224
Ajk: = Vi . : (11) O—%yzy
0 — forj#Kk A — , )
1 — . UZtZt
In this study the depth is computed from the dispar- Tvpv, )
ity with Z = bf/d and so the uncertainty analysis | 0 Tvyvy |

is within the scope of the disparity and optical flow 16)
(differential and/or discrete). THe, expressions de-To compute the covariance matrix of the function
pend on depth and depth spatial and temporal gradector, equation 10 is used. It yields:



and substituting equation 15 in equation 23 it is ob-

v tained:
Uy

Flz[vx Vy 1 Zx Zy}Al 1 (17) 9
Zs (2bf)
P Ty =0y,y,0 = T (Av,)? o5+

Yy
() ( 2
The resulting covariance matrix islax 1 matrix + d* (Uvé”é +U1’5”5> (24)

given by the expression:
5.3 Depth Constraint - Discrete

[y = 0}, . 02403, 0240, 02, T2+, 7 In this case the independent variables ve&ois
(18) given by:

showing the dependencies on the variances pf

(@ € {x,y,t}). Substituting equations 13 and 15 in

T
equation 18 it yields: Ss=[72: Zy Zy © y o vy | (25)
The Jacobian matrix is straightforward in this func-
bi\> tion. The covariance matrix, dependent on the depth,
Pl = O'%/sz,l = (2@) (diﬂi + divj + d?) O';d—f’ yields:

AN 2 3 2
+ 2 (U:L‘O—dzdz +0,04,q, T Udtdt> +
0F3 OF3

T
b ’ I's = —= A — 52 I N2
i (d_g) ' (diagzvz + diafwy) (19’ <083> ’ <ass> 05,2, (¥ — )"+
+ a%yzy (v —y)° + 05,7, + (02, + 02y) Z2+
5.2 Binocular Flow Constraint - Differential N (ij N aj,y,) Zj (26)

Using a similar reasoning for the second method: 5 substituting equations 13 and 15 in equation 26

it is obtained:
Z
Sz = ’Ué (20)
Vg
) I's U%/ZVZ 3=
oz, 0 0 b2
Ao=| 0 o4, 0 (1) = <2$> (d2 (Ax)? + d2 (Ay)? + d?) o2+
0 0 ou 2
and the Jacobian matrix is: + (%) - [ (Az)*- 03 , +(Ay)*- gy + Oayds T
OF, 2 g +d? (62, +0%,) + & 2+2,,] 27
7S, - —Z%Avm —f—f f—f (22) 2 (040 + 00ra) y (Uyy Uyy) (27)

The covariance matrix of the function vector, after-4 Binocular Flow Constraint - Discrete

arranging the terms, is then: Using the same reasoning, the independent variables

vector for the discrete binocular flow method yields:
Z4
Ty =4Vz05, + ——s (02 + 03M> (23)

(bf)z vkl S4 _ [ 7 7" d d }T (28)



Calculating the jacobian matrix and substituting it in
the first order approximation of the covariance ma-
trix of Fy, ityields:

d\> d' 2
P4 = <1 — E) U%Z + <E - ].) O'%/Z/_f’

+ @ (U§d+U§/d/) (29) ~ ‘
(bf)?
*

and putting together equation 15 and equation 29 it Z zr
is obtained:
bf\? bf\* eft camer N% ot camer
Figure 2: Effect of finite resolution of disparity maps
5.5 Resolution of Depth Data in depth

The uncertainty caused by random noise in the input

variables strongly affects the accuracy of the estima- _ S

tion of V. Besides that, the finite resolution of the0: €t us consider a realistic situatidn:= 130mm,
disparity maps can be one important source of errbr= 9MM, Ad = 1/16px and the pixel widthyw =
and affects even more the, estimation accuracy.0-012mm-

Figure 2 shows how the resolution of the disparity, that particular case it is obtained, for example:
can produce uncertainty in the position of a 3D point,

mainly in the depth coordinate.
iy P ! o d=1— 7 =54167 —s AZ = —3186 mm

The software used in our study to obtain the dispar-
ity fields has a finite resolution df/16 of pixel. So, e d=5— Z =10833 — AZ = —133.7mm
some changes in the real depth of a point do not pro-

duce any change in the disparity and since depth is® ¢ =10 — Z = 5417 — AZ = —=33.Tmm
inversely proportional to the disparity its value is cal-
culated with decreasing resolution as the value of the®

depth itself increases. o d=50—>5 7 — 1083 —3 AZ — —1.4 mm

d=20— Z =2708 — AZ = -84 mm

Let Ad be the minimum change in disparity. Then

the minimum change in depth that produce Changﬁ%wever, if the resolution lowers to/4pz, for the

in disparity is: same case, it yields:
b 1 b 1 _ _ _

PR d__f:_ .z e d=1-—7=5416T— AZ=—10833mm
d 1+ Ad d 1+ Ad

d
(31) ed=5— Z=10833 — AZ=—515.9mm

Equation 31 indicates that for near objects small |
changes in depth cause high changes in the dispar-
ity and for distant objects the minimum change in ¢ =920 — 7 = 2708 — AZ = —33.4 mm
depth that produce changes in the disparity is very

high. e d=50— Z=1083 — AZ = —5.4mm

d=10 — Z = 5417 — AZ = —132.1 mm



and discrete image velocities.

