
Computers & Graphics 108 (2022) 49–60

L
a

b

c

i
n
o
f
W
n

i
a
f
S
s
c
n
a
t
s

p

s
(
(

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on SIBGRAPI 2022

Exploring differential geometry in neural implicits
Tiago Novello a,∗, Guilherme Schardong c, Luiz Schirmer c, Vinícius da Silva b, Hélio Lopes b,
uiz Velho a

IMPA - Instituto de Matemática Pura e Aplicada, Brazil
PUC-Rio - Pontifícia Universidade Católica do Rio de Janeiro, Brazil
Universidade de Coimbra, Portugal

a r t i c l e i n f o

Article history:
Received 13 May 2022
Received in revised form 5 September 2022
Accepted 7 September 2022
Available online 13 September 2022

Keywords:
Implicit surfaces
Neural Implicits
Neural Networks
Curvatures

a b s t r a c t

We introduce a neural implicit framework that exploits the differentiable properties of neural networks
and the discrete geometry of point-sampled surfaces to approximate them as the level sets of neural
implicit functions.

To train a neural implicit function, we propose a loss functional that approximates a signed distance
function, and allows terms with high-order derivatives, such as the alignment between the principal
directions of curvature, to learn more geometric details. During training, we consider a non-uniform
sampling strategy based on the curvatures of the point-sampled surface to prioritize points with more
geometric details. This sampling implies faster learning while preserving geometric accuracy when
compared with previous approaches.

We also use the analytical derivatives of a neural implicit function to estimate the differential
measures of the underlying point-sampled surface.

© 2022 Elsevier Ltd. All rights reserved.
i

1. Introduction

Level sets of neural networks have been used to represent
mplicit surfaces in R3 with accurate results. In this context, the
eural implicit problem is the task of training the parameters θ
f a neural network fθ : R3

→ R such that its zero-level set
−1
θ (0) = {p | fθ (p) = 0} approximates a desired surface in R3.
e say that fθ is a neural implicit function and that f −1

θ (0) is a
eural implicit surface.
In this work, we propose a framework to solve the neural

mplicit problem. The input is a discrete sample of points from
ground truth surface S, and the output is a neural implicit

unction fθ approximating the signed distance function (SDF) of
. The framework explores the differential geometry of implicit
urfaces in the learning process of fθ . Thus, for simplicity, we
onsider fθ to be a smooth function. Sinusoidal representation
etworks (SIREN) [1] and implicit geometric regularization (IGR) [2]
re examples of smooth neural networks. We adopt as a basis
he SIREN architecture which has important properties that are
uitable for reconstructing signals.
Specifically, let {pi,Ni} be the input composed of a sample of

oints and normals from the possibly unknown surface S. We

This article has been certified as Replicable by the Graphics Replicability
Stamp Initiative: http://www.replicabilitystamp.org.

∗ Corresponding author.
E-mail addresses: tiago.novello90@gmail.com (T. Novello),

chardong.gg@gmail.com (G. Schardong), schirmer.luizj@gmail.com
L. Schirmer), dsilva.vinicius@gmail.com (V. da Silva), lopes@inf.puc-rio.br
H. Lopes), lvelho@impa.br (L. Velho).
ttps://doi.org/10.1016/j.cag.2022.09.003
097-8493/© 2022 Elsevier Ltd. All rights reserved.
look for a set of parameters θ such that fθ approximates the
SDF of S. Since SDFs have unit gradient we ask fθ to satisfy the
Eikonal equation ∥∇fθ∥ = 1 in {pi}. Moreover, it is required the
conditions fθ (pi) = 0 and ⟨∇fθ (pi),Ni⟩ = 1, which force the zero-
level set of fθ to interpolate {pi} and the gradient to be aligned
to the normals Ni. Additionally, to avoid spurious components
n f −1

θ (0), we extend these constraints to off-surface points by
approximating the SDF at these points.

