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Abstract

This paper describes a new method to calibrate the intrin-
sic and extrinsic parameters of a generalized catadioptric
camera (central or non-central) if correspondences between
incident lines in space and pixels are provided (black box
model calibration) in an arbitrary world reference frame.
The parameters calibrated are the intrinsic parameters of the
pinhole camera, the coefficients of the mirror expressed by
a quadric, the position of optical center of the camera in the
world reference frame and its relative orientation. A projec-
tion model relaxing Snell’s Law is derived. The deviations
from the Snell’s Law and the image reprojection errors are
minimized by a bundle adjustment method. Rotations are
expressed by quaternions. Simulations and real experiments
show good accuracy and robustness for this framework. A
well-behaved algorithm to automatically generate the initial
guess to be used in the bundle adjustment is also presented.

1. Introduction
Some recent calibration methods provide the correspon-
dence between pixels and directions in space. They are
based in the black box model introduced by Grossberg and
Nayar [3] for which the calibration is no more than this list
of correspondences (pixel�� 3D line). The vision system
is therefore considered a black model and the path of light
rays is unknown as well as the reflection model.

Grossberg and Nayar [3] presented a method to calibrate
in this sense general vision systems with structured light
patterns and Ramalingham and Sturm [7] have also formu-
lated a method to calibrate generalized cameras. Once the
calibration is performed the results can be applied to 3D re-
construction, motion analysis and several other applications
as done by Pless [5], Ramalingam at al. [6] and others.

The generalized method presented by Ramalingam and
Sturm in [7] uses no more than three pictures captured by
the vision system in three different positions and the local
geometric description of a tridimensional calibration object
to calibrate the system. It provides the correspondence be-

tween each pixel and a 3D ray in space expressed in the lo-
cal coordinate system of the calibration objects in one of the
three positions. That means that no information about the
projection itself is present in the calibration and therefore
nothing is known about the intrinsic parameters and type of
the camera.

Catadioptric vision systems made up of cameras and
specular surfaces are specially suitable to these types of
calibration methods. Indeed, in those cases, the projection
model is described by a high number of intrinsic parame-
ters which are not considered if the calibration is performed
in the sense of the back box model. Furthermore, a closed
form projection model exists only when the projection is
central (central catadioptric cameras, see [1, 2, 10]) and no
explicit projection model is known for non-central catadiop-
tric cameras ( [4]). It is then important to find out robust
and accurate methods to calibrate the intrinsic parameters
of catadioptric cameras with special relevance for the non-
central ones.

The class of bundle adjustment methods for camera cali-
bration requires the knowledge of the projection model that
maps 3D points to the image plane such that the jacobian
of the projection equations can be evaluated. Since there is
no closed-form projection model for non-central catadiop-
tric cameras, this class of methods has not been used for
calibration of non-central catadioptric cameras. The com-
plexity and the non-linearity of the projection model of cen-
tral catadioptric cameras has also prevented the use of these
methods for these cameras.

We are interested in the calibration of the intrinsic and
extrinsic parameters of general catadioptric cameras. A pre-
vious/first calibration in the sense of back box model is as-
sumed, that is, we assume that the correspondence pixel
�� 3D line is already provided by using the Ramalingam
and Sturm method [7] or any other suitable method.

In this paper, we propose the application of the class of
bundle adjustment methods for camera calibration to gen-
eral (central or not) catadioptric cameras. The explicit com-
putation of the jacobian of the projection equations is pos-
sible due to the relaxation of the Snell’s law constraint. The
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non existence of the projection closed-form equations (and
hence the non existence of means to provide a reflection
point in the mirror surface) is circumvented by the fact that
there are available correspondences between pixels and di-
rections in space and not between pixels and points in space.
The intersections between the direction rays and the mirror
surface provide the reflection points.