The uncertainty equations represent the variance of
the estimation of’; in each point. Given the dispar-
ity maps, as well as their spatial and temporal gradi-
ents and the continuous and discrete velocities, the
uncertainty for each point using equations 19, 24, 27
and 30 can be computed as function of the variance

(a) Leftimage (b) Disparity of the input variables.

For that purpose the following assumptions are
Figure 3: Intensity images and disparity field fomade: the variance of the differential and discrete
synthetic world image velocities are equal for bothand y coor-
dinates ¢2, = O’?}lzvé = 00y = Oy = 0550;)
It can be seen that the low resolution in dispagnd the same for the discrete velocities, and for the
ity/depth data can produce large errors with increa@iadients of the disparity; , = 0.507, since the
ing distance to the optical centre of the camera. THigrivatives of the disparity maps are approximated
fact will produce significant errors in the computaly & finite differences equation (for exy(z, y, t) ~
tion of depth field gradients mainly for small motio®-5 - d(z,y,t +1) — 0.5 - d(z,y,t — 1)).
between two consecutive frames. This also meafige uncertainty propagation equation are then given
that it will be difficult to recover motion for distantpy.
points (unless high resolution disparity is used).

The perturbation caused by rounding/quantization T; = Coefiq- 02 + Coefyy - 02, (33)
error (limited resolution) is given by the following

equation [8]: wherej € {1,2,3,4} and represent one of the

methods (DCCE/DIF, DV/DIF, DCCE/DISC and
DVIDISC respectively). Coef;q and Coef;, are

2
o2, = step (32) the weights of the disparity and velocities random
12 noises.
wherestep is the minimum increment due to finite

From the variance equations of all expressions and
from equation 31 it is clear that the distance of a
) point to the optical centre is one of the most im-

6 Experiments and Results portant factors to the uncertainty value (variance).
To analyse quantitatively the uncertainty equatior:l_g observe this sentence, figure 4 plots the vari-

19 24 27 and 30. it was constructed a syntheﬁ‘@ce value for equation 19 where darker points rep-
. ’ sent values with low variance and lighter points

world composed by several objects: front and lateld _ : .
walls, ground plane, a box on the ground, a Cy"rp_ave higher variance (saturation for values equal and

5 .

der and a sphere. Figure 3 shows the left image o@lg‘over:]’)_()(;]()mm ),' Itcan k3rehseen thfat fﬁ]rther Obijti

synthetic stereo pair and the corresponding dispaljﬂ Ve higher variances. 1he map for he uncertainty
equationd’, to I'y; are not presented since they are

map.
P very close to one another.
This world was projected into two equal cameras

mounted in a virtual navigation robot with baselin-el-apl_e 1 presents some values for the uncertainty co-
130mm, focal lengthb.0mm, square pixels width of efficients. Two points from four objects were cho-

0.012mm. The virtual robot performed several path§e.n: (G)round, éE.;)O.X A (S)pher((aj ano]lc .(ngall. hThe
(translational, rotational and mixed paths) and tt?é)'nts are sorted In increasing order of its depth.

data stored includes: left and right images, dispdRegarding the values reported in table 1 it can be ob-
ity in high resolution (map of floats) and continuouserved that, as was expected, for farther objects the

resolution.



Figure 4: Variance map fadr,. Lighter point have

variance of thé’; estimation values is higher. It can
also be noticed that the DCCE method is much more
sensitive to the uncertainty in the disparity map than
to the uncertainty in the velocities. The binocular
flow method (DV), however, in the differential ap-
proach is sensitive almost only to the uncertainty in
velocities and, in the discrete approach, to the un-
certainty in the disparity. Furthermore, the coeffi-
cientsCoefi1, Coefs, Coefs; (dependence on the
disparity) andC'oe f5, (dependence on the velocities)
present values very close to each other. This sug-
gests that when the uncertainty in the disparity is
similar to the uncertainty in the velocities, the un-
certainty ofl/, estimation values are very similar for
both methods in both formulations.

higher variance. It was used, = o2, = 0.0052 To see more explicitly the relation between the un-
calculated from equation 32, corresponding to a resertainty coefficients and the depth of the points used
olution of 1 /4pz.

L | 0 [0 [T | Tw |
G | Coefu| 13216] 812 | 13275] 10774
Coefn | 256.2 | 11093| 256.2 | —

G | Coefu] 63364] 198.0 | 63517] 57711
Coefn| 1200 | 61532| 1299 | —

g | Cocfu | 52768] 133.8 | 52825] 48038
Cocfn| 1.6 | 51563| 1.6 -

g | Coefa] 57902] 100.3 | 57958] 51740
Cocfiy| 1218 | 56170| 1218 | —

o | Cocfi| 94444] 312.7 | 94516] 87223
Coefn| 0.3 | 94050] 0.3 -

o [Coefu | 108960 308.2 [ 10910( 101237
Cocfrn| 85.7 | 108375 85.7 | —
w | Cocfia | 392981 4856 | 393179 37398
Cocfn| 1.4 | 392359 1.4 -
w |.Coefa | 370668 576.8 | 370843 35038
Coefn| 1.4 | 369944 1.4 -

Table 1: Uncertainty coefficients for points at differd

ent depths

to computd/, figure 5 plots these uncertainty coef-
ficients when a sphere is moved from 2.5 meters to
5 meters with the same motion conditions.