The above constraints require two degrees of differentiability
of fθ . We also explore the ‘‘alignments’’ between the shape op-
erator d ∇fθ

∥∇fθ ∥
of the neural surface f −1

θ (0) and the shape operator
dN of S. This requires one more degree of differentiability of fθ . As
the shape operators carry the intrinsic/extrinsic geometry of their
surfaces, asking their alignment would require more consistency
between the geometrical features of f −1

θ (0) and S.
In practice, we have a sample of points of S. Suppose that the

shape operator is known at these points. During the training of
fθ , it is common to sample batches of points uniformly. However,
there is a high probability of selecting points with poor geometric
details on their neighborhoods, which leads to slow learning of
the network.

This work proposes a sampling based on the curvature to se-
lect points with important geometric details during the training.

With a trained neural implicit function fθ in hand, we can
analytically calculate the differential geometry formulas of the
corresponding neural implicit surface since we have its shape
operator d ∇fθ . We provide the formulas along with the text.
∥∇fθ ∥

https://doi.org/10.1016/j.cag.2022.09.003
https://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2022.09.003&domain=pdf
http://www.replicabilitystamp.org
mailto:tiago.novello90@gmail.com
mailto:schardong.gg@gmail.com
mailto:schirmer.luizj@gmail.com
mailto:dsilva.vinicius@gmail.com
mailto:lopes@inf.puc-rio.br
mailto:lvelho@impa.br
https://doi.org/10.1016/j.cag.2022.09.003

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60

a
i
a
T
m
a
s

o
t
c
a
a
t

2

b
a
c
t
T
a
c

m

d
R
f
p
f
d
o

w
a

t
s
f
W
o
m
s
t
i

s
s
e
r
o
i
C
b
p

The main contribution of our work is a global geometric rep-
resentation in the continuous setting using neural networks as
implicit functions. Besides its compact representation that cap-
tures geometrical details, this model is robust for shape analysis
and efficient for computation since we have its derivatives in
closed form. The contributions can be summarized as follows:

• A method to approximate the SDF of a surface S by a net-
work fθ . The input of the framework is a sample of points
from S (the ground truth) endowed with its normals and
curvatures, and the SDF approximation fθ is the output.

• A loss functional that allows the exploration of tools from
continuous differential geometry during the training of the
neural implicit function. This provides high fidelity when
reconstructing geometric features of the surface and acts as
an implicit regularization.

• During the training of the network, we use the discrete
differential geometry of the dataset (point-sampled surface)
to sample important regions. This provides a robust and fast
training without losing geometrical details.

• We also use the derivatives, in closed form, of a neural
implicit function to estimate the differential measures, like
normals and curvatures, of the underlying point-sampled
surface. This is possible since it lies in a neighborhood of
the network zero-level set.

In this work, we will focus on implicit surfaces in R3. However,
the definitions and techniques that we are going to describe
can be easily adapted to the context of implicit n-dimensional
manifolds embedded in Rn+1. In particular, it can be extended to
curves and gray-scales images (graph of 2D functions). For neural
animation of surfaces, see [3].

2. Related concepts and previous works

The research topics related to our work include implicit sur-
face representations using neural networks, discrete and contin-
uous differential geometry, and surface reconstruction.

2.1. Surface representation

A surface S ⊂ R3 can be represented explicitly using a collec-
tion of charts (atlas) that covers S or implicitly using an implicit
function that has S as its zero-level set. The implicit function
theorem defines a bridge between these representations. Consider
S to be a smooth surface, i.e. there is a smooth function f having
S as its zero-level set and ∇f ̸= 0 on it. The normalized gradient
N =

