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SUMMARY
Non-central catadioptric vision is widely used in robotics and vision but suffers from the lack of an
explicit closed-form forward projection model (FPM) that relates a 3D point with its 2D image. The
search for the reflection point where the scene ray is projected is extremely slow and unpractical for
real-time applications. Almost all methods thus rely on the assumption of a central projection model,
even at the cost of an exact projection.

Two recent methods are able to solve this FPM, presenting a quasi-closed form FPM. However,
in the special case of spherical mirrors, further enhancements can be made. We compare these two
methods for the computation of the FPM and discuss both approaches in terms of practicality and
performance. We also derive new expressions for the FPM on spherical mirrors (extremely useful to
robotics and graphics) which speed up its computation.

KEYWORDS: non central catadioptric cameras, forward projection model, quadric mirrors, reflection
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1. Introduction
In computer vision, in the graphics industry or even in optics, the problem of computing reflections
through mirrors can be regarded as a direct or inverse problem. The direct problem is the computation
of the image pixel where a given 3D point is projected (also called the FPM) and the inverse problem
starts with the image pixel and ends at the 3D point or direction in the space of the incident light ray.
While inverse computation of reflections is straightforward, tracking the light path from the pixel to
the 3D world scene, the counterpart is not as easy as the former case.

To better understand the image formation process when using reflectors to deviate the light ray
direction, let us consider a vision system composed of a camera and a curved reflector. The geometric
properties of the reflector, the camera and their relative position and orientation determines if the
projection is called central or non-central. Central projection systems are those in which all incident
light rays intersect each other in a single viewpoint; they are also difficult to construct since slight
changes in the position of the camera centre of projection (COP) can affect the necessary conditions
for centrality. Despite this fact, they are widely used in robotics, vision and graphics due to their
modelling simplicity. On the other hand, non-central projection systems, in which there isn’t a single
viewpoint, are much more versatile, allowing far more general configurations and being more adequate
to interactive situations (e.g. zooming, changing camera or mirror position and orientation, etc.).

Hence, the geometry of the direct computation of the reflection point from the 3D world to the
image is non-linear and does not have any explicit closed-form expressions for the reflection point,
in the general case of mirrors.2, 17

Quadric mirrors are a special type of mirrors since they are analytically modelled by a non-ruled
quadric which is a quadratic equation in the space coordinates—x, y and z. This type of mirrors
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comprises spherical, elliptical, hyperbolic (of two sheets) and parabolic mirrors. Although there are
many types of reflection surfaces in the real world, quadric mirrors are often used in robotics, vision
and graphics. Additionally, these types of mirrors are commonly used to locally approximate arbitrary
complex surfaces. We emphasize that, when using quadric mirrors such as parabolic or hyperbolic
mirrors, there is a special configuration of the camera COP to which the projection is central. To
achieve this case, the camera must be located exactly on one of the foci of the quadric. However, any
slight deviation from this particular configuration causes the projection to be non-central, which is
the general case.

We are particularly interested in the direct computation of reflections on quadric surface mirrors
with high accuracy and the highest performance. Two methods have been recently presented for this
FPM, having been proposed by Goncalves17 and Agrawal et al.2 In the former case, the method
was also compared with the direct computation of the projection, using the classical Reflection Law
and the Fermat’s Principle.18 In this paper, the two methods for this computation are revised and
compared in terms of their performance. Their execution cycle is analysed and their optimization
is also addressed. The special case of spherical mirrors is analysed and new simplified expressions
regarding projection are derived.

As pointed out by Agrawal et al.,2 this is a classical problem known as Alhazen’s problem, based
on the works of Ptolemy from around 150 A.D. and Alhazen from around 1,000 A.D.3, 16

The solution to this problem has important implications for computer vision and computer graphics.
In the field of vision, almost all applications and methods that use direct projection or reprojection
error, for instance, benefit from the existence of a fast and accurate direct projection model for non-
central catadioptric vision systems, allowing some slow and impractical computations to become
easy and quick. Applications that benefit from this include calibration (using for instance bundle
adjustment techniques and others), pose estimation, 3D reconstruction and augmented reality. A
framework for robot navigation has been recently presented by Dias et al.,10 using the FPM to
accelerate pose estimation and localization.

As for the field of computer graphics, direct projection can enhance the rendering of reflections.
Reflections in graphics are still an important research and industry topic since their presence in
images gives the observer a profoundly realistic sensation. Well-rendered reflections through mirrors
or through general specular or semi-diffuse surfaces are, however, still difficult due to the intensive
computation that is required to compute them, especially if there are moving objects in an interactive
scene. As we show in this paper, rendering interactive reflections through quadric-shaped mirrors can
benefit highly from a faster and accurate computation of the projection point.

Our contributions are thus twofold:

! The case of spherical mirrors is addressed and new expressions for the forward projection are
derived for the method proposed by Goncalves.17 We emphasize that this kind of mirrors is
frequently used in robotics.

! The two methods for this FPM computation for generic quadric mirrors, proposed by Goncalves17

and Goncalves and Nogueira,18 and by Agrawal, Taguchi and Ramalingam2 are revised and
compared in terms of their performance. Although one would expect that a direct expression
for determining the reflection point where the light ray is reflected from the source to the camera
(polynomial approach) would perform faster, evidence in experiments shows that these expressions
are outperformed in terms of computation time by a method based on implicit equations (the root-
finding approach).