The depth, however, isn’t the only variable that in-
fluences the uncertainty in tHé, estimation. It is
known that the path also plays an important role in
the accuracy of th&; estimated. We concluded in
[2, 3] that for pure rotational paths tHé, estima-
tion accuracy is poor. Furthermore, the amplitude
of the velocities also affects the results. To observe
these effects, figure 6 plots all uncertainty coeffi-
cients when the velocities are multiplied by a factor
of 2,4, 8, 16 and 32, in three paths: (A) pure transla-
tion through optical axis direction, (B) pure rotation
over the vertical axis and (C) translation through all
axis and rotation over vertical and horizontal axis.

Regarding figure 6 it can be observed that for the
DCCE method, in both formulations, the first un-
certainty coefficients{oe f;; andCoe f3;) grow up
with the increase of the velocities in the rotational
paths and don’t present variations in translational
and mixed paths. For the coefficients dependent
on the uncertainty in the velocitieg ¢ef,, and
Coefszs), it can be seen that they are around their
mean value and don’t increase or decrease. For the
ifferential approach of the binocular flow method
the coefficientCoefs, increases for all paths and
presents only slightly changesdrve fo,. In the dis-
crete formulation, however, it is observed that there
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is a decrease of the uncertainty coeffici€lef,,. References

It is also noticed that the rotational path presents] C. Colombo and A. Del Bimbo. Generalized
higher values of uncertainty for almost all coeffi- Bounds for Time to Collision from First-Order

cients and velocities. Image Motion. In7th IEEE International Con-
ference on Computer Vision, pages 220-226,
7 Conclusions Corfu, Greece, September 1999. IEEE.

In this paper the uncertainty propagation expressidd$ N. Goncalves. Estim@o de movimento em
of the third component of 3D velocity estimation are ~ Sequéncias de imagens estéreo - comparac
derived. Those expressions were written as function de dois métodos. Master’s thesis, Department
of the uncertainty on the disparity map and the un- 0f Electrical and Computers Engineering of the

certainty on the velocities (continuous and discrete). Faculty of Science and Technology of the Uni-

versity of Coimbra, 2002.
From the analysis of the expressions and the re- y

sults plotted it is possible to conclude that, for thg8] N. Gongalves and H. Araljo. Analysis of two
DCCE method, both in the differential and inthe dis- methods for the estimation of partial 3d veloc-
crete formulations, the critical factor is the disparity. ity. In Proc. of the 9th International Sympo-
There is an increasing tendency of the uncertainty sium on Intelligent Robotic Systems, Toulouse,
coefficients when the velocities themselves increase. France, 2001.

For the DV method, however, the two formulationm
have distinct behaviors. For the differential one, the
critical factor is the uncertainty on velocities and for crete formulations. IProc. of the 16th Interna-
the discrete one the critical factor is the uncertainty tional Conference on Pattern Recoghition, Au-
on the disparity. The former approach presents an gust 2002.

increasing of the uncertainty coefficients when ve-

locities grow up and the discrete approach present&a M. Harville, A. Rahimi, T. Darrell, G. Gordon,
decreasing in that situation. and J. Woodfill. 3d pose tracking with linear

In the DCCE method as well as in the DV method, in depth a.nd brightness constraints.Hroc. ”_;EE
both approaches, the coefficients of the critical fac- International Conference on Computer Vision,
tors were ever much bigger than the other ones. The Corfu, Greece, 1999.

difference is between one and five orders of magrp@s] K. Kanatani. Satistical Optimization for Geo-
tude. metric Computation: Theory and Practice. Ma-

It was also observed that the 3D point depth rela- chine Intelligence and Pattern Recognition - vol.
tively to the cameras is very important to the un- 18. North-Holland - Elsevier, 1996.

certainty coefficients. Those coefficients grow
in a high power (between 2 and 4) of the depth c
ordinate, so farther objects have higher uncertainty

which suggests that thg€; is more accurate when[8] K. ShanmuganDigital and analog communica-
closer points are used. tion systems. John Wiley & Sons, 1979.

Furthermore, some paths were compared and it
observed that in rotational paths the uncertainty ¢
efficients were bigger than in translational and even
mixed paths. This suggests that rotational motion is
more difficult to estimate.

N. Goncalves and H. Araljo. Estimation of 3d
motion from stereo images - differential and dis-

/] S. Palmer. Vision Science: Photons to Phe-
nomenology. MIT Press, 1999.

A. M. Waxman and J. H. Duncan. Binocular im-
age flows: Steps towards stereo - motion fusion.
|[EEE Trans. on Pattern Analysis and Machine
Intelligence, 8(6):715-729, Nov. 1986.



