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Nuno Gonçalves and Helder Araújo
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Abstract

In this paper we present a method for mirror shape recov-
ery and partial calibration for non-central catadioptric sys-
tems. This method is based on an existing algorithm for cal-
ibration of general vision systems. In addition only two im-
ages are required for both mirror shape recovery and par-
tial calibration instead of three as in the original algorithm.
On the other hand the knowledge of the parameters of the
primary vision system is required. In this paper collinear-
ity is used to constrain the position of three points in each
ray. Transformation matrices convert the local coordinates
(known) into world coordinates or equivalently, estimate
the motion of the calibration object between the two posi-
tions. The third point is defined as the intersection between
the incident and reflected rays. In order for three points be-
ing collinear four tensor equations must be satisfied. These
tensor equations depend on the motion parameters. Once
the motion parameters are computed, the ray in space cor-
responding to each pixel can be estimated. Its intersection
with the camera ray yields the coordinates of a mirror point.
Simulations and real experiments showed that the solution
is possible and accurate, although very sensitive to errors.

1. Introduction
To overcome the limitations of the vision systems made up
of perspective cameras, several different solutions have, in
the recent years, been proposed and studied. Even if the
usual pinhole camera is perfectly suitable for a wide variety
of applications, in several cases they can be advantageously
replaced by more complex optical setups involving the com-
bination of mirrors and lenses.

The development of the new configurations for vision
sensors has implied that several problems had to be tackled,
namely in what concerns the development of methods and
models for calibration, 3D reconstruction and others. One
important problem is the development of robust, practical
and easy calibration methods. On the other hand a relevant

issue is their generality.

Pinhole camera calibration methods are based on the ge-
ometric model that relates the 3D coordinates of a point
with the corresponding image. The calibration is then the
computation, as accurately as possible, of the projection pa-
rameters, namely the intrinsic parameters made up by the
focal length, the principal point and the distortion and skew
parameters, in the most common pinhole model.

Since for many of the new vision sensors their projection
models are unknown, Grossberg and Nayar [2] introduced
the black box camera model. For this model the correspon-
dence between each image pixel and a 3D direction in space
is estimated. The calibration of a vision system is then re-
garded as a list of correspondences between pixels and 3D
rays in space. In [6] this calibration is assumed to be avail-
able to solve the problem of motion estimation and 3D re-
construction on a structure from motion basis and in [4] the
correspondence problem is solved by assuming first a cen-
tral model and then the calibrating of the system is done
(the type of mirror is assumed to be known). Ramalingam
and Sturm [8] presented a generic method to calibrate any
vision system based on the black box model. This method
uses three images of a calibration pattern to recover the mo-
tion between the coordinate frames of the camera and of the
objects. Its application to omnidirectional cameras is pre-
sented in [7].

We are interested in the calibration of catadioptric vi-
sion systems. We thus present a constraint introduced to the
Ramalingam and Sturm [8] method in order to reduce the
amount of information used. The main change introduced
to the original framework is to assume that only two im-
ages of the calibration object are available. As the method
is based on collinearity constraints applied to sets of three
points, and the calibration object in each position provides
one point, the third point must be added. This point, if the
system is considered to be a catadioptric is the reflection
point on the mirror surface. Although the geometry of the
mirror surface is unknown, we express this third point as a
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Figure 1: Black box camera with incident direction.

general point in the reflected light ray imaged by the camera
and therefore its coordinates are defined up to an unknown
scale factor. This method was shown to perform with good
accuracy in general simulated and real experiments. Fur-
thermore, this method provides a mean to recover the mir-
ror surface since the scale factor is estimated. Since the
method recovers sparse points on the mirror surface, the
mirror shape can be then estimated using surface splines.

2. Related work and problem state-
ment

The generalized camera model is used so that to each pixel
corresponds one space ray as shown in figure 1 and no atten-
tion is given to the exact path taken by the light inside the
vision system. This model was introduced by Groosberg
and Nayar in [2].

Ramalingam and Sturm [8] introduced a calibration
method for the general camera model just described. This
calibration method provides the correspondence between
each pixel and a ray in space. This section reviews that
method.

Consider a non planar calibration object such that one
knows the relative positions of the points related to each
other, that is, the object model is available in a local refer-
ence frame. Three images of this object are taken by the
system to be calibrated, with the object in three different
positions.

Let us choose the world coordinate system so that it is
centered and aligned with the coordinate frame of the ob-
ject in the first position. For the pixel being considered, the
calibrated 3D ray passes in one point of the calibration ob-
ject in each different position. Let those points be called�,
�� and���, respectively in the first, second and third posi-
tions. Those points are in local coordinates. Figure 2 shows
the coordinate systems, their relations and the calibration
objects.

