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Abstract

This paper presents a linear method to estimate the pose
of a noncentral catadioptric system with a quadric shaped
mirror in relation to a world reference frame (or local ref-
erence frame without loss of generality). The vision system
is assumed to be calibrated. The method uses also as in-
put data the structure of the scene. It is proved that any
reflection point should belong to an analytical quadric that
intersects the mirror quadric itself. This constraint can be
written linearly in the 3D scene point coordinates (in the
camera reference frame). The unknown pose screw trans-
formation that relates camera and world reference frames
can then be used in the linear model, allowing for the con-
struction of a linear equation in the pose transformation
elements. Additional constraints are used to force the es-
timated rotation elements to build an orthogonal matrix.
Tests with simulated data and also on real images with dif-
ferent mirrors proved the method to be consistent and to es-
timate the pose accurately. However, it was also observed
that the method is sensitive to noise. The results are com-
pared with another method.

1. Introduction

Systems that use mirrors and cameras are called cata-
dioptric and recently they have been studied and used in se-
veral applications. Amongst all catadioptric systems, those
which use rotationally symmetric mirrors and in particu-
lar those whose mirrors are quadrics are probably the most
used.

Catadioptric vision systems can be divided into two
types depending on whether the projection is central or not,
that is, depending on whether all incident light rays intersect
each other in a unique viewpoint or not. In the general case,

the optical center of the camera is the effective viewpoint to
guarantee central projection. Particularly, it has been shown
by Nayar and Baker [1] that for quadric mirror catadioptric
systems, the central projection can be obtained only for a
particular position of the camera optical center, usually the
focus of the quadric. However, for the general case and
when this constraint is relaxed, the projection is noncentral
which implies that the light rays do not intersect at an effec-
tive single viewpoint.

Noncentral vision systems do not have, in general, a pro-
jection model. As a result closed form expressions relating
3D world points coordinates to their corresponding image
coordinates do not exist. However, in the case of central
systems, closed form expressions exist, since their effective
viewpoint is a single point.

To overcome the nonexistence of a projection model for
some types of cameras, a new model of cameras has been
proposed, namely generalized cameras [12, 17, 21]. This
class of cameras, also called black-box cameras, associate
each pixel to a direction in space. Hence, all cameras (cen-
tral or not) can be modeled by a general model. Calibration
of those vision systems results in a list of correspondences
between a line in space and each pixel.

We are interested in catadioptric vision systems, com-
posed by a central pinhole or orthographic camera and a
curved mirror surface for panoramic images. Particularly,
we are interested in those catadioptric systems with quadric
shape mirrors (includes spheres, paraboloids, ellipsoids and
hyperboloids). In the general case, those systems have a
noncentral projection.

The estimation of the pose of a visual system relative to
the world reference frame is an important problem both in
computer vision and in robotics since it is relevant for seve-
ral applications namely: motion estimation, structure from
motion, robot navigation, self-localization, object recogni-

1



tion, and head and body posture.

The classical approach to the problem of estimating the
position and orientation of the vision system relative to the
world frame is the perspective n-point (PnP) problem. The
pose problem of perspective cameras is the most studied
case. The problem was originally formulated by Fischler
and Bolles [8] as the fitting of a data set to a pose transfor-
mation. Several solutions have been presented, depending
on the number of points (or lines) that are used [9, 14, 22].
For the case of central catadioptric cameras, the pose prob-
lem has been also extensively studied by [3, 23].

For non perspective and other cameras, there are recent
works either in general cameras and in more specific non-
central catadioptric systems. Chen and Chang [6] presented
the solution of the non-perspective 3-point problem (NPnP)
for a non-central general camera assuming the knowledge of
a direction in space corresponding to each pixel (calibrated
camera). The solution is obtained by solving a univariate
polynomial of degree 8 for the general case. If the camera
is central, the solution is obtained by finding the roots of
a polynomial of degree 4. On the other hand, Nister and
Stewenius et al. [16, 20] presented a solution for the pose
estimation of a calibrated camera by equivalently solving
a polynomial of eight order. The solution is obtained by
formulating the intersection of a circle and a ruled quadric
surface (in an algebraic metric).

The pose estimation methods presented by these works
for noncentral catadioptric vision systems are non linear.