∇f
∥∇f ∥ is the normal field of S. The differential of N is the shape

operator and gives the curvatures of S.
In practice, we usually have a point cloud {pi} collected from

real-world surface S whose representation is unknown. Thus, it
s common to add a structure on {pi} in order to operate it as
surface, for example, to compute its normals and curvatures.
he classical explicit approach is to reconstruct S as a triangle
esh having {pi} as its vertices. It will be a piecewise linear
pproximation of S with topological guarantees if {pi} satisfies a
et of special properties [4].
For simplicity, since the input of our method is a sample

f points endowed with normals and curvatures, we consider it
o be the set of vertices of a triangle mesh. Then, we can use
lassical algorithms to approximate the normals and curvatures
t the vertices. However, we could use only point cloud data
nd compute its normals and curvatures using well-established
echniques in the literature [5–8].
50
.1.1. Discrete differential geometry
Unfortunately, the geometry of the triangle mesh T cannot

e studied in the classical differentiable way, since it does not
dmit a continuous normal field. However, we can define a dis-
rete notion of this field considering it to be constant on each
riangle. This implies a discontinuity on the edges and vertices.
o overcome this, we use an average of the normals of the
djacent faces [9]. Hence, the variations of the normal field are
oncentrated on the edges and vertices of T .
The study of the discrete variations of the normals of triangle

eshes is an important topic in discrete differential geometry [9–
11]. Again, these variations are encoded in a discrete shape oper-
ator. The principal directions and curvatures can be defined on
the edges: one of the curvatures is zero, along the edge direction,
and the other is measured across the edge and it is given by
the dihedral angle between the adjacent faces. Finally, the shape
operator is estimated at the vertices by averaging the shape
operators of the neighboring edges. We consider the approach
of Cohen-Steiner and Morvan [10].

The existent works try to discretize operators by mimicking a
certain set of properties inherent in the continuous setting. Most
often, it is not possible to discretize a smooth object such that
all of the natural properties are preserved — this is the no free
lunch scenario. For instance, Wardetzky et al. [12] proved that
the existent discrete Laplacians do not satisfy the properties of
the continuous Laplacian.

Given an (oriented) point cloud {pi,Ni} sampled from a surface
S, we can try to reconstruct the SDF of S. For this, points outside
S may be added to the point cloud {pi}. After estimating the SDF
on the resulting point cloud we obtain a set pairs {pi, fi} of points
and the approximated SDF values.

2.2. Classic implicit surface reconstruction

Radial basis functions (RBF) [13] is a classical technique that
approximates the SDF f from {pi, fi}. The RBF interpolant is given
by: s(p) =

∑
λiφ(∥p − pi∥), where the coefficients λi ∈ R are

etermined by imposing s(pi) = fi. The radial function φ : R+
→

is a real function, and pi are the centers of the radial basis
unction. In order to consider the normals {Ni}, Macêdo et al. [14]
roposed to approximate the function f by a Hermite radial basis
unction. It is important to note that the RBF representation is
irectly dependent on the dataset, since its interpolant s depends
n pi.
Poisson surface reconstruction [15] is another classical method

idely used in computer graphics to reconstruct a surface from
n oriented point cloud {pi,Ni}.
In this work, a multilayer perceptron (MLP) network fθ is used

o overfit the unknown SDF. θ is trained using the point-sampled
urface {pi} endowed with its normals and curvatures. A loss
unction is designed to fit the zero-level set of fθ to the dataset.
e use the curvatures in the loss function to enforce the learning
f more geometrical detail, and during the sampling to consider
inibatches biased by the curvature of the data. In Section 5.3 we
how that our neural implicit representation is comparable with
he RBF method making it a flexible alternative in representing
mplicit functions.

Both RBF and our method look for the parameters of a function
uch that it fits to the signed distance of a given point-sampled
urface. Thus they are related to the regression problem. Differ-
ntly from RBF, a neural network approach provides a compact
epresentation and is not directly dependent on the dataset,
nly the training of its parameters. The addition of constraints
s straightforward, by simply adding terms to the loss function.
ompared to RBF, adding more constraints increases the num-
er of equations to solve at inference time, thus increasing the
roblem’s memory requirements.

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60

2

w
a

t
f

o
o

d c
S

.3. Neural implicit representations

In the context of implicit surface representations using net-
orks, we can divide the methods in three categories: 1st gener-
tion models; 2nd generation models; 3rd generation models.
The 1st generation models correspond to global functions of

he ambient space and employ as implicit model either a indicator
unction or a generalized SDF. They use a fully connected MLP
network architecture. The model is learned by fitting the input
data to the model. The loss function is based either on the L1 or
L2 norm. The seminal papers of this class appeared in 2019. They
are: Occupancy Networks [16], Learned Implicit Fields [17], Deep
SDF [18], and Deep Level Sets [19].