This paper is organized as follows: in the next section, we present a literature review of the problem;
in Section 3, a detailed revision of the two methods under comparison in this study is presented; and
in Section 4, the problem is specifically analysed with regard to spheres. In the following section, a
study on the performance of both methods is analysed, and in Section 6, we present a discussion on
the experiments. Final conclusions and future work are then presented.

2. Literature Review
Reflections through mirrors or any other specular surface are a physical phenomenon that is explained
by the well-known Reflection Law, stating that reflection is a planar process. This law also states
that incident and reflected angles with a normal direction are equal in magnitude.7 The reflection



http://journals.cambridge.org Downloaded: 30 Jul 2016 IP address: 128.220.160.158

Forward projection model of non-central catadioptric cameras 3

phenomenon can also be explained and physically described by a more elegant law, called the Fermat’s
Principle, stating that light travels along the quickest path which, in a macroscopic real world, is also
the shortest path.19 When the direction of incidence or reflection is known, the reflection point is
computed by an inverse problem, simply solving its intersection with the mirror surface and computing
the other direction using the Reflection Law.

However, for the direct problem, when only the source and capture (eye or camera) points are
known, computing the reflection point where the light from the source is reflected to pass through
the capture can only be solved, in the general case, by inverting the Reflection Law or the Fermat’s
Principle (see, for instance, Fig. 1). If the former method is used, a set of non-linear equations in at
least two parameters must be solved, using an iterative search algorithm that often uses the difference
between incident and reflected angles as the cost function of the minimization process. Alternatively,
if the latter method, the Fermat’s Principle, is used, the total sum of the path travelled by light is
minimized in order to find the reflection point on the surface, also parameterized as a function of at
least two parameters.9

The calibration of catadioptric cameras is a difficult topic since equations are non-linear and error
prone. A widely known toolbox for central omnidirectional cameras is presented by Scaramuzza
et al.31 Lately, some authors have been adopting a two-step projection model by introducing a
stereoscopic projection into a unitary sphere.4, 32, 36 These projection models are suited for central
catadioptric cameras with a single viewpoint. Additionally, some calibration methods rely on planar
restrictions to improve the calibration results.15, 24

2.1. The forward projection model—FPM
Goncalves17 has presented an analytical method for reducing the search space of the parameterization
of the reflection point to a single parameter. This analytical method is based on the intersection of two
quadric surfaces in space, one of them being the mirror surface, expressed by a quadric mirror, and
the other one being an analytical surface, derived from the absolute dual quadric. The reflection point
is proved to belong to the intersection of these two quadrics and, since their intersection is a quartic in
space, its parameterization is reduced to a single parameter curve. Goncalves and Nogueira18 have then
compared this method with the classical Reflection Law and the Fermat’s Principle, showing that their
method presents one order of magnitude speed-up in relation to these two-spaced parameterizations.
This work has the advantage of parameterizing the search space into a single variable, for quadratic
reflectors, and it is one of the methods we use to make a comparison in terms of performance on the
computation of reflection points.

As for the special case of spherical mirrors, the problem has been extensively studied and some
analytical solutions have been proposed. A model of general linear cameras was used by Ding et al.11

to approximate the solution. Agrawal, Taguchi and Ramalingam1 have presented forward projection
equations for axial configurations which also comprise spherical mirrors.

Recently, the same authors have generalized for the same parameterization for a general quadric
reflector and have presented the solution to the computation of the reflection point as a problem
of solving an eight-degree polynomial whose coefficient expressions are computed in quasi-closed
form equations.2 The solution is non-iterative, given the roots of an eight-degree polynomial, and its
accuracy depends on the accuracy achieved by this polynomial step (which is intrinsically iterative).
They compare their solution with the methods presented by Lhuillier22 and Micusik and Pajdla,25

who use the Law of Reflection as a criterion for minimization. Results show that the polynomial
method presented by Agrawal et al.2 performs better in one or two orders of magnitude. We also use
this method to make a comparison in terms of performance.

2.2. Applications of the FPM
The solution to the FPM through quadric-shaped mirrors has several applications besides computer
vision.10 As recognized by Agrawal et al.,2 they are mainly useful to rendering for computer graphics,9

image-base relighting,34 environment matting and shape from specular flow.30

In the field of computer graphics, reflections have been studied in the context of rendering images
of objects that reflect the environment around them. As previously explained, ray-tracing is the
rendering technique that provides the most perfect images of reflections since it computes the light
path backwards, that is, from the pixel to a non-specular or diffuse reflecting surface.35 Though truly
realistic, images rendered by ray-tracing are extremely computationally intensive, seldom making
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ray-tracing appropriate for interactive reflections in scenes where objects and/or camera move freely.
These types of images are required in many types of applications such as games, movies, 3D
reconstruction and real-time pose estimation. Notice that, in interactive scenes, when any of the
objects or the observer move, the whole reflected scene must be recomputed since the underlying
geometry of reflections changes completely. This characteristic prevents the use of ray-tracing in
interactive reflections, even with highly accelerated hardware.