In this paper we study the pose estimation problem in
the case of non-central catadioptric systems with quadric
shaped mirrors. The approach presented is linear and as-
sumes that the camera is calibrated in the sense of a general
model. It is based on the derivation of a linear constraint in
the pose transformation elements (nine elements of the ro-
tation matrix and three elements of the translation vector).
This analytical constraint is based on the result (proved in
the text), that the reflection point (on the mirror surface) be-
longs also to an analytical quadric whose coordinates are
dependent on the mirror, the 3D world point and the optical
center.

Experimental tests performed with synthetic data and
real images proved that the pose can be estimated using
our linear algorithm accurately. In order to avoid numeri-
cal problems such as matrix ill-conditioning, quantization
errors and bias, we used normalized coordinates both in the
image and in 3D world data.

In the next section we present the details of our frame-
work and some geometrical analytic tools are derived. The
projection model in general catadioptric systems is then pre-
sented in section 3 and our linear method is implemented in
section 4. Results of the experiments are presented in sec-
tion 5 and section 6 concludes the work.

Figure 1. The light rays reflection and imaging in a catadioptric
vision system.

2. Properties

In this section we present some notation conventions and
mathematical results used throughout this paper.

Homogeneous coordinates are used instead of cartesian.

Points are expressed as X =
[
x1 x2 x3 x4

]T
and

quadrics by a 4×4 symmetric matrix Q. A point X belongs
to a quadric Q if it respects the equation XT QX = 0.

Consider now a pinhole camera whose optical center is
the point C and the intrinsic parameters matrix is the ma-
trix K. The mirror surface is given by a quadric Q and is
positioned freely with relation to the camera. The 3D world
point P is imaged by the camera and its reflection point
over the mirror surface is the point R. Figure 1 shows the
reflection process and the notations adopted.

Some useful propositions are now presented.

Proposition 1 Plane coordinates defined by three non
collinear points can be expressed as a linear equation in
the coordinates of one of the points.

Proof:
Planes are defined by three points U =[

u1 u2 u3 u4

]T
, V =

[
v1 v2 v3 v4

]T
and

W =
[
w1 w2 w3 w4

]T
(generating points). We

search the formulation of the plane coefficients as a
linear combination of one of its generating points.
Consider a plane Π and define an auxiliary matrix
MΠ =

[
X U V W

]
with those three points and a

generic point X =
[
x1 x2 x3 x4

]T
.

Since X must be a linear combination of the other three
points in order to belong to the plane Π, the determinant
of matrix MΠ must be zero. This gives us the expression
of the plane in terms of the minors Dijk of matrix MΠ. It

yields Π =
[
D234 −D134 D124 −D123

]T
.

After rearranging the terms, the equation can the rewrit-
ten in the form Π = MW, where the matrix M is sym-



metric. This equation is linear on W. Matrix M is given
by:

M =




0 u3v4 − u4v3 −u2v4 + u4v2 u2v3 − u3v2
−u3v4 + u4v3 0 u1v4 − u4v1 −u1v3 + u3v1
u2v4 − u4v2 −u1v4 + u4v1 0 u1v2 − u2v1
−u2v3 + u3v2 u1v3 − u3v1 −u1v2 + u2v1 0




(1)

�
Lines are expressed by 4 × 4 Plücker matrices. For an

Euclidean space, the absolute dual quadric is given by equa-
tion 2 where I3 represents the 3× 3 identity matrix.

Q∗
∞ =

[
I3 0
0T 0

]
(2)

Also useful is the angle between two planes. The co-
sine of the angle between planes ΠA and ΠB is given by
equation:

cosθ =
ΠA

T Q∗
∞ΠB√

(ΠA
T Q∗∞ΠA)(ΠB

T Q∗∞ΠB)
(3)

In the next section we present the projection model of a
general catadioptric system using a quadric mirror, deriving
some constraints on the reflection point. These constraints
are used in section 4 to estimate linearly the pose of the
camera relative to the world reference frame.

3. Projection model in general catadioptric sys-
tems

In this section we present a projection model that can
be applied to noncentral catadioptric systems made up by a
quadric surface mirror and a perspective projection pinhole
camera. The camera intrinsic parameters (focal length, prin-
cipal point and skew parameter), the mirror and the pose of
the camera relative to the mirror are assumed to be known.

Since the problem is how to project a 3D scene point into
the image plane, the solution can be split into finding the
reflection point R and projecting this point into the image
plane. The second part of the solution is straightforward
since the intrinsic parameters are known and thus the pro-
jection matrix as well.