The 2nd generation models correspond to a set of local func-
tions that combined together gives a representation of a func-
tion over the whole space. These models are based either on
a shape algebra, such as in constructive solid geometry, or con-
volutional operators. The main works of this category appeared
in 2019–2020: Local Deep Implicit Functions [20], BSP-Net [21],
CvxNet [22] and Convolutional Occupancy Networks [23].

The 3rd generation models correspond to true SDFs that are
given by the Eikonal equation. The model exploits in the loss
function the condition ∥∇f ∥ = 1. The seminal papers of this
category appeared in 2020. They are: IGR [2] and SIREN [1].

Inspired by the 3rd generation models, we explore smooth
neural networks that can represent the SDFs of surfaces. That
is, the Eikonal equation is considered in the loss function which
adds constraints involving derivatives of first order of the un-
derlying function. One of the main advantages of neural implicit
approaches is their flexibility when defining the optimization
objective. Here we use it to consider higher order derivatives
(related to curvatures) of the network during its training and
sampling. This strategy can be seen as an implicit regularization
which favors smooth and natural zero-level set surfaces by focus-
ing on regions with high curvatures. The network utilized in the
framework is a MLP with a smooth activation function.

3. Conceptualization

3.1. Implicit surfaces

In Section 2.1 we saw that the zero-level set f −1(0) of a
function f : R3

→ R represents a regular surface if ∇f ̸= 0
on it. However, the converse is true, i.e. for each regular surface
S in R3, there is a function f : R3

→ R having S as its zero-level
set [24, Page 116]. Therefore, given a sample of points on S, we
could try to construct the corresponding implicit function f .

3.1.1. Differential geometry of implicit surfaces
Let S be a surface and f : R3

→ R be its implicit function. The
differential dNp : TpS → TpS of N =

∇f
∥∇f ∥ at p ∈ S is a linear map

n the tangent plane TpS. The map dN is called the shape operator
f S and can be expressed by:

N = (I − N · N⊤)
H f

∥∇f ∥
, (1)

where H f denotes the Hessian of f and I is the identity matrix.
Thus, the shape operator is the product of the Hessian (scaled by
the gradient norm) and a linear projection along the normal.

As dNp is symmetric, the spectral theorem states that there
is an orthogonal basis {e1, e2} of TpS (the principal directions)
where dNp can be expressed as a diagonal 2 × 2 matrix. The two
elements of this diagonal are the principal curvatures κ1 and κ2,
and are obtained using dN(ei) = −κiei.

The second fundamental form of S can be used to interpret dN
geometrically. It maps each point p ∈ S to the quadratic form
51
IIp(v) =
⟨
−dNp(v), v

⟩
. Let α be a curve passing through p with

unit tangent direction v. The number κn(p) = IIp(v) is the normal
curvature of α at p. Kindlmann et al. [25] used κn to control the
width of the silhouettes of S during rendering.

Restricted to the unit circle of TpS, IIp reaches a maximum and
a minimum (principal curvatures). In the frame {e1, e2}, IIp can be
written in the quadratic form IIp(v) = x21κ1+x22κ2 with v = x1e1+
x2e2. Points can be classified based on their form: elliptic if κ1κ2 >

0, hyperbolic if κ1κ2 < 0, parabolic if only one κi is zero, and
planar if κ1 = κ2 = 0. This classification is related to the Gaussian
curvature K = κ1κ2. Elliptic points have positive curvature. At
these points, the surface is similar to a dome, positioning itself
on one side of its tangent plane. Hyperbolic points have negative
curvature. At such points, the surface is saddle-shaped. Parabolic
and planar points have zero curvature.

The Gaussian curvature K of S can be calculated using the
following formula [26].