An alternative to ray-tracing, vertex-based techniques are commonly used for rendering reflections,
providing less attractive but real-time images. In the context of vertex-based techniques, environment
mappings have been extensively used, as proposed by Blinn and Newell,6 considering that all objects
are at an infinite distance from the reflector. Environment mappings suffer from severe parallax
problems which are particularly visible in objects that are near the reflectors. The artefacts appearing
in images perturb the realistic sensation of the observer. Several improvements to this technique have
been proposed since then, the most important ones being those proposed by Martin and Popescu,23

Yu, Yang and McMillan,37 and Bjorke.5

Other techniques used in computing reflections include the work of Mitchell and Hanrahan,26 using
caustics computed from the surface equations, and the work of Ofek and Rappoport,27 computing
another data structure which they have called explosion map for accelerating reflections. In this
technique, the primary image, not considering any reflections, is blended with the reflection image
that contains the reflected vertices. The reflections are calculated by tessellating the reflector surface
and searching all the triangles for the appropriate reflection point. Chen and Arvo8, 9 have used ray-
tracing to solve reflections for a small part of the vertices, having then applied a perturbation to
compute the reflection of the neighbouring ones.

Alternatively, the work of Estalella et al.14 comprises general curved mirrors. In a first version,
the reflection point is computed iteratively using the Reflection Law, using two-spaced parameters
on the surface of the curved reflector. This method yields good and accurate results for reflections,
but it is unfortunately slow. A second version of this technique is implemented in the GPU which
accelerates the computation of the reflection points.13 Concurrently, Roger and Holzschuch29 have
used the Fermat’s Principle to minimize the optical path length in order to solve the reflection
point. The search space is parameterized through triangles expressed as a function of two angular
parameters. This process is interrupted as soon as the desired accuracy is achieved. This method is
also implemented in the GPU and provides accurate reflections.

3. Review of Two Methods For Accurately Computing the Reflection Point
In this section, we briefly review both methods for computing the reflection point on a quadric surface
reflector when reflecting a light travelling from a known source to a known destination, presented in
refs. [17,18 and 2]. We call the former method Quadric Intersection Method (the QI Method) and the
latter Mitsubishi Method, since it has been developed in the Mitsubishi Labs. Before presenting both
methods, we formally describe the problem to be solved.

3.1. Problem statement
Suppose a quadric surface reflector defined by the following quadratic equation:

x2 + y2 + Az2 + Bz − C = 0, (1)

where the coefficients A, B and C are arbitrary scalars. This parameterization of the quadric mirror
comprises rotationally symmetric mirrors such as spherical (A = 1 and C + B2/4 > 0), parabolic
(A = 0 and C = 0), hyperbolic (A < 0 and C < 0) and elliptic (A > 0 and C > 0).33 The quadric
mirror can also be expressed by a quadric matrix Q, in homogeneous coordinates, given by

Q =

⎡

⎢⎣

1 0 0 0
0 1 0 0
0 0 A B/2
0 0 B/2 −C

⎤

⎥⎦ , (2)

where the point x = [x y z 1]T belongs to quadric Q if and only if it respects the equation xT Qx = 0.
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Fig. 1. Reflection through a quadric reflector where the reflection point is searched in a parameterized quartic
curve R(λ).

The camera COP is considered to be placed at the point COP = [cx cy cz 1]T and the 3D point to
be projected is defined as P = [X Y Z 1]T .

As illustrated in Fig. 1, the incident ray intersects the reflector surface at the point R, where the
light ray is projected to the camera along the reflected direction.

The problem addressed in this paper concerns the performance evaluation of different methods for
determining the reflection point R.

3.2. Review of the QI method
The QI Method was first presented by Goncalves17 and Goncalves and Nogueira,18 and its name
derives from the fact that an additional constraint on the reflection point was imposed, allowing a
much faster way to search for the actual reflection point where light is projected from the source to the
destination (camera). This constraint imposes that the reflection point belongs not only to the reflector
surface, but also to an analytical quadric whose expression depends exclusively on the geometry of
the projection (centre of projection and 3D point to be projected). Since the searched reflection point
belongs to these two quadrics, it shall be searched in their intersection (see Fig. 1).

As proven in ref.[17], the reflection point R belongs to the quadric reflector Q and also to the
analytical quadric S whose expression is given by

S = MT Q∗
∞Q + QT Q∗

∞M, (3)

where the matrix Q∗
∞ is the absolute dual quadric given by

Q∗
∞ =

⎡

⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤

⎥⎦ (4)

and M is a skew-symmetric matrix that depends on the centre of projection of the camera and the 3D
point to be projected, expressed by

M =

⎡

⎢⎣

0 cz − Z −cy + Y cyZ − czY
−cz + Z 0 cx − X −cxZ + czX
cy − Y −cx + X 0 cxY − cyX

−cyZ + czY cxZ − czX −cxY + cyX 0

⎤

⎥⎦ . (5)

Given these two restrictions imposed on the reflection point, the intersection of two quadrics can be
computed using the Levin’s Method20, 21 or its most recent adaptation, presented by Dupont et al.,12

that is optimal in terms of the number of irrationals used in the obtained parameterization (notice that
irrational numbers are computationally intense).

The parametric curve given by the intersection algorithm is a function of only one parameter, say
λ. Let us represent the parameterized curve by the 4 × 1 vector R(λ). Though non-linear, the curve
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can be searched for the point where the total distance travelled by light is minimum, as stated by the
Fermat’s Principle. Alternatively, the Law of Reflection can be used to search for the point where
incident and reflected angles are equal. However, ref.[18] shows that the best criterion in terms of
performance is the Fermat’s Principle. It is also proved that the solution is unique for a non-ruled
quadric reflector (comprising spheres, hyperboloids, paraboloids and ellipsoids).

