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Abstract

This paper analyses two methods to compute the 3D
velocity of a navigating stereo head in the depth (Z)
direction. Both methods, which are function of the
optical flow and disparity maps, are presented in two
approaches: differential and discrete. All the expres-
sions of both methods in both formulations are stud-
ied within the scope of uncertainty propagation. This
provides a mean to point out the critical input vari-
ables for each method where special care in mea-
surements should be taken. Different paths (trans-
lational, rotational and mixed) as well as different
types of surfaces are compared.

1 Introduction

Motion estimation has been studied mainly within
the framework of rigid body motion. However, in
robotics literature it is easy to find the motion esti-
mation problem also stated in a different way: the
estimation of the time-to-impact (TTI) or time-to-
collision.

This quantity yields the time needed to impact
with the nearest obstacle if the motion remains un-
changed. It can be computed with the expression:

TTI =
Z

VZ
(1)

whereZ is the depth of the nearest obstacle andVZ
is the 3D motion of the vehicle in the depth (Z) di-
rection. Given the depth information the problem
becomes the estimation ofVZ .

In robotics applications it is very important to avoid
the collision with obstacles and the TTI performs
an important role in that matter. Physiological re-
searchers [7] stated that in the human (and animal,
in general) visual system the speed of self-motion
can not be determined visually using only the optical
flow pattern. TTI, however, can be directly measured
from the optical flow. There is no general agreement
if human uses or not this strategy in avoiding colli-
sions.

Colombo [1] points out that often the TTI is con-
fused with scaled depth (which considers only the
translational motion). This approximation is reason-
able when a narrow field of view is used but at the
image periphery gross estimation errors should be
expected. To avoid this model error, both transla-
tional and rotational components of rigid body mo-
tion should be considered.

In this paper we are interested in the computation of
the denominator of expression 1, that is the 3D ve-
locity of the navigating system in theZ direction.
This velocity is a function of the rigid body transla-
tional and rotational velocities which are in general
unknown. Two methods ([9, 5, 2, 4]) are presented
to computeVZ , using optical flow and disparity maps
(which provide the depth information used both for
VZ and for TTI) in stereo sequences. Both meth-
ods are formulated in a differential and discrete ap-
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proaches.

This paper analyses those methods within the scope
of uncertainty propagation. Errors in the input vari-
ables used to computeVZ will inevitably corrupt
their results. Even very small errors in the optical
flow and disparity information can produce a high
level of uncertainty in the values ofVZ. This fact
reduces the accuracy and the interest of such a com-
putation (it also suggests that a high number of mea-
surements have to be done) and that is why the quan-
tification of the uncertainty if fundamental.

The aim of this work is to quantify the variance of
the computed values forVZ which provides a mean
to point out the critical input variables in the meth-
ods. Those critical factors indicate which measure-
ments should be carefully done.

In the next section the problem of motion estimation
is stated and in the following two sections the differ-
ential and discrete approaches are presented. Sec-
tion 5 derives the uncertainty propagation expres-
sions for both methods (two approaches) and in sec-
tion 6 some experiments are described and results
are presented. Section 7 presents some conclusions
of the work.

2 Motion Estimation

Before the description of the methods used to com-
pute the 3D velocity, we shall first introduce the no-
tations and geometry used throughout this paper.

In this paper a 3D point in space is designated by its
coordinate vectorP = [X Y Z℄T and the world co-
ordinate system is coincident with the cyclopean co-
ordinate system, that is, centred in the middle point
between the optical centres of both cameras. The
origins of the local camera coordinate systems are
the optical centres at a distancef (focal length) of
the image plane. Both cameras are parallel to each
other separated by the baselineb. The flow induced
in the image planes is represented byv l = (vlx; v

l
y)

for the left image plane and byvr = (vrx; v
r
y) for the

right image plane.

Figure 1 shows the geometry of the stereo vision sys-
tem and the world coordinate system.

(xr,yr)
(xl,yl)
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Figure 1: World and stereo coordinate system

The model used for the 3D total velocity of a pointP
in space is the rigid body motion. LetV be the total
3D velocity of the pointP. As any rigid body motion
can be expressed by a translational component given
by t = [tX tY tZ ℄

T and a rotational component given
by 
 = [
X 
Y 
Z ℄

T the 3D velocity is given by
V = t+
�P.