K = −
1

∥∇f ∥4 det
[

H f ∇f
∇f ⊤ 0

]
. (2)

The mean curvature H = (κ1 + κ2)/2, is an extrinsic measure that
describes the curvature of S. It is the half of the trace of dN which
does not depend on the choice of basis. Expanding it results in the
divergence of N , i.e. 2H = div ∇f

∥∇f ∥ . Thus, if f is a SDF, the mean
curvature can be written using the Laplacian.

An important advantage of representing a surface using level
sets is that the geometric objects, like normals and curvatures,
can be computed analytically — no discretization is needed. Fig. 1
illustrates the Gaussian and mean curvatures of a neural implicit
surface approximating the Armadillo. The corresponding network
was trained using the method we are proposing. We use the
sphere tracing algorithm [27] to ray cast the zero-level set. The
image was rendered using the traditional Phong shading. Both
normal vectors and curvatures were calculated analytically using
PyTorch automatic differentiation module (torch.autograd)
[28]. We used a transfer function to map points with high/
medium/low curvatures to the red/white/blue colors.

There are several representations of implicit functions. For
example, in constructive solid geometry the model is represented
by combining simple objects using union, intersection, and dif-
ference. However, this approach has limitations, e.g. representing
the Armadillo would require a prohibitive number of operations.
RBF is another approach consisting of interpolating samples of
the underlying implicit function which results in system of linear
equation to be solved. A neural network is a compact option
that can represent any implicit function with arbitrary precision,
guaranteed by the universal approximation theorem [29].

3.2. Neural implicit surfaces

A neural implicit function fθ : R3
→ R is an implicit function

modeled by a neural network. We call the zero-level set f −1
θ (0)

a neural implicit surface. Let S be a compact surface in R3, to
ompute the parameter set of fθ such that f −1

θ (0) approximates
, it is common to consider the Eikonal problem:{
∥∇fθ∥ = 1 in R3,

fθ = 0 on S.
(3)

The Eikonal equation ∥∇fθ∥ = 1 asks for fθ to be a SDF. The
Dirichlet condition, fθ = 0 on S, requires fθ to be the signed
distance of a set that contains S. These two constraints imply the
Neumann condition, ∂ fθ

∂N = 1 on S. Since ∂ fθ
∂N = ⟨∇fθ ,N⟩, Neumann

constraint forces ∇fθ to be aligned to the normal field N . These
constraints require two degree of differentiability of fθ , thus, we
restrict our study to smooth networks.

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60

h
f
a
t
n
(
h

3

f
w
f

L

{

t
d
t

S

F
t
a

t

4

o
c

4

w
a

Fig. 1. Gaussian and mean curvatures of the smooth Armadillo model.

There are several advantages of using neural surfaces. Besides
aving the entire framework of neural networks available, these
unctions have a high capacity of representation. We also have
ccess to the differential geometry tools of neural surfaces, for
his, we only need the Hessian and gradient operators of the
etwork since these are the ingredients of the shape operator
Eq. (1)). As a consequence, we can design loss functions using
igh-order differential terms computed analytically.

.3. Learning a neural implicit surface

Let S be a compact surface in R3 and f : R3
→ R be its SDF. Let

θ : R3
→ R be an unknown neural implicit function. To train θ ,

e seek a minimum of the following loss function, which forces
θ to be a solution of Eq. (3).

(θ) =

∫
R3

⏐⏐1 − ∥∇fθ∥
⏐⏐dp  

LEikonal

+

∫
S
|fθ |dS  

LDirichlet

+

∫
S
1 −

⟨
∇fθ

∥∇fθ∥
,N

⟩
dS  

LNeumann

.

(4)

LEikonal encourages fθ to be the SDF of a set X by forcing it to
be a solution of ∥∇fθ∥ = 1. LDirichlet encourages X to contain S.
LNeumann asks for ∇fθ and the normal field of S to be aligned. It
is common to consider an additional term in Eq. (4) penalizing
points outside S, this forces fθ to be a SDF of S, i.e. X = S. In
practice, we extended LDirichlet to consider points outside S, for
this we used an approximation of the SDF of S.