The intersections between the directions in space and the
mirror provide the reflection points. Bundle adjustment is
then applied to the projection model made up with the fol-
lowing parameters: position of the camera in the reference
frame of the first calibration (3 parameters); orientation of
the camera (4 parameters, rotation quaternions are used to
reduce the number of parameters and simultaneously to de-
crease the non-linearity of the equations); pinhole intrinsic
parameters of the camera (4 parameters) and the parameters
of the quadric mirror (9 parameters). The total number of
parameters of the state vector is 20.

In this paper we show that bundle adjustment methods
are suitable for the calibration of general catadioptric cam-
eras and that the convergence is generally achieved in both
simulations and real experiments. Since bundle adjustment
methods require an initial guess for the state vector, we also
provide an automatic algorithm to compute the initial guess.

In the next section the problem is described and dis-
cussed. Some considerations regarding the mathematical
tools used are presented and the notation is also presented.
Next, section 3 presents the projection model relating, in
closed-form, the 3D lines in space with a point in the image
plane. In section 4 we discuss the minimization of the cost
function by a bundle adjustment method and we also dis-
cuss and present an automatic algorithm to compute the ini-
tial guess from where the bundle adjustment minimization
should start. Section 5 presents the experiments and the
results obtained. Finally, section 6 contains the main con-
clusions and the future directions of the work.

2. Problem statement
Consider a catadioptric vision system made up of a pin-
hole camera whose intrinsic parameters are given by ma-
trix � and a specular mirror surface given by the quadric
� � ����� with �� � � ������. The camera is positioned in
point���� expressed in the world reference frame. The
orientation of the pinhole camera, is given by the unitary
rotation quaternion����. Consider now a set of correspon-
dences between pixels�	� 
� in the image plane and 3D di-
rections expressed in the world coordinate system. The di-
rections in space are represented here by two points� and
� also expressed in the world coordinate system. Figure
1 shows the relative position of the camera and the set of
directions in space representing the incident light rays.

In this paper we will use quaternions to represent ori-
entation and rotation. Quaternions are quadruples of real
numbers defined as� � �� ��	� �
� ���� � ����. For de-
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Figure 1: World reference frame and the catadioptric sys-
tem.

tails regarding the algebraic properties of quaternions see,
for instance [9]. Quaternions are used to represent position
vectors in 3D space such that a point� � ����� ��

� is
represented by the quaternion� � ��� ����� ���. Quater-
nions can also be used to perform rotations about an axis.
Suppose you have a point� in space and want to perform
a rotation about an arbitrary axis. This rotation can be de-
composed into three elementary rotations about the carte-
sian orthogonal axis�� , �� and�� by, respectively,
������, �
�� and�����. The expressions for the unitary ro-
tation quaternion that transform the coordinates of point� 

are the following:

 � ���
����������� 	 ���
����������� (1)

�	 � ���
����������� 	 ���
����������� (2)

�
 � ���
������������ ���
����������� (3)

�� � ���
������������ ���
����������� (4)

where�
 � �
���
, �� � �������
 and�� � ������
.
The equation that transforms point� into point� �

 is:

� �

 � ������
��
��� (5)

where the multiplication of two quaternions�� �
������ and �� � ������ is given by ���� ��
�� � ��

�
��� ��� 	 ��� 	 �� � ��

�
.

Quaternions, instead of general rotation matrices, are
used since the number of parameters to estimate is fewer (4
parameters using quaternions and 9 using rotation matrices)
and because, as pointed out by Triggs at al. [8] generally
quaternions present better properties to apply in bundle ad-
justment methods since usual Euler angles present several
numerical problems and pitfalls and also because quater-
nions have a behavior closer to linear.

In this paper we propose to calibrate the intrinsic and
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extrinsic parameters of the vision system. The parameters
to calibrate are:

� � �

�
�� � 	�
� � 
�
� � �

�
� - intrinsic parameters of the pin-

hole camera

� ���� �
�
�� �� ��

��
� ���� � �� ��	� �
� ����

�

� � �

�
��
��� ��� ��� ���
��� ��� ��� ���
��� ��� ��� ���
��� ��� ��� �

�
��

where we consider that (1) the rotation quaternion� ��� is
unitary, (2) the quadric surface matrix� is symmetric� �� �
��� and (3) since it has 9 degrees of freedom we consider the
element��� � �.