Computing the components of the total 3D velocity
V, it is obtained the following expression:

V =

2
4tX + 
YZ � 
ZY

tY + 
ZX � 
XZ

tZ + 
XY � 
YX

3
5 =

2
4VXVY
VZ

3
5 =

2
4 _X

_Y
_Z

3
5 (2)

The third component of the 3D velocity -VZ - is the
velocity of the scene points in the direction of the
optical axis which is the quantity to be estimated
(providing a mean to compute the time-to-impact
(TTI = Z=VZ)).

Besides that, there are two possible approaches to
the problem ofVZ estimation: differential and dis-
crete. The two methods in both approaches are pre-
sented in the next sections.

3 Differential approach

In this section 3D motion estimation is considered
from a differential standpoint. The correspondences
across time are not known and the differential optical
flow is available. Two methods to estimate the 3D



velocity in theZ direction -VZ are presented. The
details and proofs of those methods are available in
[3, 2, 9, 5].

VZ - Depth Constraint

The change in the depth of a point or rigid body over
time is directly related to its velocity in 3D space. It
can be used this principle to relate the velocity in the
Z direction with depth.

The depth at instantt0 of a point should be the depth
at the instantt plus the displacement in theZ direc-
tion - VZ . This relationship is given by the follow-
ing expression, the linear Depth Change Constraint
Equation - DCCE (first order Taylor series approxi-
mation):

VZ = Zt + Zx � vx + Zy � vy (3)

whereZ(x; y; t) is the depth at a given timet, Zx,
Zy andZt its spatial-temporal derivatives.vx andvy
are the components of the optical flow.

VZ - Binocular Flow Constraint

The second method to computeVZ is based on the
differences between the flows induced by the move-
ment of a point in a stereo pair of images [9]. The
parallel stereo system is again used and is considered
to move rigidly with the scene.

Point P in figure 1, its projection in each image
plane ((xl; yl; f) and(xr; yr; f)) and the optical cen-
tres (Ol andOr) define two similar triangles, so that
the following relationship can be written:

Z

b
=

Z � f

b� (xr � xl)
(4)

Now, computing the temporal derivative of the equa-
tion 4, it yields:

VZ = �
bf

(xr � xl)2
� (vrx � vlx) = �

Z2

bf
�vx (5)

4 Discrete Formulation

This section presents the discrete versions of both
methods to computeVZ .

In the discrete formulation of DCCE and binocular
flow methods the depth information is assumed to
be available and so the disparity in timet andt0 (d
andd0) are known. Feature correspondences are also
available.

VZ - Discrete DCCE

The DCCE equation in the discrete formulation is
given by:

VZ = Zt + Zx�x+ Zy�y (6)

whereZt = Z(x; y; t0)� Z(x; y; t).

In the discrete formulation of the DCCE equation,
the image velocities were replaced by the finite dif-
ferences of the point image coordinates.

VZ Binocular Flow

The discrete binocular flow method equation is given
by:

VZ � �
ZZ 0

bf
(�xr ��xl) (7)

or, in a easier way to compute, after rearranging the
terms:

VZ � �
ZZ 0

bf
(d0 � d) (8)

5 Uncertainty Propagation

Given the two models forVZ , both in the differen-
tial and discrete approaches, it is important to anal-
yse the uncertainty propagation in the equations due
to uncertainty in the data inputs. As we shall see,
it is possible to determine the critical independent
variables that in presence of uncertainties affect the
recovery of motion.

The first step is to define the independent variables
for each expression:
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8>>>><
>>>>:

VZ1
(Zx; Zy; Zt; vx; vy) = Zt + Zxvx + Zyvy

VZ2

�
Z; vlx; v

r
x

�
= �Z2

bf
�vx

VZ3
(Zx; Zy; Zt; x; y; x

0; y0) = Zt + Zx�x + Zy�y

VZ4
(Z;Z 0; d; d0) = �ZZ0

bf
(d0 � d)

(9)
where the geometric parameters are assumed to be
known, that is, the baseline and the focal length.