For the general case, the obtained parameterization involves the solution of a polynomial up to an
eighth degree, in which the solution is found in the intervals where the polynomial is positive. Although
the formulation here presented considers the coordinate system as being centred on the reflector, this
method can be computed using an arbitrary reference system, regarding that all geometric entities are
expressed using the same coordinate system.

The main advantage of this method is that, although the solution is searched iteratively, it is searched
in a one-parameter 3D curve in space (called quartic), inversely to other previously presented methods
that search the solution in a two-parameter space or higher, making the solution for the QI Method
much easier and faster to obtain. Concerning the accuracy of the solution, since the cost function
used for the non-linear iterative minimization is metric and the search space is convex due to the
geometric construction of the reflector, the accuracy is as high as necessary, making it possible to
obtain the solution up to a double precision or higher. In Section 5, a detailed algorithmic approach
of the method is studied and presented.

3.3. Review of the Mitsubishi method
The Mitsubishi Method presented by Agrawal, Taguchi and Ramalingam2 derives explicit expressions
for the coefficients of an eighth-degree polynomial whose solutions contain the reflection point R.
It is based on two intermediate equations (IE) whose intersection gives a parameterization of the
solution in a polynomial.

Consider the quadric reflector equation given by expression 1 in Euclidian coordinates. Without
loss of generality, a pre-rotation around the z-axis is needed in order to align the centre of projection
with the y-axis, assuming that all geometric entities are expressed in the reflector coordinate system
and that the reflector is rotationally symmetric along the z-axis.

After this pre-rotation, the reflector equation remains unchanged; the centre of projection is now
represented in the new coordinate system by COProt = [0 dy dz]T and the 3D point to be projected is
now represented using the rotated coordinates as Prot = [u v w]T . This step is needed to reduce the
complexity of the subsequent projection equations and it is undone at the end of the computation of
the reflection point. The reflection point on the reflector surface is expressed in Euclidean coordinates
by Rrot = [x y z]T .

The method then evolves by introducing two IE. The first equation is obtained by defining the
reflection plane as the plane that passes through the centre of projection COProt, the 3D point Prot
and the point K, which is the intersection point of the reflector axis and the normal vector to the
reflector surface at the reflection point Rrot (see Fig. 2 to visualize the method). The plane equation is
derived and it is noticed that it can be represented as a linear function of x and y, allowing to derive
x as a function of y and z.

This equation for x can then be substituted in the mirror Eq. (1), yielding the first Intermediate
Equation—IE1:

IE1 : (c2
1(z) + c2

2(z))y2 + 2c2(z)c3(z)y + c2
3(z) + c2

1(z)(Az2 + Bz − C) = 0, (6)

where
⎧
⎪⎪⎨

⎪⎪⎩

c1(z) = (B + 2Az)(dy − v) + 2dy(w − z) + 2v(z − dz)

c2(z) = u(B + 2dz − 2z + 2Az)

c3(z) = udy(B + 2Az)

. (7)

The intermediate equation IE1 is quadratic in y with the coefficients as functions of z. The
geometrical interpretation of this equation is that it represents the intersection of the reflection plane
with the reflector surface whose curve can be searched for the reflection point, specifically where
incident and reflection angles are equal.
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Fig. 2. Reflection through a quadric reflector and geometric construction for the Mitsubishi Method.

Notice here that both methods under revision in this section, the QI Method and the Mitsubishi
Method, use intersections between the reflector and a quadric and a plane, respectively, to represent
a curve in the space where the reflection point is to be found.

The second intermediate equation (IE2) is obtained by forcing the reflected vector to respect the
Reflection Law such as

vr = vi − 2n(vT
i n)/(nT n). (8)

Equation IE2 is then given by

k31(z)y2 + k32(z)y + k33(z) = 0, (9)

where the expressions for kij (z) are very long. Please see ref.[2] for details.
Since both IE1 and IE2 are quadratic in y, we can eliminate the dependence on y2 and substitute

y back into either IE1 or IE2, obtaining

k41(z)(k43(z)k2
32(z) − k42(z)k32(z)k33(z) + k41(z)k2

33(z))

− k31(z)(−k33(z)k2
42(z) + k43(z)k32(z)k42(z) (10)

+ 2k41(z)k43(z)k33(z)) + k2
43(z)k2

31(z) = 0.

Equation (11) can be simplified so as to become an eighth-degree polynomial whose coefficients
depend on the known mirror parameters (A, B and C), the known location of the centre of projection
(dy and dz) and the known 3D point (u, v and w).

The solution to the z coordinate of the reflection point Rrot is then one of the eight solutions to
the polynomial (actually, only real solutions are considered), from which all candidate solutions (up
to 16, since each polynomial solution produces two candidate reflection points) are computed for the
reflection point. It is important to point out that an inverse rotation is needed in order to reposition
the solution at the original coordinate system. All candidate solutions are then tested using the Law
of Reflection and the solution that best fits the Law (incident and reflection angles are equal) is
considered the actual solution.

This method has the advantage of providing explicit quasi-closed form expressions for the
coefficients of an eighth-degree polynomial that, when solved, produces a small number of candidates
for the reflection point. This small set of candidates is easily searched for to obtain the final solution.
This method is hence non-iterative if one considers the polynomial solved. However, strictly speaking,
the solution of an eighth-degree polynomial is an iterative process.
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In Section 5, we compare both the QI and the Mitsubishi Methods in terms of performance to
obtain an accurate reflection through quadric mirrors.