Bundle adjustment methods require one cost function
that depends on the parameters to be estimated and also re-
quires the computation of its jacobian. Usually this class of
methods has been used with projection models that map 3D
points in space into image points. The cost function is of-
ten the weighted Sum of Squared Errors where the error is
the algebraic difference between the measured position of
the point in the image and the estimated or predicted one.
However, in our framework we do not use points to project
but rather use correspondences between lines in 3D-space
and points in the image plane. In the next section we derive
the projection model expressions 3D line�� image point
and its jacobian.

3. Projection model
The specular reflection is modelled by Snell’s Law. Ac-
cording to the Snell’s Law incident and reflection angles
are equal. However, in our model this constraint is relaxed.
Without this relaxation and restricting the projection model
to the specular case, most of reflected rays would not be im-
aged (since they wouldn’t pass at the camera optical center)
and then there would not be an algebraic measure to min-
imize. Our projection model is rather simplified by con-
sidering the projection in the image of the reflection point,
computed as the intersection between the 3D line in space
and quadric surface as shown in figure 2. The error result-
ing from not considering Snell’s Law is taken into account
by incorporating it in the bundle adjustment cost function.
This is done by using the angles between the reflected ray
according to Snell’s Law and by directly projecting it into
the image (relaxing the projection law).

The quadric surface expressed by matrix� in the world
coordinate system is intersected by line� defined by the 3D
points� and� in cartesian coordinates. An arbitrary point
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Figure 2: Projection model mapping lines in space (given
by couples of points�� and��) to pixels in image. Notice
that Snell’s law is relaxed so that the incident and reflection
angles are not constrained to be equal.

in the line is expressed as� � �	�� where the parameter
� is the solution of the incidence quadric relation:

�
�� �

�
�

	
�
�



�
�
�� 	 ��� �

�
�

	
�	 ��

�



� �

(6)
Equation 6 is a quadratic equation on� that depends on

the quadric mirror coefficients and also on points� and�
that define the line in space. The reflection point on the
mirror surface is then obtained by selecting the appropriate
root of the quadratic equation.

Suppose now that the unitary rotation quaternion that
contains the orientation of the pinhole camera in relation
to the world coordinate system is���� � �� ��	� �
� ���� �
�������. We want to obtain the reflection point� expressed
in local camera coordinates. However, since quaternions do
not perform general transformations rather than pure rota-
tions, a previous translation has to be applied to the points
in the world reference frame.

The reflection point expressed in the local camera refer-
ence frame is then obtained using the equation:

�����
� ���� ���� ���� �� �

��
��� (7)

where�����
� ��� ���� � is the position quaternion rep-

resenting the reflection point in local camera coordinates
and������� � is the position quaternion that represents
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the reflection point in world coordinates translated by a vec-
tor corresponding to the position of the camera. Its expres-
sion is hence the following:

��� ���� � �

�
���

�
��� 	 ��� � ��
�� 	 ��� � ��
�� 	 ��� � ��

�
�
�
� (8)

Using equation 8 in equation 7 and expanding, it yields
the expression for the cartesian coordinates of the reflection
point in the local camera reference frame as:

���� ������
� ��	 �� � ���� ������	

	 � ��	 �� � ���� �	

	 
���� � ��	 �� � ���� �

� ����� � ��	 �� � ���� ��� ���� (9)

The projection of the reflection point in the image plane
is given by:

� �

�
�����
��

�
� � ������ (10)

where� is the matrix of the pinhole intrinsic parameters
and� is the scale factor. Since we are interested in the
image coordinates themselves, to eliminate the scale factor
we divide the first two coordinates by the third and expand-
ing the equations it yields:

�
	 � ��

��
�

������
�������

��������

�����


 � ��
��

�
������

��������

�����

(11)

which is the projection model for an arbitrary catadioptric
system considering that the correspondences pixel�� in-
cident directions are provided. We emphasize that this pro-
jection model is an approximation since it relaxes Snell’s
Law of reflection. This is done in order to obtain closed
form projection equations to use in bundle adjustment. The
errors due to the approximation in this model are minimized
by the non-linear optimization algorithm, as discussed in
the next section.