Consider the rotation matrix� � and the translation vec-
tor ��, as the components of the transformation matrix that
rigidly transforms the local coordinate frame of the second
object into the world coordinate system (that is simultane-
ously the first coordinate system, without loss of general-

Figure 2: Visualization of the framework presented in [8].

ity). Similarly, let ��� and ��� be the same transformation
components for the third object position (see figure 2).

Since the local points�, �� and ��� coordinates are
known but not the transformation matrices�� �� ��� and
����� ����, the ray that corresponds to the pixel being con-
sidered cannot be directly computed. The method then tries
to compute the transformation matrices.

The main idea of the generic calibration concept is that
since all these three points are imaged in the same pixel,
they must be collinear. The three points in the world coor-
dinate system are:
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Next consider a matrix with the expanded coordinates of
the three points:
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Since the three points are collinear, as stated by [8], the

rank of the matrix must be less than 3 and then all sub-
determinants of size�� � must be zero. This provides four
equations, and each of them corresponds to a trilinear equa-
tion in point coordinates. They are also trifocal calibration
tensors whose coefficients depend on the motion parame-
ters. We call� � to the tensor obtained by eliminating the
� � �� row and taking the determinant of the matrix.

The four trilinear equations in the motion parame-
ters have known coefficients of the form���

�

��
��

� , with
�� 	� 
 � ������ and where 69 different unknowns can be
counted. The equations written in an expanded form are
presented in [9].

The four tensor equations presented can be read by the
following expression:
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where� � ������, �� are the 69 unknowns and� �
� are

known coefficients.
The first three tensors have 30 non-zero components and

the tensor� � has 48 non-zero components. The method
presented by [8] uses only the first two tensors to recover
the transformation matrices. An algorithm is presented to
recover these matrices by first computing the�� elements
of tensor� � and� � and then by manipulating scale factors,
extract from the components recovered the elements of the
rotation matrices. From the rotation matrices and the same
tensors, it is shown to be possible to compute the translation
components. At least 29 points are used to solve the linear
systems.

Since the transformation matrices between the calibra-
tion objects and the world coordinate system are recovered,
the calibration step is straightforward. For each pixel, the
correspondent ray in space can be obtained by the join of
two calibrated points in the two of three calibration object
positions. 3D reconstruction, motion analysis and other ap-
plications can be performed with this framework.

The generalized camera calibration method reviewed in
this section can then be applied to several types of cam-
eras. For central cameras or for planar or linear calibration
objects some modifications to the algorithm must be made
in order to be possible to recover the motion parameters
and then perform the calibration itself (make the correspon-
dence between each pixel and a ray in space). Three views
of a non planar calibration object are needed for the general
case.

The calibration of a generic vision system is then made
using three views. In this paper we deal with catadioptric
vision systems and want to calibrate them with the smallest
possible number of images. As shown in the next section,
the number of images required can be reduced from three
to two if the primary optics is known. The problem is then
how can the generic calibration method [8] can be adapted
to catadioptric systems.

3. A Generic Catadioptric Camera
Calibration

In this section we present a novel method to calibrate gen-
eral catadioptric cameras that is based on the previously pre-
sented method. We show that two views of the calibration
object are sufficient to calibrate those cameras.

The method in [8] uses three points of a line to de-
fine four constraints in their coordinates such that they are
collinear. The collinearity of sets of three points in space
then defines the conditions for the calibration of the vision
system.

Figure 3: General visualization of the framework presented.

When using only two views of the calibration object
there are only two points that are imaged in the same pixel.
The collinearity constraints need however three points and
thus additional information must be added.

Often the vision systems are made up by a pinhole cam-
era and a mirror to change the light ray direction. The pin-
hole camera is sometimes substituted by an orthographic
one. If a system of this type is considered, and if the intrin-
sic parameters of the camera are assumed to be known, it
is possible to estimate the reflected ray that is captured by
the camera. The third point needed to define the collinearity
constraints belongs to this line direction.

Since the mirror geometry is unknown, to solve the prob-
lem we propose the use of a generic point in this reflected
ray (see figure 3). The point considered in the reflected ray
that is captured by the pinhole camera is given, after some
manipulations, by the following expression:

� �

�
���
��

��

��


��

	


� (4)

where the values of�� can be easily computed as function
of the intrinsic parameters and the image coordinates and
where the unknown is now the scale factor
.

Regarding the coordinates of point� in equation 4,
which is the reflection point, one can see that they differ
from the coordinates of point� used by method in [8] only
in the fourth coordinate.