4. Spherical Mirrors
Spheres are the most frequently used geometric shapes for mirrors, after the planar ones. They are
physically easy to build, beautiful and computationally practical for robotics and rendering. In this
section, we analyse the evolution of the QI Method for these particular specular surfaces, presenting
new expressions for the computation of the reflection point.

Let us consider, without loss of generality, that the world reference system is centred on the
spherical mirror. Notice that a simple translation can be applied to all geometric entities in order to
guarantee this condition, since orientation is not needed for a sphere. The sphere is then given by
Eq. (1), where A = 1, B = 0 and C is the radius to the power of two.

Since the normal vector to any surface point in a sphere is radial and, as stated by the Reflection
Law, reflection is a planar phenomenon, it can be concluded that the reflection plane must contain the
mirror origin, as well as the 3D point to be projected and the camera COP. It turns out, then, that for
the QI Method, the quadric S degenerates to this plane, whose equation can be directly derived from
Eq. (3), yielding the plane equation as

m14x + m24y + m34z = 0, (11)

where mij is the corresponding element of matrix M , of Eq. (5).
Since the intersection of a sphere with a plane passing through its origin is a circumference in

space, its equation can be written in the matrix form as

s1x
2 + s2y

2 + 2s3xy − C = 0 ⇔ xT

[
s1 s3
s3 s2

]
x = C, (12)

where x = [x y]T and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

s1 = m2
14

m2
34

+ 1

s2 = m2
24

m2
34

+ 1

s3 = m14m24

m2
34

(13)

which parameterize the curve where the QI Method searches for the FPM solution.
In order to speed up the search process and transform it into a single-parameter problem, after

diagonalizing the matrix, one obtains the final equation of the intersection of the quadric mirror Q
and the quadric S, given as

λ1x
′2 + λ2y

′2 = C (14)

which is an ellipse centred on the origin, where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1 = s1 + s2 −
√

"

2

λ2 = s1 + s2 +
√

"

2
" = s2

1 + s2
2 − 2s1s2 + 4s2

3

(15)
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or, by substituting it for Eq. (13), it yields

⎧
⎨

⎩

λ1 = 1

λ2 = 1 + m2
14 + m2

24

m2
34

(16)

and the transformation equations that relate original 3D coordinates (x and y) and 2D search space
coordinates (x ′ and y ′) are

⎧
⎪⎨

⎪⎩

x = −m24

m14
x ′ + y ′

y = m14

m24
x ′ + y ′

. (17)

Finally, regarding the search for the reflection point, as stated by the QI Method, it is still necessary
to parameterize the ellipse in a single variable. The following parameterization is the standard one:

⎧
⎨

⎩
x ′ =

√
C
λ1

cosθ

y ′ =
√

C
λ2

sinθ
(18)

with θ ∈] − π, π].
Hence, when applied to spheres, the QI Method parameterizes the solution in much simpler

expressions that degenerate to an optimization process in an ellipse curve. For the Mitsubishi Method,
as presented by Agrawal et al. in ref.[1], the solution degenerates in a fourth degree polynomial, for
which there is a closed-form solution. However, as we shall see, its computation cycle is much longer
due to extremely difficult and slow algebraic equations.

5. Performance Evaluation and Comparison
The main objective of this paper is to study and compare the two methods that were presented in the
previous section in terms of their performance in the computation of the reflection point.

We designed a comprehensive set of experiments to fully test both methods in several conditions
and measured the execution time, excluding overhead phases so that the evaluated performance refers
to the exact computation of the reflection point. For all tests, three configurations with different
mirrors were tested, comprising a spherical, a hyperbolic and a parabolic mirror. The position of the
camera and the 3D point are randomly generated at the beginning of each iteration, in which we
compute the execution time for both methods (hence with the same point). The implementation code
was entirely written in C++ language and the tests were performed in a desktop computer equipped
with a 2.4 GHz Intel Core i7, running Linux. We also used the implementations of Numerical Recipes
in C++.28

For the implementation of the Mitsubishi Method,2 we adapted the code provided by the authors
(originally programmed in Matlab) to a faster C++ implementation. As with the QI Method, we used
Numerical Recipes in C++28 for computing the roots of an eighth-degree polynomial.

The experimental results showed that both methods achieve a solution that is correct up to the
floating point precision (single or double), so both methods are equal in terms of accuracy, which
depends mainly on the tolerance of the minimization algorithm used to stop the search for the solution.
Since the nature of the parameters to be searched is different in both methods, we opted to use standard
values.

Before detailing the tests that were designed and performed, we analysed the execution cycle of
both methods in order to seek for possible optimizations and improvements.

For the QI Method,17, 18 we present the algorithm described in Table I.
The Mitsubishi Method2 was then subdivided in the algorithm described in Table II.
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Table I. Algorithm for the QI Method.

Algorithm for the QI Method

Time flag Phase # Description
1 Begin with quadric Q, 3D point P and

camera centre of projection COP .
1 Parameterization of intersection curve

and calculation of solution intervals.
2 Parameterization and intervals are

obtained.
2 Bracketing the solution.

3 Solution is bracketed.
3 Minimization of cost function using

the Golden Section Method.
4 Minimization performed, producing a

set of candidates.
4 Solution selection using the Fermat’s

Principle.
5 Solution found.

Table II. Algorithm for the Mitsubishi Method.

Algorithm for the Mitsubishi Method

Time flag Phase # Description
1 Begin with quadric Q, 3D point P and

camera centre of projection COP .
1 Pre-rotation.