4. Bundle adjustment
Bundle adjustment methods are generally suitable for large
scale problems with a large number of variables and of-
ten with a high degree of non-linearity. In general a non-
linear iterative multidimensional minimization algorithm is
applied to the state vector starting from an initial position.
The function to be minimized, the cost function, is usually
a sum of squared errors between predicted and measured

positions in the image plane. There are several minimiza-
tion strategies (see [8] for a detailed discussion) based on
the derivatives of the cost function - the jacobian, since the
problem is multidimensional.

In our problem, the cost function is the sum of squared
errors given by:

���� �
�




��
���

���������
�������	�� ��� � ������

�
�

(12)
where������ � ������ ���� ���

� and����� �
�
	� 
�

��
and�� is the angle between the reflected ray computed by
the projection model of section 3 and the reflected ray com-
puted according tp the Snell’s Law.�� and�� are weight
values applied to the reprojection error (�� ) and to the an-
gular error (��). Those values can be defined arbitrarily to
be the one but a better choice can be made.x represents the
state vector whose elements are as follows:

� � [� � 	� 
�  �	 �
 �� �� �� ���

�� ��� ��� ��� ��� ��� ��� ��� ��� ���]
�

(13)

Consider that!� is the reflected ray computed according
to the model presented in section 3 and that! �

� is the true
reflected ray computed according to the Snell’s Law. As-
sume that they are expressed in the world coordinate frame.
Their equations are:

����
����
! �

� � ���� �� �

�
���� � �"� 	 �#��

�� � �"� 	 �#��

�� � �"� 	 �#��

�
��

!� � !� � 
�! �
� $�$

(14)

where!� is the unit incident ray and$ is the normal vector
to the quadric surface on the reflection point�. For the
incident ray we have:

!� �
���

	���	
(15)

To compute the normal vector to the quadric we take into
account that the normal to the quadric is the direction vec-
tor of the tangent plane in the reflection point�. Hence, the

tangent plane is given by�� � �
�
� �

��
and as the di-

rection vector of the plane�� is made up by the first three

components of it, we have$ � ����

�
� �

��
, where

���� is the rectangular matrix made up by the first three
lines of the quadric mirror matrix�.

The second element of the cost function can then by
computed using the following equation for the cosine of the
angle between! �

� and!�:
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�� ����� �
! �

�
�
!�

	! �

�		!�	
(16)

The computation of the derivatives of the image coordi-
nates�� corresponding to an arbitrary incident ray in space,
with respect to the state vector components, gives us the
jacobian%� that has to be computed. The explicit expres-
sions for the jacobian are here omitted due to lack of space.
However, they are straightforward to derive.

%� �

�
������������

!�
!�

!�
!�

!�
!�

!�
!�

!�
!��

!�
!��

!�
!��

!�
!��

!�
! 

!�
! 

!�
!�

!�
!�

��� ���
!�
!��

!�
!��

�
������������

(17)

The jacobian of the deviation from Snell’s Law%� is also
calculated by taking the derivatives of the expression of the
� �� with respect to the components of the state vector.
The explicit expressions are omitted due to lack of space.
The cost function jacobian% is then the sum of the partial
jacobians% � %� 	 %�.

Several optimization methods exist that, using the ja-
cobian, iterate in the state vector space until convergence
to a minimum. The most used are the Newton and the
Levenberg-Marquardt methods. While the former is eas-
ier to implement, the latter is more suitable when numerical
instabilities perturb the solution and also when matrix% �%
is singular. As described in the experimental section, we
chose to use the Levenberg-Marquardt method to minimize
the cost function since we generally obtained better results.