Similarly, the points being considered are then� (the
point where light changes its direction),� � and��� (the
points in the incident direction that intersect the calibration
object in the two positions). Multiplying these point coor-
dinates by the corresponding transformation matrices to ex-
press all three points in the world coordinate system (notice
that the point� is already expressed in the camera and thus
world coordinate system) then yields the following� � �
matrix:
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By expanding all sub-determinants and since they must
be equal to zero for the points to be collinear, the four ten-
sor expressions are similar to those in the original method,
where the only difference is that where we had�� it is now

��. We do not explicitly write down those equations due
to lack of space.

Since all the first three tensors� �, � � and� � depend on

�� and since the value of
 is different from point to point,
the number of unknowns increases dramatically. However,
if one considers tensor� �, one notices that it doesn’t de-
pend on the value of
�� (it is the tensor obtained when
the fourth row of the point matrix is suppressed).

This fact allows the computation of the solution for ten-
sor� � since all the coefficients are known and therefore all
the unknowns of tensor� �, from row 22 to row 69 can be
linearly estimated. Since tensor� � has 48 unknowns and
they are defined up to an unknown scale factor, at least 47
points are needed to recover the tensor� �.

The remaining unsolved three tensors still depend on the
value of
 and our proposal is to split their equations in two
parts, such that:
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where� � ������ and where only the second term of the
right hand side depends on
. Since the values of� � for
� � �		��
��are now estimated by the solution of the tensor
� �, one can rewrite this equation in the form:
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where�� �
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�
� .

For each image point we then have different values of��

and the unknown introduced is
. The solution for the re-
maining unknowns (including the values of
), can be com-
puted using an equation of the form of 7 for each pixel. The
expressions are expanded in table 1.

Each pixel used in the estimation of the remaining coef-
ficients provides three equations (one for each tensor) but
introduces a new unknown
�. The balance is two equa-
tions for a pixel and since one has 21 unknowns (not con-
sidering the
� unknowns), at least 11 pixels are needed to
recover linearly the remaining motion parameters, up to a
scale factor.

The three tensors are then solved simultaneously. The
extraction of the motion parameters from matrices� � and
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Table 1: Expansion of tensors� �, � � and� � when some
of the coefficients are already estimated by the tensor� �

(incorporated in the values of��). Each pixel used adds a
new unknown -
� and provides three equations.

� �� is then performed similarly to the method described in
[8], including the solution for the scale factor.

Solving for the tensors� � to � �, provides a solution
for the scale factor
� for each pixel. The fixation of the
scale factor gives the reflection point on the mirror surface
and therefore the algorithm provides a point on the mirror
for each pixel calibrated, allowing the recovery of the mir-
ror shape. To approximate the shape of the mirror B-cubic
spline surfaces were used.

4. Discussion of the general solution
In this section we discuss the method just presented for
solving the partial calibration and mirror shape recovery.

The existence and uniqueness of the solution depend on
the type of camera and on the distribution of the calibration
points in space. As noticed by [8], the calibration object
should be non planar and the camera should be fully non
central, to avoid the need to add additional constraints to
the problem.

Since the first step of our method is to solve for tensor
� �, which has 48 unknowns, up to a scale factor, the matrix
obtained to solve it should ideally have rank of 47, such that
its null space is the solution required. If, however, the rank
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would be 48 (due to numerical errors), the solution can be
taken to be the last column of the matrix� in a singular
value decomposition basis.

General simulations and real experiments suggest that
full rank in the fourth tensor is generally obtained. Depend-
ing on the camera and on the calibration object (non-planar)
the rank obtained for the solution of tensor� � is generally
the 47 required. The solution of the tensor� � coefficients
is then recovered up to an unknown scale factor.

For the second step, which is to solve the three tensors
� � to� � simultaneously taking into account the solution of
the first step, we also obtain generally unique solutions up
to a scale factor. Both steps are thus straightforward and
can be solved without the introduction of additional infor-
mation.

5. Experiments
In this section we present the experiments performed with
simulated data and real images.

We tested our method using two different catadioptric
systems: a pinhole camera with a hyperbolic surface mirror
and an orthographic camera with a spherical surface mirror.
The former is the model of our catadioptric system used
in the experiments with real images. Both these systems are
non central since the camera optical center was placed away
from the hyperboloid focus in the first system (in which case
the system would be central, see [1, 5] for a discussion on
the restrictions to impose to the relative positions of cam-
era and mirror to achieve central projection) and since for
spherical mirrors the projection is always non central.

This experimental section is divided in two parts. In the
first part, using simulated data, the results obtained for the
transformation matrices are presented when the full algo-
rithm is run. Several tests were run and the results presented
are representative of them. In the second part the results ob-
tained with real images are presented.