2 Quadric, 3D point and Camera in
rotated coordinates.

2 Computation of the polynomial
coefficients (nine coefficients).

3 Polynomial defined.
3 Computation of candidate solutions

(up to 16).
4 All candidate solutions computed.

4 Solution selection using the Law of
Reflection.

5 Solution found.

As our objective is to assess both methods in terms of performance, and since we also want to
characterize them in terms of stability, temporal and spatial locality phenomena, and convergence
rate, we have designed the following four tests.

Test ONE
This test is to compare both methods in terms of their total execution time. We tuned both methods for
their best performance and ran them for 100,000 points. The 3D points to be projected and the camera
COP were generated randomly in a wide area around the mirror surface. The computed statistics for
the test (and each point) are mean, standard deviation and total execution time. Test ONE details are
summarized in Table III.

Figure 3 shows the results, expressed in microseconds, for all three types of mirrors. The results
are also summarized in Table IV. We can observe that the QI Method is faster than the Mitsubishi one
and is able to compute the forward projection in around half its execution time for all mirrors. We can
also observe from Table IV that the execution time for the QI Method is much more stable than the
Mitsubishi Method, for parabolic mirrors, since the standard deviation of the execution time is much
lower in the former case. This characteristic is very important when considering all implementation
details and deciding whether to use one method or the other.
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Table III. Test ONE details for the performance evaluation of the FPM computation.

Test ONE

Parameter Value

Number of points 100,000
Points distribution Random

Wide area
Minimization threshold 1e-3
Mirror type Sphere

Parabolic
Hyperbolic

Inputs 3D points
COP

Output Execution time
Number of wrong points

Table IV. Test ONE—Mean value and standard deviation
for the total execution time for the computation of the FPM.
Comparison between the QI and the Mitsubishi Methods.

All times are expressed in microseconds.

Test ONE results

QI Mitsubishi

Mean Std. Mean Std.

Parabolic 167.9 10.83 333.4 70.33
Hyperbolic 167.2 10.59 291.6 8.67
Spherical 57.1 7.43 125.9 6.30

Fig. 3. Test ONE - Mean execution time for the computation of the reflection point using the QI and the
Mitsubishi Methods. All times are expressed in microseconds.

Test TWO
As for Test TWO, our aim is to analyse the execution cycle of each method. We compute the execution
time for each phase of each method in the same conditions as in the previous test. Both the QI and
the Mitsubishi Methods are compared in terms of their cycles. All other conditions and parameters
remain unchanged from test one. Table V summarizes the test details.

The results are shown in Table VI. One can observe that, for hyperbolic and parabolic mirrors, the
phases that consume more elapsed time in the QI Method are phases #1 and #3, for parameterization
and minimization, respectively. As for the spherical mirror, there is no parameterization phase due to
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Table V. Test TWO—Test TWO details for the performance
evaluation of the FPM computation, analysing in detail the

execution cycle of both methods.

Test TWO

Parameter Value

Number of points 100,000
Points distribution Random

Wide area
Minimization threshold 1e-3
Mirror type Sphere

Parabolic
Hyperbolic

Inputs 3D points
COP

Output Execution time for:
- All phases of the QI Method
- All phases of the MIT Method

Table VI. Test TWO—Execution time for all phases of the QI and the
MIT Methods. All times are expressed in microseconds and represent the

average execution time for a single point.

Test TWO results

Phase 1 Phase 2 Phase 3 Phase 4

QI
Par. 138.63 1.08 29.06 2.75
Hyp. 134.34 1.08 31.62 3.10
Sph. 0 11.20 38.23 4.37

MIT
Par. 1.46 247.66 89.65 4.68
Hyp. 1.46 246.66 46.85 5.00
Sph. 0 1.27 116.32 13.34

the explicit new expressions for the two quadrics intersection derived in this paper; hence, the phase
which consumes more elapsed time is minimization. On the other hand, for the Mitsubishi Method,
phase #2, where the polynomial coefficients are computed, represents around two-thirds of the total
execution time, followed by the computation of the 16 candidate solutions.

Test THREE
The third set of performance tests aims to analyse the effects of spatial locality phenomena. The main
idea of these tests is to test if calculating the reflection point for two 3D points that are very close
to each other can, by any means, benefit from the fact that the geometric situation is similar. We
notice here that, for the Mitsubishi Method, we do not expect such phenomena since all polynomial
coefficients must be recomputed at every point. On the other hand, as in the case of the QI Method,
we expect to measure significant differences at the minimization step of the algorithm, since the
starting point (initial parameter) shall have an impact on the number of performed iterations. We then
performed these tests only for the QI Method, repeating them for three different situations:

! Wide area random point - The 3D points to be reflected through the mirror are generated in a
very wide area, so that the probability of having two consecutive points, very close to each other,
is very small.

! Low area random point - The 3D points to be reflected through the mirror are generated in a
small area, so that the probability of having two consecutive points, very close to each other, is
high.
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Table VII. Test THREE—Test THREE details for
the performance evaluation of the FPM computation,

analysing spatial locality phenomena.

Test THREE

Parameter Value

Number of points 100,000
Points distribution Wide area random

Low area random
Linear

Min. threshold 1e-3
Mirror type Sphere

Parabolic
Hyperbolic

Min. initial guess Centre of the interval (standard)
With the previous best value

Inputs 3D points
COP

Output Execution time for:
the QI Method

! Linear random point - The 3D points to be reflected through the mirror are sampled in a line in
space, so that the probability of having two consecutive points, very close to each other, is high
and in regular steps.