Any noise in the values of the disparity maps, depth
data, their temporal and spatial derivatives and in the
binocular image flows affect the computation ofVZ .

To study the uncertainty propagation, the covariance
matrix of an expression that depends on an input
variable vector is computed. LetF be the function
vector to be estimated andS the vector with the in-
dependent variables. ConsiderS a n-vector random
variable andF a m-vector random variable function
of the n-vectorS. Notice that the relation between
F andS is nonlinear. If it is considered the mean
point of the random variables and computed the first
order approximation it can be written the covariance
matrix� of the function vectorF in the form [6]:

� =
�F

�S
� � �

�F

�S

T

(10)

where� is the covariance matrix of the input vari-
ablesS. �F=�S is the Jacobian matrix that maps
vectorS toF.

It is assumed that all variables are affected by Gaus-
sian random white noise with zero mean and stan-
dard deviation denoted by�i, wherei denotes the
variable. Also the noise in the variables is assumed
to be independent so the covariance matrix for this
input signalS is given by:

�jk =

(
�2

ii �! for j=k

0 �! for j 6= k
(11)

In this study the depth is computed from the dispar-
ity with Z = bf=d and so the uncertainty analysis
is within the scope of the disparity and optical flow
(differential and/or discrete). TheVZ expressions de-
pend on depth and depth spatial and temporal gradi-

ents. So, before analysing each equation, the uncer-
tainty propagation in the depth is first derived.

�2

ZZ =
�Z

�d
� �2

dd �
�Z

�d
=

Z4

(bf)
2
� �2

dd (12)

For the gradients of depth in relation to the variable
i (i 2 fx; y; tg) we have:

Zi =
�

�i

�
bf

d

�
= �

bf

d2
� di (13)

so that

�2

ZiZi
=
�
�Zi

�d

�Zi

�di

�
�

�
�2

dd 0

0 �2

didi

�
�

2
4�Zi

�d

�Zi

�di

3
5 (14)

The depth covariance expression becomes:

�2

ZiZi
=

�
2bf

d3
di

�2

� �2

dd +

�
bf

d2

�2

� �2

didi
(15)

It is now possible to concentrate the attention in the
expressions ofVZ for both the DCCE and DV meth-
ods.

5.1 Depth Constraint - Differential

For the first expression it yieldsF1 = [VZ ℄ andS1 =
[Zx Zy Zt vx vy℄

T .

The covariance matrix for this input signalS1 is
given by:

�1 =

2
666664

�2

ZxZx
� � � 0

�2

ZyZy

... �2

ZtZt

...
�2

vxvx

0 � � � �2

vyvy

3
777775
(16)

To compute the covariance matrix of the function
vector, equation 10 is used. It yields:



�1 =
�
vx vy 1 Zx Zy

�
�1

2
66664

vx
vy
1

Zx

Zy

3
77775 (17)

The resulting covariance matrix is a1 � 1 matrix
given by the expression:

�1 = �2

ZxZx
v2x+�2

ZyZy
v2y+�2

ZtZt
+�2

vxvx
Z2

x+�2

vyvy
Z2

y

(18)
showing the dependencies on the variances ofZi

(i 2 fx; y; tg). Substituting equations 13 and 15 in
equation 18 it yields:

�1 = �2

VZVZ ;1 =

�
2
bf

d3

�2 �
d2xv

2

x + d2yv
2

y + d2t
�
�2

dd+

+

�
bf

d2

�2

�
�
v2x�

2

dxdx
+ v2y�

2

dydy
+ �2

dtdt

�
+

+

�
bf

d2

�
2

�
�
d2x�

2

vxvx
+ d2y�

2

vyvy

�
(19)

5.2 Binocular Flow Constraint - Differential

Using a similar reasoning for the second method:

S2 =

2
4 Z

vlx
vrx

3
5 (20)

�2 =

2
4 �2

ZZ 0 0

0 �2

vlxv
l
x

0

0 0 �2

vrxv
r
x

3
5 (21)

and the Jacobian matrix is:

�F2

�S2
=
h
�2 Z

bf
�vx �Z2

bf

Z2

bf

i
(22)

The covariance matrix of the function vector, after
arranging the terms, is then:

�2 = 4VZ�
2

ZZ +
Z4

(bf)
2

�
�2

vlxv
l
x
+ �2

vrxv
r
x

�
(23)

and substituting equation 15 in equation 23 it is ob-
tained:

�2 = �2

VZVZ ;2 =
(2bf)

2

d6
(�vx)

2
�2

dd+

+
(bf)

2

d4

�
�2

vlxv
l
x
+ �2

vrxv
r
x

�
(24)

5.3 Depth Constraint - Discrete

In this case the independent variables vectorS is
given by:

S3 =
�
Zx Zy Zt x y x0 y0

�T
(25)

The Jacobian matrix is straightforward in this func-
tion. The covariance matrix, dependent on the depth,
yields:

�3 =

�
�F3

�S3

�T

�3

�
�F3

�S3

�
= �2

ZxZx
(x0 � x)

2
+

+ �2

ZyZy
(y0 � y)

2
+ �2

ZtZt
+
�
�2

xx + �2

x0x0

�
Z2

x+

+
�
�2

yy + �2

y0y0

�
Z2

y (26)

and substituting equations 13 and 15 in equation 26
it is obtained:

�3 = �2

VZVZ ;3 =

=

�
2
bf

d3

�
2 �

d2x (�x)
2
+ d2y (�y)

2
+ d2t

�
�2

dd+

+

�
bf

d2

�
2

�[ (�x)
2 ��2

dxdx
+(�y)

2 ��2

dydy
+�2

dtdt
+

+ d2x
�
�2

xx + �2

x0x0

�
+ d2y

�
�2

yy + �2

y0y0

�] (27)

5.4 Binocular Flow Constraint - Discrete

Using the same reasoning, the independent variables
vector for the discrete binocular flow method yields:

S4 =
�
Z Z 0 d d0

�T
(28)



Calculating the jacobian matrix and substituting it in
the first order approximation of the covariance ma-
trix of F4, it yields:

�4 =

�
1�

d

d0

�2

�2ZZ +

�
d0

d
� 1

�2

�2Z0Z0+

+
Z2Z 02

(bf)2

�
�2dd + �2d0d0

�
(29)

and putting together equation 15 and equation 29 it
is obtained:

�4 = �2VZVZ ;4 =

�
bf

d2

�
2

��2dd+

�
bf

d02

�
2

��2d0d0 (30)

5.5 Resolution of Depth Data

The uncertainty caused by random noise in the input
variables strongly affects the accuracy of the estima-
tion of VZ. Besides that, the finite resolution of the
disparity maps can be one important source of error
and affects even more theVZ estimation accuracy.
Figure 2 shows how the resolution of the disparity
can produce uncertainty in the position of a 3D point,
mainly in the depth coordinate.

The software used in our study to obtain the dispar-
ity fields has a finite resolution of1=16 of pixel. So,
some changes in the real depth of a point do not pro-
duce any change in the disparity and since depth is
inversely proportional to the disparity its value is cal-
culated with decreasing resolution as the value of the
depth itself increases.

Let �d be the minimum change in disparity. Then
the minimum change in depth that produce changes
in disparity is:

Z =
bf

d
�! �Z = �

1

1 + d
�d

�
bf

d
= �

1

1 + d
�d

� Z

(31)

Equation 31 indicates that for near objects small
changes in depth cause high changes in the dispar-
ity and for distant objects the minimum change in
depth that produce changes in the disparity is very
high.

Zl Zr

P

Left camera Right camera

Figure 2: Effect of finite resolution of disparity maps
in depth

So, let us consider a realistic situation:b = 130mm,
f = 5mm,�d = 1=16px and the pixel widthpw =

0:012mm.