Restrictions imposed on the reflection point

The solution of the projection problem is point R. R
is the reflection point on the mirror surface that projects the
3D point P into the image plane passing through the camera
center C. For such point the following restrictions must be
imposed:

1. RT QR = 0 −→ the point is on the quadric of the
mirror surface.

2. RT SR = 0 −→ the point is on the quadric given by
S = MT Q∗

∞Q (proposition 2).

Proposition 2 The reflection point R of a catadiop-
tric system with quadric mirror Q is on the quadric S,
given by S = MT Q∗

∞Q, where Q∗
∞ is the absolute

dual quadric and the 4 × 4 matrix M and the plane
ΠB are defined by the 3D world point P. The camera
optical center C and the reflection point R are such
that ΠB = MR.

Proof: Let us consider two concurrent planes: ΠA

and ΠB. ΠA is the tangent plane to the quadric Q
in the reflection point R. Its representation is given by
ΠA = QR.

The plane ΠB is the plane defined by three points: the
camera optical center C, the 3D point P and the reflec-
tion point R on the mirror surface. The plane coordi-
nates vector can be defined by a linear equation in the
reflected point R as stated by ΠB = M(P,C) ·R =
MR.

Since the normal to the quadric is perpendicular to the
tangent plane and must be on the plane defined by the
three points C, P and R, then the two planes, ΠA

and ΠB, must be perpendicular. The angle between
two planes is given by equation 3 and since we admit
an Euclidean space, the absolute dual quadric for Eu-
clidean transformations is given by expression 2.

Since θ = π/2 and substituting equations of the planes
ΠA and ΠB into equation 3 it yields equation 4 which
restricts the point R to belongs to a quadric given by
S = MT Q∗

∞Q.

ΠA
T Q∗

∞ΠB = 0⇔ RT QT Q∗
∞MR = 0⇔

⇔ RT MT Q∗
∞QR = 0 (4)

Notice that matrix S is not symmetric as the generic
quadric. However, without loss of generality, matrix S
can be substituted by another matrix whose entries are
related by Sij ← 0.5Sij +0.5Sji. With this change the
quadric remains the same and its representing matrix
becomes symmetric. �

3. The incidence and reflected angles are equal.

Given the three constraints imposed to the reflection
point R, the problem is now how to find that point. Its ex-
plicit closed form computation is however still not possible.
The first and second constraints are much similar since they
restrict the point R to be on quadric Q (constraint (1)) and
to be also on quadric S (constraint (2)). This is the problem
of finding the intersection of those two quadrics (a quartic



Figure 2. Pose transformation between the camera and world co-
ordinate systems. The world coordinate system can be positioned
in the scene object reference frame without loss of generality.

in space). Since the third restriction constrains the point so
that the incident and reflection angles are equal, point R
must be located on the intersection curve.

Although it is possible to obtain a parametric representa-
tion of the intersection curve (a quartic) between quadrics Q
and S, depending on a single parameters, the solution is non
linear and implicit, since the quartic must be searched for to
find the point where incident and reflection angles are equal
(restriction (3)). The intersection of quadrics could be com-
puted by using either the Joshua Levin original method [15]
or by the Dupont et al. alternative method [7].

4. Pose Estimation

In this section we develop a method to compute the pose
of the catadioptric system in the world reference frame, as-
suming a calibrated catadioptric vision system, that is, the
intrinsic parameters of the camera are known as well as the
quadric mirror in camera coordinates. Local structure of
world points is also assumed to be available. Similarly to
other known methods to estimate pose [6, 16] the camera is
assumed to be calibrated.

Using back projection the reflection point R is easily
computed. The intrinsic parameters matrix K is inverted
and the reflected ray emanated from the pinhole is inter-
sected with the quadric to obtain the point R.

Given a set of reflection points corresponding to some
image pixels and its corresponding 3D world points whose
local coordinates we know, the problem is then how to es-
timate the transformation matrix between the camera and
local reference frames (made to coincide with the world ref-
erence frame without loss of generality) - see figure 2.

The basic idea is the expansion of the quadric matrix S
elements given by proposition 2. Since S = MT Q∗

∞Q and
the reflection point R belongs to it, we can expand the equa-
tion RT SR = 0. The camera optical center C is known and

the 3D world point P is given by P =
[
p1 p2 p3 p4

]T

in camera coordinates.