We also performed these tests using two different strategies for the initial parameter of the
minimization step. Notice that, in the QI Method, the search is performed in the intervals where
the characteristic polynomial is positive, which means that one has to search up to five intervals
(although, in most cases, the solution is found in the first or second interval). Minimization is then
set using the two following strategies:

! Centre of the interval - The parameter λ to initialize the minimization step is set to the middle of
the interval.

! Best previous value - The parameter λ to initialize the minimization step is set to the best value
from the previous reflection point. If the previous best value does not fall into any valid interval,
initialization is made using the standard strategy (using the middle of the interval).

Table VII summarizes the test details.
The results obtained from test THREE are presented in Table VIII. One can observe that, for all

mirrors, there is a significant locality phenomenon; however, the achieved improvement is very small.
Except for the case of spherical mirrors, the mean improvement is around 2% of the execution time.
In the case of spherical mirrors, however, the improvement is near 30%.

Test FOUR
As for test FOUR, our aim is to analyse the halting condition of the QI Method. Since its main step is
a minimization process, the tolerance used in the Golden Section Method of the Numerical Recipes28

is very important since, without an appropriate threshold, the method could be iterating in useless
steps. Since all points are tested to guarantee that they respect the Law of Reflection, we can evaluate
the threshold goodness by counting the number of wrong points. This test is also meaningless for the
Mitsubishi Method; hence, we only performed it for the QI one. We tested several threshold values
in a logarithmic scale. Table IX summarizes the details of these tests.

The results are shown in Fig. 4. One can observe that the average execution time for the computation
of the FPM decreases linearly with the threshold attributed to the minimization method. We also
observe that, for spherical mirrors, the execution time stabilizes for tolerances higher than 1e-5. This
influence is also observed in the number of iterations, which was expected since the execution time
is highly dependent on the number of iterations. Additionally, we noticed that, for all the tests that
were run, the parabolic mirror was the only one where we observed wrong computations of the FPM
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Table VIII. Test THREE—Total Execution time for test THREE. All times are expressed in microseconds and
represent the average execution time for a single point.

Test THREE results

Wide area Low area Linear

Parabolic
Centre of interval 175.8 181.9 179.1
Previous best value 170.4 174.9 186.5
Hyperbolic
Centre of interval 175.4 177.4 173.1
Previous best value 171.7 174.1 171.1
Spherical
Centre of interval 50.8 54.8 54.5
Previous best value 40.7 41.8 31.1

Table IX. Test FOUR details for the performance evaluation
of the FPM computation, analysing the influence of the
halting condition (threshold) on the performance and

accuracy of the QI Method.

Test FOUR

Parameter Value

Number of points 100,000
Points distribution Random

Wide area
Minimization threshold 1e-1

1e-2
1e-3
1e-4
1e-5
1e-6
1e-7
1e-8
1e-9
1e-10

Mirror type Sphere
Parabolic
Hyperbolic

Inputs 3D points
COP

Output Execution time
Number of wrong points
Average iterations per point

for thresholds above 1e-3. Table X summarizes the number of wrong reflection points computed for
all cases.

6. Discussion
After presenting the results on the performance of the QI and the Mitsubishi Methods, we now discuss
and interpret the previously presented results. The main conclusions we draw are:

! As can be easily observed, the QI Method always performs better than the Mitsubishi Method,
being generally two times faster. This conclusion is verified for all types of mirrors, including the
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Table X. Test FOUR—Number of wrong computations
of the reflection point as a function of the threshold
(maximum tolerance) of the minimization method.

Total computed points are 100,000.

Number of wrong points

Parabolic Hyperbolic Spherical

1e-10 0 0 0
1e-9 0 0 0
1e-8 0 0 0
1e-7 0 0 0
1e-6 0 0 0
1e-5 0 0 0
1e-4 0 0 0
1e-3 0 0 0
1e-2 10 0 0
1e-1 1287 0 0

Fig. 4. Execution time (in microseconds) and number of iterations performed as a function of the maximum
tolerance (threshold) attributed to the minimization method in the FPM computation. (a) Execution time. (b)
Number of iterations.

spherical ones where the new expressions, derived in Section 4 for the QI Method projection, are
used.

! The Mitsubishi Method is an algebraic method that provides explicit closed-form expressions for
the coefficients of an eighth-degree polynomial whose roots are found (iteratively, since there is
no closed-form solution to this problem), providing a means to compute 16 candidate solutions.
For the special case of spherical mirrors, the polynomial is of degree 4. As can be observed from
the results, although the solutions are easily found, this method is slower since the computation
of the polynomial coefficients is extremely computationally intense. Notice that the expressions
provided by the authors are very long and comprise the computation of around 50,000 power and
product operations.

! Spatial locality phenomena are not generally observed for the Mitsubishi Method, since all eighth-
degree polynomial coefficients must be recomputed for every 3D point to be reflected.
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Fig. 5. Rendering of an image using the Mitsubishi Method (left), the QI Method (centre) and ray-tracing (right).

! For the QI Method, there is a slight locality phenomenon for parabolic and hyperbolic mirrors.
However, when using spherical mirrors, this spatial effect is strong and able to speed-up the FPM
computation by a factor of 30%. This spatial locality phenomenon can be explained by the fact
that, when the best reflection point is searched in the proximity of the best solution to the previous
point, the probability of finding the solution very closely is high.