In that particular case it is obtained, for example:

� d = 1 �! Z = 54167 �!�Z = �3186mm

� d = 5 �! Z = 10833 �!�Z = �133:7mm

� d = 10 �! Z = 5417 �!�Z = �33:7mm

� d = 20 �! Z = 2708 �!�Z = �8:4mm

� d = 50 �! Z = 1083 �!�Z = �1:4mm

However, if the resolution lowers to1=4px, for the
same case, it yields:

� d = 1�!Z = 54167�!�Z = �10833mm

� d = 5 �! Z = 10833 �!�Z = �515:9mm

� d = 10 �! Z = 5417 �!�Z = �132:1mm

� d = 20 �! Z = 2708 �!�Z = �33:4mm

� d = 50 �! Z = 1083 �!�Z = �5:4mm



(a) Left image (b) Disparity

Figure 3: Intensity images and disparity field for
synthetic world

It can be seen that the low resolution in dispar-
ity/depth data can produce large errors with increas-
ing distance to the optical centre of the camera. This
fact will produce significant errors in the computa-
tion of depth field gradients mainly for small motion
between two consecutive frames. This also means
that it will be difficult to recover motion for distant
points (unless high resolution disparity is used).

The perturbation caused by rounding/quantization
error (limited resolution) is given by the following
equation [8]:

�2

dd =
step2

12
(32)

wherestep is the minimum increment due to finite
resolution.

6 Experiments and Results

To analyse quantitatively the uncertainty equations
19, 24, 27 and 30, it was constructed a synthetic
world composed by several objects: front and lateral
walls, ground plane, a box on the ground, a cylin-
der and a sphere. Figure 3 shows the left image of a
synthetic stereo pair and the corresponding disparity
map.

This world was projected into two equal cameras
mounted in a virtual navigation robot with baseline
130mm, focal length5:0mm, square pixels width of
0:012mm. The virtual robot performed several paths
(translational, rotational and mixed paths) and the
data stored includes: left and right images, dispar-
ity in high resolution (map of floats) and continuous

and discrete image velocities.

The uncertainty equations represent the variance of
the estimation ofVZ in each point. Given the dispar-
ity maps, as well as their spatial and temporal gradi-
ents and the continuous and discrete velocities, the
uncertainty for each point using equations 19, 24, 27
and 30 can be computed as function of the variance
of the input variables.

For that purpose the following assumptions are
made: the variance of the differential and discrete
image velocities are equal for bothx and y coor-
dinates (�2

vv = �2

vlxv
l
x
= �2

vlyv
l
y
= �2

vrxv
r
x
= �2

vryv
r
y
)

and the same for the discrete velocities, and for the
gradients of the disparity�2

didi
= 0:5�2

dd since the
derivatives of the disparity maps are approximated
by a finite differences equation (for ex.,dt(x; y; t) �
0:5 � d(x; y; t+ 1)� 0:5 � d(x; y; t� 1)).

The uncertainty propagation equation are then given
by:

�j = Coefjd � �
2

dd + Coefjv � �
2

vv (33)

where j 2 f1; 2; 3; 4g and represent one of the
methods (DCCE/DIF, DV/DIF, DCCE/DISC and
DV/DISC respectively). Coefjd and Coefjv are
the weights of the disparity and velocities random
noises.

From the variance equations of all expressions and
from equation 31 it is clear that the distance of a
point to the optical centre is one of the most im-
portant factors to the uncertainty value (variance).
To observe this sentence, figure 4 plots the vari-
ance value for equation 19 where darker points rep-
resent values with low variance and lighter points
have higher variance (saturation for values equal and
above3000mm2). It can be seen that farther objects
have higher variances. The map for the uncertainty
equations�2 to �4 are not presented since they are
very close to one another.

Table 1 presents some values for the uncertainty co-
efficients. Two points from four objects were cho-
sen: (G)round, (B)ox A, (S)phere and (W)all. The
points are sorted in increasing order of its depth.

Regarding the values reported in table 1 it can be ob-
served that, as was expected, for farther objects the



Figure 4: Variance map for�1. Lighter point have
higher variance. It was used�2

dd = �2

vv = 0:0052

calculated from equation 32, corresponding to a res-
olution of1=4px.