Initial Estimate

Regarding the initial guess, usually some information about
the camera and the mirror is provided by the manufacturers.
However, no information is in this case available for the po-
sition and orientation of the camera in the world reference
frame. Although the information available can enhance the
quality and precision of the first guess of the optimal va-
lues, we wish to evaluate the robustness of the algorithm
without this kind of data. A totally automatic algorithm
to provide the first estimate has obvious advantages. We
will next present some heuristic ideas to compute one ini-
tial estimate and we emphasize that this initial guess can be
enhanced whenever additional information is available.

Since the incident light directions are known at the be-
ginning, we propose to center the quadric mirror in the point
closest to all the lines in space. This point is straightforward
to compute. The mirror can then be centered in this point.
We propose the use of a reflecting sphere. And since no
information about the dimensions of the mirror is a priori

available, we can define the size of the mirror such that all
the reflection points� are on one half of the surface. This
provides an initial estimate for the quadric matrix in world
coordinates -��.

The position where to place the camera can be estimated
if we compute the reflection rays using the Snell’s Law ap-
plied to the incident rays on the sphere. The optical center
of the camera is placed in the closest point to all the re-
flected rays (ideally they would intersect all in the optical
center). The position of this point gives us the translation
vector components (�� , �� and��).

The next step is to calculate the intrinsic parameters of
the pinhole camera. To simplify we consider that the prin-
cipal point is positioned in the center of the image (gives	�

and
�) and that no radial distortion exists (gives�). For the
computation of the focal length� , we consider all the re-
flection points�. As they are in world coordinates, and we
only know the� axis of the camera coordinate system (that
coincides with the optical axis that joins the optical center
and the center of the mirror) we can only compute the� ���

for all the reflection points and the distance& to the opti-
cal axis. Then, since the focal length can be computed from
� � �	 � 	����������� � �
 � 
����������� it can
be easily proved that the focal length can by calculated by
equation:

� �
����

&

�
�	� 	��� 	 �
 � 
���

where& is the distance between the reflection point and
the optical axis. The details are omitted. The application of
this equation to all available points yields different values
for the focal length. We propose to use either their mean or
median value. This gives� .

For the computation of the rotation quaternion we sug-
gest to first compute the corresponding rotation matrix, and
then convert it to a quaternion. The rotation matrix can
be computed using a over determined system of equations
since the correspondences between points in the world coor-
dinate system (� ) and in the local camera coordinate system
(� �) are available. If enough correspondences are available,
we can estimate the rotation matrix elements inverting equa-
tion � � � '� , where' is the transformation matrix made
up by the translation vector���� and the rotation matrix
�(���. After estimating the rotation matrix, one can also es-
timate the Euler angles. Using equation 4,, �	, �
 and��
can be computed.

Finally, to compute the quadric mirror coefficients� �
��� expressed in local camera coordinates, we can transform
the quadric by the transformation matrix already estimated:
� � '����'

��. This gives the quadric mirror coeffi-
cients -��� . All the parameters of the state vector are now
computed and an initial estimate exists.

This automatic algorithm to provide an initial guess for
the bundle adjustment method can be improved if additional
information about the system is available.
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Figure 3: Results with simulation experiments. Plotted:
the percent error in magnitude of the state vector (�) -
solid line, and the angle between the estimated state vec-
tor and the true one, in degrees - dashed line. The gaus-
sian white noise introduced has increasing standard devia-
tion from 0.004 to 0.064.

In the next section experiments are presented and dis-
cussed.

5. Experiments
In this section we present experiments performed to test
the validity, robustness and accuracy of the framework pre-
sented throughout this paper. Results with simulation data
are first presented. They focus on the robustness of the con-
vergence. Finally we present some results in experiments
with real images using a non-central catadioptric system.

In the simulation experiments we used a catadioptric sys-
tem made up of a pinhole camera with a hyperbolic mirror.
Since ground truth values for the incident rays are available
as well as their corresponding image points, we performed
two different tests by introducing Gaussian white noise in
the data.