! As for the optimizations of the Mitsubishi Method, as previously explained, this method is already
highly optimized. Actually, its phase 2, which is relative to the computation of the polynomial
coefficients, is responsible for around two thirds or more of the total execution time. Furthermore,
as previously mentioned, since their calculation is unique for each 3D point and involves the
computation of around 50,000 powers, multiplications and summations, the method is slow and
non-optimizable.

! A parameter that has a great influence on the performance of the QI Method is the minimization
tolerance (a parameter of the Golden Section Method, used for parabolic and hyperbolic mirrors,
and of the Brent Method, used for spherical mirrors), which controls the amount of iterations
performed for each reflection point. It was observed that reducing the tolerance until 1e-3 reduces
the execution time linearly while preserving the accuracy of the computation (up to single or
double floating point precision). The number of iterations has very little variability, which is a
good characteristic for parallel computing techniques to be applied in the future. Additionally,
for spherical mirrors, we observed that the execution time and number of iterations stabilize for
tolerances higher than 1e-5.

7. Application to Computer Graphics
In what concerns real-time applications of the fastest method, the QI Method computes a reflection
point in an average of 170 microseconds for parabolic and hyperbolic mirrors, and 50 microseconds
for spherical mirrors, making it perfectly suitable for real-time applications, especially if one considers
the fact that further accelerations are being studied and a GPU implementation is also intended for it.

To show the accuracy and performance of the reflection point computation, Fig. 5 (centre image)
was rendered using C++, where we used some primitives of Numerical Recipes in C++ 28 for the
exact reflection points. For the sake of comparison, we also rendered the same image using the
Mitsubishi Method (leftmost image) and ray-tracing (rightmost image), which is the reference in
terms of accuracy (all implemented in C++).

One can observe that the mirror (a sphere, in this example) correctly projects the points of the
environment with no artefacts. As the purpose of our work is not the rendering of images itself, but
rather the computation of the reflection point on the mirror surface, there are several improvements
that can be made in order to get even better images, including illumination effects. With this example,
we aim to show that the QI Method can be included in the pipeline for rendering realistic images.
Furthermore, although the GPU is not used in the calculations of the reflection point, it must be
pointed out that further accelerations may possibly be studied, if these computations were to be
optimized for the GPU.
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Table XI. Rendering time (in seconds) for
the two methods under comparison and the

ray-tracing reference, in C++ at the CPU.

Rendering time for the image

Mitsubishi QI (ours) Ray-tracing

2.76 0.7 3.5

Fig. 6. The image on the left shows one of the created environments (a room with toys) and, in the centre, its
reflection on the surface of the mirror. The image on the right represents an ancient environment. Both images
were computed in C++ using the QI Method.

Fig. 7. Room filled with toys, rendered using the QI projection model, projecting 10,000 vertices.

As for performance, Table XI summarizes the computation time for the three methods, showing
that the QI Method is the fastest one.

Additionally, we present the results of using the QI Method to render two different scenes: one
representing a room filled with toys, the other representing an ancient environment (Fig. 6). As can
be observed, the accuracy of the method for rendering scenes in graphics is very high, and we expect
to achieve real time soon. A detailed render of the first scene is shown in Fig. 7.

In what concerns the C++ code of the implementations, it can be downloaded from the publicly
available link: http://scrat.isr.uc.pt/uniprojection/.

8. Conclusion and Future Work
This paper addresses the problem of computing the reflection point on a surface reflector where a
light ray is redirected from a 3D point to a camera centre of projection, called the FPM.

Recently, two different methods that address this problem have appeared. Goncalves and Nogueira
have presented the QI Method that intersects the quadric mirror with an analytical quadric depending
on the geometry, defining a curve where the reflection point is searched for and parameterized by
a single parameter. The search in this curve, though iterative, presents higher performance. On the
other hand, Agrawal, Taguchi and Ramalingam have presented a method that determines algebraically
the solution as one of the roots of an eighth-degree polynomial whose coefficients are determined
in closed-form expressions (notice that there is, however, no closed-form solution for polynomials
of degree 8). This method, called the Mitsubishi Method, is simpler to solve and presents higher
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accuracy in relation to the standard two-parameter space approach. In this paper, we also focus on
the specific case of spherical mirrors for the QI Method, deriving simplified expressions for their
projection model.

The experiments that were presented analyse the execution cycle of both the QI and the Mitsubishi
Methods, and compare their performance. We concluded that the QI Method, though iterative, presents
better performance and is able to find the reflection point with the same accuracy as the Mitsubishi
Method. In turn, the Mitsubishi Method is slower since its polynomial coefficients must be recomputed
for each 3D point and this step represents around two thirds of the execution time—with around
50,000 powers and multiplication operations being involved. Finally, the QI Method was found to
be, in average, two times faster than the Mitsubishi Method. The QI Method was then used to render
two images using C++, integrating it in the rendering pipeline for computing the reflection point on
the mirror surface (in real time).

Future directions to pursue include further optimizing the computation of the FPM solution and
comparing it with non-exact methods for computing the reflection point in quadric mirrors. We
intend to test these methods in the field of graphics and compare them in the rendering of images
with specular objects, represented by arbitrary surfaces that could be approximated by quadrics.
Additionally, we intend to develop the QI Method in the GPU (in a vertex shader pipeline) in order
to further accelerate it.
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