�1 �2 �3 �4

G
Coefi1 13216 81.2 13275 10774
Coefi2 256.2 11993 256.2 –

G
Coefi1 63364 198.0 63517 57711
Coefi2 1299 61532 1299 –

B
Coefi1 52768 133.8 52825 48038
Coefi2 1.6 51563 1.6 –

B
Coefi1 57902 100.3 57958 51740
Coefi2 1218 56170 1218 –

S
Coefi1 94444 312.7 94516 87223
Coefi2 0.3 94050 0.3 –

S
Coefi1 108960 308.2 109100 101237
Coefi2 85.7 108375 85.7 –

W
Coefi1 392981 485.6 393179 373989
Coefi2 1.4 392359 1.4 –

W
Coefi1 370668 576.8 370843 350382
Coefi2 1.4 369942 1.4 –

Table 1: Uncertainty coefficients for points at differ-
ent depths

variance of theVZ estimation values is higher. It can
also be noticed that the DCCE method is much more
sensitive to the uncertainty in the disparity map than
to the uncertainty in the velocities. The binocular
flow method (DV), however, in the differential ap-
proach is sensitive almost only to the uncertainty in
velocities and, in the discrete approach, to the un-
certainty in the disparity. Furthermore, the coeffi-
cientsCoef11, Coef31, Coef41 (dependence on the
disparity) andCoef22 (dependence on the velocities)
present values very close to each other. This sug-
gests that when the uncertainty in the disparity is
similar to the uncertainty in the velocities, the un-
certainty ofVZ estimation values are very similar for
both methods in both formulations.

To see more explicitly the relation between the un-
certainty coefficients and the depth of the points used
to computeVZ , figure 5 plots these uncertainty coef-
ficients when a sphere is moved from 2.5 meters to
5 meters with the same motion conditions.

The depth, however, isn’t the only variable that in-
fluences the uncertainty in theVZ estimation. It is
known that the path also plays an important role in
the accuracy of theVZ estimated. We concluded in
[2, 3] that for pure rotational paths theVZ estima-
tion accuracy is poor. Furthermore, the amplitude
of the velocities also affects the results. To observe
these effects, figure 6 plots all uncertainty coeffi-
cients when the velocities are multiplied by a factor
of 2, 4, 8, 16 and 32, in three paths: (A) pure transla-
tion through optical axis direction, (B) pure rotation
over the vertical axis and (C) translation through all
axis and rotation over vertical and horizontal axis.

Regarding figure 6 it can be observed that for the
DCCE method, in both formulations, the first un-
certainty coefficients (Coef11 andCoef31) grow up
with the increase of the velocities in the rotational
paths and don’t present variations in translational
and mixed paths. For the coefficients dependent
on the uncertainty in the velocities (Coef12 and
Coef32), it can be seen that they are around their
mean value and don’t increase or decrease. For the
differential approach of the binocular flow method
the coefficientCoef21 increases for all paths and
presents only slightly changes inCoef22. In the dis-
crete formulation, however, it is observed that there
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Figure 5: Uncertainty coefficients - depth effect.
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Figure 6: Uncertainty coefficients - effect of the am-
plitude of velocities in three paths.



is a decrease of the uncertainty coefficientCoef41.

It is also noticed that the rotational path presents
higher values of uncertainty for almost all coeffi-
cients and velocities.

7 Conclusions

In this paper the uncertainty propagation expressions
of the third component of 3D velocity estimation are
derived. Those expressions were written as function
of the uncertainty on the disparity map and the un-
certainty on the velocities (continuous and discrete).

From the analysis of the expressions and the re-
sults plotted it is possible to conclude that, for the
DCCE method, both in the differential and in the dis-
crete formulations, the critical factor is the disparity.
There is an increasing tendency of the uncertainty
coefficients when the velocities themselves increase.

For the DV method, however, the two formulations
have distinct behaviors. For the differential one, the
critical factor is the uncertainty on velocities and for
the discrete one the critical factor is the uncertainty
on the disparity. The former approach presents an
increasing of the uncertainty coefficients when ve-
locities grow up and the discrete approach presents a
decreasing in that situation.

In the DCCE method as well as in the DV method, in
both approaches, the coefficients of the critical fac-
tors were ever much bigger than the other ones. The
difference is between one and five orders of magni-
tude.

It was also observed that the 3D point depth rela-
tively to the cameras is very important to the un-
certainty coefficients. Those coefficients grow up
in a high power (between 2 and 4) of the depth co-
ordinate, so farther objects have higher uncertainty
which suggests that theVZ is more accurate when
closer points are used.

Furthermore, some paths were compared and it was
observed that in rotational paths the uncertainty co-
efficients were bigger than in translational and even
mixed paths. This suggests that rotational motion is
more difficult to estimate.
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