We investigate the use of the shape operator of f −1
θ (0) to

improve L, by forcing it to align with the discrete shape operator
of the ground truth point-sampled surface. For the sampling of
points used to feed a discretization of L, we use the discrete
curvatures to access regions containing appropriate features.
52
3.4. Discrete surfaces

Let T = (V , E, F) be a triangle mesh approximating S. V =

pi} are the vertices, E denotes the edge set, and F denotes the
faces. The discrete curvatures at an edge e can be estimated using
β(e) ē · ē⊤, where β(e) is the signed dihedral angle between the
wo faces adjacent to e and ē is a unit vector aligned to e. Then, the
iscrete shape operator can be defined on a vertex pi by averaging
he shape operators of the neighboring edges [10].

(pi) =
1

area(B)

∑
e∈E

β(e) |e ∩ B| ē · ē⊤. (5)

where B is a neighborhood of pi and |e ∩ B| is the length of e∩ B.
ig. 2 shows a schematic illustration of this operator. It is common
o consider B being the dual face of pi. This operator is the discrete
nalogous to the shape operator (Eq. (1)).

Fig. 2. Discrete shape operator setting.

Again, the discrete shape operator is a 3 × 3 matrix, and
in this case it is symmetric: there are exactly three eigenvalues
and their respective eigenvectors. The normal Ni is the eigen-
vector associated with the smaller (in absolute) eigenvalue. The
remaining eigenvalues are the principal curvatures, and their
associated eigenvectors are the principal directions. The principal
curvatures and principal directions are permuted. The discrete
Gaussian curvature Ki and mean curvature Hi at a vertex pi are
he product and the average of the principal discrete curvatures.

. Differentiable neural implicits

This section explores the differential geometry of the level sets
f networks during their training. For the sampling, we use the
urvatures of the dataset to prioritize important features.

.1. Neural implicit function architecture

We consider the neural function fθ : R3
→ R to be defined by

fθ (p) = Wn ◦ fn−1 ◦ fn−2 ◦ · · · ◦ f0(p) + bn (6)

where fi(pi) = ϕ(Wipi + bi) is the ith layer, and pi is the output of
fi−1, i.e. pi = fi−1 ◦ · · · ◦ f0(p). The smooth activation function ϕ :

R → R is applied to each coordinate of the affine map given by
the linear map Wi : RNi → RNi+1 translated by the bias bi ∈ RNi+1 .
The linear operators Wi can be represented as matrices and bi as
vectors. Therefore, the union of their coefficients corresponds to
the parameters θ of fθ .

We consider ϕ to be the sine function since the resulting net-
ork is suitable for reconstructing signals and can approximate
ll continuous functions in the cube [−1, 1]3 [29]. Recently, Sitz-

mann et al. [1] proposed an initialization scheme for training
the parameters of the network in the general context of signal
reconstruction — implicit surfaces being a particular case. Here,
we explore the main properties of this definition in implicit
surface reconstruction. For example, its first layer is related to

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60

a
h

e
e
c
h
w

4

d
f

e
o

∇

w
u

J

⊙

c

4

c

H

W
f

E
e
c
s

T

L

T

t

|

p
v
p

w
e
K

e
c

4

t
t

T
i
t
t
a
t

t

Fourier feature mapping [30], which allows us to represent
igh-frequency three-dimensional implicit functions.
Another property of this network is its smoothness, which

nables the use of differential geometry in the framework. For
xample, by Eq. (1), the shape operator of a neural surface can be
omputed using its gradient and Hessian. These operators are also
elpful during training and shading. As a matter of completeness
e present their formulas below.