Expanding the equation and factorizing it in relation to
the terms of the 3D point - pi, it yields:

k1p1 + k2p2 + k3p3 + k4p4 = 0 (5)

which is a linear on the coordinates of the 3D point P in
the camera reference frame. The coefficients ki are known
since they depend on the quadric mirror coefficients, on the
reflection point coordinates and on the camera optical center
coordinates. See appendix for explicit expressions.

The transformation between the camera coordinate sys-
tem and the world coordinate system is given by T, for-
mally the pose we want to estimate. It transforms the 3D
point as:

P =




p1

p2

p3

p4


 =




t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
0 0 0 1







pw1

pw2

pw3

pw4


 (6)

where PW =
[
pw1 pw2 pw3 pw4

]T
is the 3D point in

local coordinates. The rotation matrix is obtained by per-
forming three rotations about the coordinate axis. These
Euler angles are represented by θ1, θ2 and θ3.

Substituting in equation 5 the coordinates of the 3D
world point given by equation 6, one obtains the following
linear equation in the elements of the transformation matrix:

k1pw1t11 + k1pw2t12 + k1pw3t13 + k1pw4t14+
+k2pw1t21 + k2pw2t22 + k2pw3t23 + k2pw4t24+
+k3pw1t31 + k3pw2t32 + k3pw3t33+
+k3pw4t34 = −k4pw4

(7)

Each image point whose local 3D coordinates are known
provides a different instantiation of equation 7. Using
as many points as possible (a minimum of 12 points are
needed) to enhance the robustness to noise, an overcon-
strained system is constructed and its least squares solution,
if exists, is the pose of the camera in the world.

It is then possible to compute the least squares solution
that best fits the observations. The solution given by the
normal equations is x =

(
AT A

)−1
AT b. A more robust

estimator can be also used if strong noise affects the solu-
tion. The least median of squares solution is a good robust
estimator.

To deal with the fact that the transformation given in
equation 6 is affine instead of rigid, additional constraints
are imposed to the problem to enforce orthogonality. There
are several approaches to enforce Trot

T Trot = I, where
Trot is the upper 3 × 3 submatrix of T and I is the iden-
tity matrix with the same dimension. It was not possible,



however, to impose linear restrictions. This step is thus per-
formed after solving the linear equation system. See for
instance the proscrustes solution in [18, 19].

As mentioned by Hartley [13], although in general geo-
metrical metrics provide better results than algebraic ones,
in cases where the former approaches cannot be used or if
some preemptive constraints are imposed, the algebraic re-
lations can perform almost ideally in terms of noise for es-
timation. Experiments showed that our algebraic approach
is able to estimate the pose of the camera to the world ref-
erence frame.

5. Experiments

In this section we present some experiments to test the
validity and the robustness of the framework presented.
We organized the experimental section as follows: first we
study the effect of the error on the estimates by adding noise
to the inputs and measuring the errors produced in the vari-
ables estimated. Next real images are used and their cor-
responding camera poses in the world reference frame are
estimated.

Both for simulations and experiments with real ima-
ges, normalized coordinates are used to avoid numerical
instabilities and ill-conditioning of matrices. Robustness
is achieved by normalizing the coordinates and scaling
Plucker coordinates so that their norm is unitary too.

In tests with synthetic data, it is important to understand
how the noise affects and degrades the pose estimate. We
then performed Monte Carlo tests, repeating the estimation
when random gaussian noise with zero mean was applied
to each of the inputs separately, and choosing the median
value for the statistics. The energy of the input error was
increased so that the standard deviation from one test to the
next was multiplied by a factor of 10.

Since it is also important to understand if all and how
each input variable affects the solution for different types of
mirrors, we performed tests with three different mirrors: a
sphere, a hyperboloid and a paraboloid. The camera used
was perspective.

Figure 3 shows the results obtained for the hyperbolic
mirror. The x-axis scale is linear. The standard deviation
of the input gaussian noise added to variables varied from
10−7 (in percentage of the true value) to 10% of the true
value (which is a considerable perturbation added to the in-
puts). Two input variables are tested: the image point coor-
dinates and the 3D structure point coordinates in the world
reference frame. The statistic presented is the median value
of the relative error of the Euler angles (computed from the
estimated rotation matrix) and the translation elements.