In the first case we added noise to the ground truth values
of the parameters�. This test evaluates the robustness of the
convergence near the optimal point. Noise was also added
to the coordinates of the incident rays (obtained by the join
of pairs of points� and�). However the noise added had
constant energy (the variance of the noise was put at
�� of
the variance of the mean point����" and����", respec-
tively). Figure 3 shows the relative error in the magnitude
and orientation of the state vector in its vector space relative
to the energy (variance) of the noise added to the input data.
Table 1 shows the values obtained for the state vector in the
first test, in comparison with the ground truth.

Observing the errors presented in the figure and in the ta-
ble, one can conclude that in general the method converges
to the true value of the state vector. Figure 4 shows the
reconstructed quadric (lighter colormap) and the true one
(darker colormap) for the case)�. As can be seen in the
figure, the mirror estimate is very accurate.

The second test was performed to evaluate the robustness

True )� )� )� )� )�
� 800.00 798.03 799.84 803.62 800.07 775.46

� 0.00 0.00 -0.00 0.04 0.01 0.03

�� 320.00 322.75 315.85 320.20 314.30 328.15

�� 240.00 240.15 243.78 238.84 246.53 253.77

� 0.98 0.98 0.98 0.98 0.98 0.98

�� -0.17 -0.17 -0.17 -0.17 -0.17 -0.17

�� 0.04 0.04 0.04 0.04 0.05 0.04

�� -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

�� -15.00 -15.21 -14.91 -15.01 -14.85 -16.16

�� 0.00 0.00 0.00 0.00 -0.03 0.00

�� -25.00 -25.41 -25.10 -24.81 -25.04 -28.12

��� -1.06 -1.06 -1.09 -1.10 -1.02 -1.34

��� 0.05 0.05 0.04 0.04 0.07 0.11

��� -0.14 -0.14 -0.14 -0.16 -0.15 -0.18

��� 21.36 20.92 20.88 22.60 21.79 28.37

��� -0.85 -0.84 -0.88 -0.92 -0.81 -0.93

��� -0.61 -0.60 -0.61 -0.61 -0.63 -0.87

��� 21.92 21.85 21.99 21.21 24.72 37.63

��� 0.58 0.58 0.58 0.61 0.56 0.68

��� -33.15 -33.16 -33.28 -34.56 -32.22 -39.10

Table 1: Results in simulations. The results presented are
relative to five different standard deviations of the gaussian
white noise added to the input data - the true value of the
state vector. The standard deviation of the error introduced
is respectively)� � �����, )� � �����, )� � ����
, )� �
����� and)� � ���
�.

and accuracy of the algorithm to generate the initial estimate
of the state vector described in section 4. As the initial esti-
mate generated by this algorithm depends only on the corre-
spondences image point�� incident rays (given by pairs
of points� and�), we ran the automatic initial estimate
method with Gaussian white noise with several variances
added to the coordinates of the points� and�. Figure 5
shows the relative error in the magnitude and orientation of
the initial state vector relative to the ground truth state vec-
tor as a function of the variance of the noise added to the
data. Table 2 shows the values obtained for the parameters
of the system and their ground truth values. Since the error
introduced is random, Monte Carlo tests were performed

Figure 4: Estimated mirror surface (lighter colormap) and
true mirror (darker colormap).
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Figure 5: Relative error of the magnitude (solid line) and
angle (dashed line) of the state vector estimated by the au-
tomatic initial estimate algorithm presented as function of
the standard deviation of the noise added to the input data:
pairs of points� and� that defines the incident direction
ray. The relative error is expressed in percentage and the
angle of the error is expressed in degrees.

and the results shown are the medians of the estimated va-
lues for several repetitions of the same test.

¿From the results presented in figure 5 and table
3, one can conclude that when the noise added to the

input data is low, the automatic algorithm to generate the
initial estimate gives very good results for the state vector.
Although some of the components are first estimated with
high error, the majority of the components of the state vec-
tor are estimated with good accuracy for a first estimate,
noticing that no additional information isa priori available.
As the energy of the error increases, the estimation error (ei-
ther in the magnitude and in the angle) grows as expected.
However, even the results obtained for�
�� of standard
deviation (in which case the input data is almost totally dif-
ferent) are acceptable.