.1.1. Gradient of a neural implicit function
The neural implicit function fθ is smooth since its partial

erivatives (of all orders) exist and are continuous. Indeed, each
unction fi has all the partial derivatives because, by definition, it
is an affine map with the smooth activation function ϕ applied to
ach coordinate. Therefore, the chain rule implies the smoothness
f fθ . We can compute the gradient of fθ explicitly:

fθ (p) = JW n
(
fn−1 ◦ · · · ◦ f0(p)

)
· · · · · J f 1

(
f0(p)

)
· J f 0(p)

= Wn · J fn−1(pn−1) · · · · · J f 1(p1) · J f 0(p), (7)

here J is the Jacobian and pi = fi−1 ◦ · · · ◦ f0(p). Calculations lead
s to an explicit formula for the Jacobian of fi at pi.

fi(pi) = Wi ⊙ ϕ′
[
ai| · · · |ai

]
. (8)

is the Hadamard product, and the matrix
[
ai| · · · |ai

]
has Ni

opies of ai = Wi(pi) + bi ∈ RNi+1 .

.1.2. Hessian of a neural implicit function
Recall the chain rule formula for the Hessian operator of the

omposition of two maps f : Rm
→ Rn and g : Rn

→ R:

(g ◦ f)(p) = J f (p)⊤ · H g
(
f (p)

)
· J f (p) + J g

(
f (p)

)
· H f (p) (9)

e use this formula to compute the hessian H fθ of the network
θ using induction on its layers.

Let f = fi−1 ◦ · · · ◦ f0 be the composition of the first i layers of
fθ , and g be the l-coordinate of the i-layer fi. Suppose we have the
hessian H f (p) and jacobian J f (p), from the previous steps of the
induction. Then we only have to compute the hessian H g

(
f (p)

)
and jacobian J g

(
f (p)

)
to obtain H (g ◦ f)(p). Eq. (8) gives the

formula of the jacobian of a hidden layer.
Expanding the Hessian H g(p) of the layer g(p) = ϕ(wlp + bl)

gives us the following formula.

H g(p) = w⊤

l wl · ϕ′′(wlp + bl). (10)

where wl is the l-line of W and bl is the l-coordinate of the bias b.
When using ϕ = sin, we have H g(p) = − w⊤

l wl · g(p).

4.2. Loss functional

Let S be a compact surface and f : R3
→ R be its SDF. Here, we

explore the loss functional L = LEikonal +LDirichlet +LNeumann used
to train neural implicit functions. The training consists of seeking
a minimum of L using the gradient descent. We present ways of
improving the Dirichlet and Neumann constraints.

4.2.1. Signed distance constraint
In practice we have a sample of points {pi}ni=1 being the ver-

tices of a triangulation T of S. Then we replace LDirichlet by

L̃Dirichlet(θ) =
1
n

n∑
i=1

|fθ (pi)|. (11)

q. (11) forces fθ = f on {pi}, i.e. it asks for {pi} ⊂ f −1
θ (0). How-

ver, the neural surface f −1
θ (0) could contain undesired spurious

omponents. To avoid this, we improve L̃Dirichlet by including off-
urface points. For this, consider the point cloud {p }

n+k to be the
i i=1

53
union of the n vertices of T and a sample of k points in R3
− S.

he constraint can be extended as follows.

D̃irichlet(θ) =
1

n + k

n+k∑
i=1

|fθ (pi) − f (pi)| (12)

he algorithm in Section 4.2.2 approximates f in {pi}n+k
i=n+1.

Sitzmann et al. [1] uses an additional term
∫
e−100|fθ |dp, to

penalize off-surface points. However, this constraint takes a while
to remove the spurious components in f −1

θ (0). Gropp et al. [2]
uses a pre-training with off-surface points. Here, we use an ap-
proximation of the SDF during the sampling to reduce the error
outside the surface. This strategy is part of our framework using
computational/differential geometry.