Simulation tests

To analyze the behavior of the estimation of the transforma-
tion matrices when data is affected by error, three sources
of error were considered: the structure points of the calibra-
tion object in the second image (� ��), the image coordinates
(�� �) and the focal length� . Therefore we added gaus-
sian white noise with zero mean in those variables, one at a
time, and measured the error in the values of the estimated
variables. The estimated variables estimated: the angles of
rotation, the amplitude and the direction of the translation
vector. Each test was repeated 20 times and the root mean
square (RMS) value of the relative error was used in the
plots presented.

For the errors in the rotation parameters, we decided to
use the rotation angles instead of the elements of the ro-

��� �� �
1 5e-3 20
2 2.5e-3 10
3 1.3e-3 5
4 6.3e-4 2.5
5 3.1e-4 1.3
6 1.6e-4 6.3e-1
7 7.8e-5 3.1e-1
8 3.9e-5 1.6e-1
9 2.0e-5 7.8e-2
10 9.8e-6 3.9e-2
11 4.9e-6 2.0e-2
12 2.4e-6 9.8e-3
13 1.2e-6 4.9e-3
14 6.1e-7 2.4e-3
15 3.1e-7 1.2e-3
16 1.5e-7 6.1e-4

Table 2: Correspondence between the number of the test
and the noise added to data.

tation matrices since the number of degrees of freedom in
a rotation matrix is three and their elements are related to
each other. To compute their values from the rotation ma-
trix we used a simple convergent nonlinear algorithm that
approximates the given rotation matrix from three given ro-
tation angles ( [10]). Convergence was always achieved.
The energy of the gaussian white noise added is relatively
small since we noticed that for high values of this energy
(measured by the standard deviation) the estimation errors
are high.

In all the figures shown in this experimental section, the
abscissa axis is logarithmic, such that the next axis value is
twice the current value. The number plotted in the abscissa
axis is the℄ of the test. Table 2 shows the correspondence
between the test number and the standard deviation of the
noise added to the respective parameters.

Figure 4 plots the RMS value for the relative error in (a)
the estimation of the rotation angles�	 and�
 , (b) in the
amplitude of the translation vector and (c) the RMS angle of
error (in degrees) in the direction of the translation vector,
when gaussian white noise with zero mean is introduced to
the image coordinates (�� �) of the points in the first image.
The results for the transformation matrix� � are plotted in
solid lines and the results for the transformation matrix� ��

are plotted in dashed lines. For test℄�, the added noise has
standard deviation of�� � � � 	��� (see table 2 for the
noise errors). The color scheme is: red -�	 and green -
�
 . For lack of space and since they are qualitatively sim-
ilar to these ones, we omit the results for the estimation of
the transformation matrices� � and� �� when noise is added
to the structure coordinates of the calibration object in the
second image -���.
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Finally, figure 5 plots the RMS value of the relative error
in (a) the estimation of the rotation angles�	 and�
 , (b)
in the amplitude of the translation vector and (c) the RMS
angle of error (in degrees) in the direction of the transla-
tion vector, when gaussian white noise with zero mean is
addded to the focal length (intrinsic parameter). The results
for the transformation matrix� � are plotted in solid lines
and the results for the transformation matrix� �� are plotted
in dashed lines. For the test℄�, the added noise has standard
deviation of	���� 	��� (see table 2 for the noise errors).

¿From the figures one can see that the estimation error
rises quickly as the noise energy added to the data inputs

is increased. This sensitivity is higher for the translation
vector (amplitude and direction) than for the rotation an-
gles. Furthermore, high values of estimation error are gen-
erally obtained. It is also noticed from the figures that the
estimation of the transformation components is more robust
to the noise in the focal length (intrinsic parameters) than to
the noise in��� and in the image coordinates (�� �).

As remarked in the introduction, this framework pro-
vides a means to recover locally the shape of the mirror
surface since the computation of the reflection points on the
surface is possible. Point� which is on the reflected ray is
scaled by the scale factor
 to be on the mirror surface. By
solving for tensors� �, � � and� � simultaneously one also
obtains the solution of the scale factor for each point (see
equation in table 1). For each pixel/point used one has one
point on the mirror surface. To locally recover the shape
of the mirror surface several techniques can be used. For
easy visualization we used cubic B-spline surfaces to fit the
points set. Since we know that the mirror is hyperbolic one
could fit data to an hyperboloid. However, in a realistic
scenario one hasn’t this information and so splines are best
suitable. Figure 6 shows the reconstruction of the mirror
surface as well as the true surface. It can be observed that
the mirror shape is accurately recovered.