The experiments with real images use a catadioptric
camera made up by a pinhole camera and a hyperbolic mir-
ror. The system was pre-calibrated in the sense that eighty
correspondences image�� incident ray were available.
This pre-calibration was performed using the mirror and
camera values provided by manufacturers and refining them
until the reprojection error becomes zero. Our aim with this
initial real data is to compute the initial guess using the al-
gorithm described in section 4 and then apply the bundle
adjustment method. Figure 6 shows one of the images taken
by the system.

Figure 7 shows the relative error in the magnitude and
orientation of the state vector as a function of the variance
of the noise added to the pre-calibration of the incident rays
(assumed to be the truth values). Table 3 shows the values
obtained for the parameters of the system, the initial guess
and their true values.

It can be observed from the results that the error in-
creases as the error added to the input data has increasing
energy but that the method can converge to a state vector

True )� )� )� )� )�
f 800.00 798.80 803.18 638.69 492.10 418.42

� 0.00 0.00 0.00 0.00 0.00 0.00

�� 320.00 320.00 320.00 320.00 320.00 320.00

�� 240.00 240.00 240.00 240.00 240.00 240.00

� 0.98 0.24 0.12 0.07 0.13 0.27

�� -0.17 0.10 -0.06 0.00 -0.01 0.00

�� 0.04 -0.90 -0.96 0.93 0.41 0.85

�� -0.01 -0.34 -0.18 0.20 0.19 0.23

�� -15.00 -44.35 -13.69 -18.30 -17.07 -18.02

�� 0.00 -8.42 18.93 16.37 18.93 15.26

�� -25.00 -98.33 -75.46 -78.28 -78.40 -83.18

��� -1.06 0.09 0.19 0.17 0.17 0.15

��� 0.05 -0.00 0.00 0.00 -0.00 0.00

��� -0.14 -0.00 -0.00 -0.00 0.00 -0.00

��� 21.36 4.10 2.61 3.16 2.77 2.80

��� -0.85 0.09 0.19 0.17 0.17 0.15

��� -0.61 -0.00 0.00 0.00 0.00 0.00

��� 21.92 0.78 -3.59 -2.82 -3.14 -2.45

��� 0.58 0.09 0.19 0.17 0.17 0.15

��� -33.15 9.10 14.18 13.42 13.30 12.59

Table 2: State vector values estimated by the automatic ini-
tial estimate algorithm as a function of the standard de-
viation of the noise added to the incident direction ray.
)� stands for the standard deviation and their values are:
)� � ���
, )� � ����, )� � ����, )� � ���
 and)� � ��
�.

close the true one.

6. Conclusions
This paper presents a method to estimate the parameters
of general catadioptric systems when correspondences be-
tween pixels and incident lines in space are available. A
parameterized projection model relaxing the Snell’s Law is
derived. The reflection point is considered to be the inter-
section between the incident line in space and the quadric
mirror surface. The intersection point is projected into the
image according to the camera model. The parameterized
projection model relates the coordinates of the point in the
image with the directions of the incident rays.

A bundle adjustment method is applied to this model and
to the data available in order to iterate the state vector made
up by the system parameters - pinhole intrinsic parameters,
position and orientation of the camera in the world coordi-
nate system and the mirror parameters. The computation
of the initial guess and of the jacobian, both needed to the
method implementation, are also addressed.

Experimental results with simulations and real images
show that the method is accurate and in general converges to
the global minimum. The initial guess, can be far from the
optimal state vector but the bundle adjustment minimization
method converges to the solution.

Future work on this method includes extensively testing
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Figure 6: Real image.
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Figure 7: Real experiments. Plotted: the magnitude error of
the state vector in percentage - solid line, and the angle be-
tween the state vector estimated and the true one, in degrees
- dashed. The gaussian white noise introduced to the pre-
calibration if the incident rays has an increasing standard
deviation from)� � ����� to )� � ���
�.

it for several catadioptric configurations and to enhance the
convergence by introducing additional constraints.
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