From the results it can be concluded that the pose para-
meters are robust to noise. The error of the value estimated
for the pose when gaussian noise has a 10% standard de-
viation is high, as expected. However, for more realistic

Figure 3. Error analysis tests with simulated data using a pinhole
camera and a hyperbolic mirror. Noise was added separately to
the input data of the algorithm: image points and 3D data points.
Graphics (a) and (b) plot the error for respectively the euler angles
and translation components when noise is added to the structure
points and graphics (c) and (d) plot the same error measures for
the case where the noise is added to the image point coordinates.
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(a) θ1, θ2 and θ3 with noise
added to 3D points
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(b) t14, t24 and t34 with noise
added to 3D points
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(c) θ1, θ2 and θ3 with noise
added to image points
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(d) t14, t24 and t34 with noise
added to image points

noise energies (less than 1%) the pose estimation is accu-
rate. Furthermore, the solution is obtained within floating
point accuracy when ground truth input data is used.

Moreover, the pose parameters are more sensitive to
noise added to the image point coordinates than to the noise
added to the structure data of the scene.

In experiments with real images, we used two different
catadioptric vision systems: a pinhole camera with a spher-
ical mirror and with a hyperbolic mirror. The systems are
both noncentral, guaranteed by the positioning of the cam-
era relative to the quadric mirror. Figure 4 shows two ima-
ges taken by the systems used. In what concerns to the cali-
bration objects, we used non planar patterns to enhance the
information used in the model.

The systems were previously calibrated in two steps. In
the first step the cameras acquired images of calibration
patterns and the Camera Calibration Toolbox was run [5].
When the perspective cameras were calibrated, the known
world structure (calibration patterns) applied to the iterative
pose transformation was used to minimize the image repro-
jection error until the non linear algorithm converged to a
minimum. For that purpose a method developed by the au-
thors to calibrate catadioptric vision systems with quadric
mirrors [11] was used. As a result the correspondence be-
tween pixels in the image and directions in space was esti-
mated. Since the ground truth pose transformation was not



(e) Spherical mirror (f) Hyperbolic mirror

Figure 4. Real images used to estimate the pose of the camera in
the world reference frame.

Table 1. Experimental tests using real images acquired by a pin-
hole camera attached to a spherical mirror. The pose transfor-
mation is estimated and the Euler rotation angles and translation
elements are listed for our and Chen and Chang algorithms. The
results are also compared before and after the nonlinear refinement
performed to enhance accuracy.

Before Ref. After Ref.

Ours Chen&Chang Ours Chen&Chang

θ1 2.451 -0.730 -0.428 -0.714

θ2 0.146 3.029 3.089 3.053

θ3 0.203 -2.997 -3.131 -3.011

t14 -101.138 -60.934 -57.905 -57.905

t24 164.540 177.569 176.490 176.490

t34 -336.094 -365.963 -366.805 -366.805

available we used an alternative method to compare our re-
sults with. Chen and Chang [6] algorithm was then applied
to our input data. This method uses as input data the cor-
respondences between a pixel and a direction in space and
the 3D points in a world reference frame. Our algorithm
assumes that the camera and mirror parameters are known
and consequently, the direction in space corresponding to
each pixel can be calculated. The results provided by both
algorithm can then be compared.

We also evaluated the robustness of the method by com-
puting the poses in two different positions of the catadiop-
tric system relative to the world and comparing the displace-
ment induced by the two poses with the known motion ap-
plied to the catadioptric system. We hence can compare the
results of our method to ground truth motion.

The results obtained for the pose transformation (Euler
rotation angles and translation elements) are presented in
tables 1 and 2 and compared with the results obtained using
the Chen and Chang algorithm.

We displaced the hyperbolic system by a known mo-
tion. The pose of the catadioptric system in the new po-
sition was then computed by our method and the displace-
ment induced by the two poses (after nonlinear refinement)
is compared with the known motion. The results for the es-
timation the pose displacement and the ground truth motion

Table 2. Experimental tests using real images acquired by a pin-
hole camera attached to a hyperbolic mirror. The pose transfor-
mation is estimated and the Euler rotation angles and translation
elements are listed for our and Chen and Chang algorithms. The
results are also compared before and after the nonlinear refinement
made to enhance accuracy.

Before Ref. After Ref.