Experiments with real images

Our catadioptric system is made up of a pinhole camera and
a hyperbolic mirror. Several tests were performed using
those images. Figure 7 shows an image taken by the real
system.

Table 3 shows the estimated values and their correspond-
ing relative errors for two representative tests: when the mo-
tion is composed by translation in two axis (above rows) and
when there are rotations in two axis (bottom rows).

The results presented in the table 3 prove that this cali-
bration method gives good results in the estimation of the
transformation matrices that allow for the pixel-ray calibra-
tion of the catadioptric system. However, those results are
somehow very sensitive to noise and better results are ex-
pected if the primary optics is more carefully calibrated.
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Figure 4: RMS relative error in the estimation of the trans-
formation matrices� � and� �� when gaussian white noise
with zero mean is added to the image coordinates (�� �).
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Figure 5: RMS relative error in the estimation of the trans-
formation matrices� � and� �� when gaussian white noise
with zero mean is added to the focal length.

Figure 6: Local reconstruction of the mirror shape using
cubic B-spline surfaces. The bigger panel is the true mirror
surface and the smaller is its surface reconstructed by cubic
B-splines.

Figure 7: Real image taken by our catadioptric system with
a hyperbolic mirror.

6. Conclusion and directions
In this paper we presented modifications introduced to the
generalized calibration method presented in [8]. These
changes aim at taking into account restrictions that are spe-
cific to a general catadioptric vision systems. The only re-
striction imposed to the vision system is that it must be pos-
sible to recover the reflected light ray direction that is im-
aged in any pixel using no more than the intrinsic param-
eters of the pinhole or orthographic camera and the pixel
image coordinates. These modifications rearrange the equa-
tions used in the original method in such a way that only two
images are required instead of three.

Calibration is performed in the sense that for each image
pixel there is a correspondent ray in space. Collinearity con-
straints over three points in each ray are used. If a calibra-
tion object with known local coordinates is imaged in two
different positions, the points imaged in the same pixel can
be used to apply the collinearity constraints. These points
are known in local coordinates and two transformation ma-
trices convert their coordinates into world coordinate (with-
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�� �� �
 �� �� �

GT -50.0 0.0 50.0 0.0 0.0 0.0
Est -43.59 0.09 45.64 -0.16 0.17 -0.08

Err 
 12.82 - 8.72 - - -

GT 0.0 0.0 0.0 ���� 0.0 ��	
Est 2.6 -0.4 -3.9 -0.58 -0.13 1.66

Err 
 - - - 7.69 - 5.68

Table 3: Results with real images. The rotation angle are
expressed in radians and the translation coefficients in��.
GT stands for Ground truth values and Est for the estimated
ones.

out loss of generality the camera coordinate system is as-
sumed to be the world reference frame). The third point is
defined by our method as belonging to the recovered ray that
entered the camera. The third point is thus elsewhere in this
ray. In order for those three points to be collinear they must
respect four tensor equations that depend on their local co-
ordinates and on the components of the transformation ma-
trices, that is, they depend on the motion parameters. Once
those motion parameters are recovered, the ray in space that
corresponds to each pixel can thus be estimated.

The estimation process is then divided in two steps. The
first step aims at recovering the tensor� � coefficients. To
recover these coefficients at least 47 points are needed.
Some of the coefficients (that depend on the motion param-
eters) are recovered up to a scale factor.

The experiments made so far suggest that generally the
first step allows the recovery of tensor� � coefficients up
to a scale factor. However, as was also noticed by [8], for
central cameras or some non central configurations there are
rank deficiency problems (the higher the non centrality of
the camera the smaller this deficiency).

When the first step is concluded, its results are used to
compute the remaining motion parameters contained in ten-
sors� � to � �. All experiments performed in this second
step showed that the reconstruction of those remaining pa-
rameters is stable and in general a unique solution is easily
obtained, since no rank deficiency problem arises.

It was also shown that the mirror shape can be recov-
ered using this calibration method. After recovering the
transformation matrices, the coordinates of the third cali-
bration points over the reflected ray can be recovered. As
these points belong to the mirror surface, mirror shape re-
construction can be performed. We showed that with cubic
spline surfaces the mirror surface can be well approximated.

The main conclusion to draw is that for non-central cata-
dioptric systems it is possible to calibrate the system with
only two images. Since the method showed to be sensitive
to noise, care should be taken in the the primary optics cal-
ibration.

In the future we intend to study how the non-centrality of
the system affects the estimation of the motion parameters
(and thus the calibration of the system) and how additional
constraints can be added to solve the problem of noise sen-
sitivity.
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