Ours Chen&Chang Ours Chen&Chang

θ1 2.135 2.115 2.129 2.129

θ2 0.054 0.042 0.047 0.047

θ3 0.023 0.017 0.017 0.017

t14 -84.809 -82.974 -83.034 -83.034

t24 126.133 126.138 126.895 126.895

t34 179.138 171.421 173.559 173.559

Table 3. Comparison between known motion and displacement
given by the two poses estimated by the method described. We
used the catadioptric system with the hyperbolic mirror.

θ1 θ2 θ3 t14 t24 t34

Known
motion

0.0 0.0 0.0 20.0 20.0 0.0

Computed by
our method

0.002 -0.002 0.011 20.700 19.861 -0.431

are presented in table 3.
From the results it can be seen that while sensitive to

noise, the linear algorithm described can estimate the pose
with accuracy, presenting results similar to those obtained
with the Chen and Chang algorithm. The systems with the
spherical configuration present worse results than the hy-
perbolic configuration and this is due to the fact that in the
pre-calibration of the system the geometrical mean error ob-
tained by the former configuration was about three times
higher than the obtained with the latest one (2.0 and 0.6 mm
respectively in a 400mm range). The motion between two
positions in the hyperbolic configuration was also estimated
with good accuracy.

6. Conclusions

The results obtained allow us to draw several conclusions
regarding the pose estimation method described.

The pose (orientation and position) of a calibrated cata-
dioptric system relative to the world reference frame can be
accurately estimated by a linear system of equations based
on constraints defined using the correspondence of pixels
and lines in space (incident light rays) and the knowledge
of some structure in the world (relative positions of points).
The constraints are defined based on the parameters of a
quadric to which the reflection point should belong (see sec-
tion 3). These constraints are linear in the coordinates of the
3D point projected in image.

The algorithm was compared to the Chen and Chang [6]
algorithm to estimate the pose and the results are similar
both with real and synthetic images. The main advantage



of our approach is its computer efficiency due to the linear
nature of the method.

It can be concluded that the linear algorithm presented
in this text allows the estimation of pose with good accu-
racy for noncentral catadioptric systems with quadric mir-
rors and that very good results can be obtained if used in
conjunction to a nonlinear optimization process. Its main
contribution is the proof that linear algebraic methods can
be applied to those extremely non-linear cameras, with non-
central projection.

Appendix

Equation 5 is linear in the 3D point coordinates. Its co-
efficients ki are given by the following equations:

k1 = q31c4r1r2 + q32c4r
2
2 + q33c4r2r3 + q34c4r2r4−

− q21c4r1r3 − q22c4r3r2 − q23c4r
2
3 − q24c4r3r4+

+ q21c3r1r4 − q31c2r1r4 + q22c3r2r4 − q32c2r2r4+

+ q23c3r3r4 − q33c2r3r4 + q24c3r
2
4 − q34c2r

2
4

(8)

k2 = −q31c4r
2
1 − q32c4r1r2 − q33c4r1r3 − q34c4r1r4+

+ q11c4r1r3 + q12c4r2r3 + q13c4r
2
3 + q14c4r3r4−

− q11c3r1r4 + q31c1r1r4 − q12c3r2r4 + q32c1r2r4−
− q13c3r3r4 + q33c1r3r4 − q14c3r

2
4 + q34c1r

2
4

(9)

k3 = q21c4r
2
1 + q22c4r1r2q23c4r1r3 + q24c4r1r4−

− q11c4r1r2 − q12c4r
2
2 − q13c4r2r3 − q14c4r2r4+

+ q11c2r1r4 − q21c1r1r4 + q12c2r2r4 − q22c1r2r4+

+ q13c2r3r4 − q23c1r3r4 + q14c2r
2
4 − q24c1r

2
4

(10)

k4 = −q21c3r
2
1 + q31c2r

2
1 − q22c3r1r2 + q32c2r1r2−

− q23c3r1r3 + q33c2r1r3 − q24c3r1r4 + q34c2r1r4+

+ q11c3r1r2 − q31c1r1r2 + q12c3r
2
2 − q32c1r

2
2+

+ q13c3r2r3 − q33c1r2r3 + q14c3r2r4 − q34c1r2r4−
− q11c2r1r3 + q21c1r1r3 − q12c2r2r3 + q22c1r2r3−
− q13c2r

2
3 + q23c1r

2
3 − q14c2r3r4 + q24c1r3r4

(11)

where the camera optical center is C =
[
c1 c2 c3 c4

]
.
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