4.2.2. Signed distance function
Here we describe an approximation of the SDF f of S for use

during the training of the network fθ . For this, we simply use
he point-sampled surface consisting of n points {pi} and their
normals {Ni} to approximate the absolute of f :

f (p)| ≈ min
i≤n

∥p − pi∥ (13)

The sign of f (p) at a point p is negative if p is inside S and
ositive otherwise. Observe that for each vertex pi with a normal
ector Ni, the sign of ⟨p − pi,Ni⟩ indicates the side of the tangent
lane that p belongs to. Therefore, we approximate the sign of

f (p) by adopting the dominant signs of the numbers
⟨
p − pj,Nj

⟩
,

here {pj} ⊂ V is a set of vertices close to p. This set can be
stimated using a spatial-indexing structure such as Octrees or
D-trees, to store the points {pi}. Alternatively, we can employ

winding numbers to calculate the sign of f (p). Recent techniques
nable a fast calculation of this function and extend it to point
louds [31].

.2.3. Loss function using curvatures
We observe that instead of using a simple loss function, with

he eikonal approach, our strategy using model curvatures leads
o an implicit regularization. The on-surface constraint

∫
1 −

⟨∇fθ ,N⟩ dS requires the gradient of fθ to be aligned to the nor-
mals of S. We extend this constraint by asking for the matching
between the shape operators of f −1

θ (0) and S. This can be achieved
by requiring the alignment between their eigenvectors and the
matching of their eigenvalues:∫
S

∑
i=1,2,3

(
1 − ⟨(ei)θ , ei⟩2 + |(κi)θ − κi|

)
dS, (14)

where (ei)θ and (κi)θ are the eigenvectors and eigenvalues of
the shape operator of f −1

θ (0), and ei and κi are the eigenvectors
and eigenvalues of the shape operator of S. We opt for the
square of the dot product because the principal directions do not
consider vector orientation. As the normal is, for both f −1

θ (0) and
S, one of the shape operator eigenvectors associated to the zero
eigenvalue, Eq. (14) is equivalent to:∫
S

1−

⟨
∇fθ

∥∇fθ∥
,N

⟩
dS+

∫
S

∑
i=1,2

(
1−⟨(ei)θ , ei⟩2+|(κi)θ −κi|

)
dS (15)

he first integral in Eq. (15) coincides with LNeumann. In the second
ntegral, the term 1 − ⟨(ei)θ , ei⟩2 requires the alignment between
he principal directions, and |(κi)θ − κi| asks for the matching of
he principal curvatures. Asking for the alignment between (e1)θ
nd e1 already forces the alignment between (e2)θ and e2, since
he principal directions are orthogonal.

We can weaken the second integral of Eq. (15) by considering
he difference between the mean curvatures |H − H| instead of
θ

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60

|

c
i

{

o
a
g
a
f

s
p
t
d
b
a
t

t
p
t
(
o
|

w
p

s
m
{

h
i
w
a
a
p

w
t
d

o
H
o

r
U
f
t
t
g
c

5

w
a
b

a
f

W
w

h
t

(

d
a
d
i
t
t
o
f
o

(κ1)θ − κ1| + |(κ2)θ − κ2|. This is a weaker restriction because
|Hθ − H| ≤

1
2 |(κ1)θ − κ1| +

1
2 |(κ2)θ − κ2|. However, it reduces the

omputations during optimization, since the mean curvature Hθ

s calculated through the divergence of ∇fθ
∥∇fθ ∥

.
Next, we present the sampling strategies mentioned above for

use in the training process of the neural implicit function fθ .

4.3. Sampling

Let {pi,Ni, Si} be a sample from an unknown surface S, where
pi} are points on S, {Ni} are their normals, and {Si} are samples
f the shape operator. {pi} could be the vertices of a triangle mesh
nd the normals and curvatures be computed using the formulas
iven in Section 3.4. Let fθ : R3

→ R be a neural implicit function,
s we saw in Section 4.2, its training consists of defining a loss
unctional L to force fθ to be the SDF of S.

In practice, L is evaluated on a dataset of points dynamically
ampled at training time. This consists of a sampling of on-surface
oints in {pi} and a sampling of off-surface points in R3

− S. For
he off-surface points, we opted for an uniform sampling in the
omain of fθ . Additionally, we could bias the off-surface sampling
y including points in the tubular neighborhood of S — a region
round the surface given by a disjoint union of segments along
he normals.

The shape operator encodes important geometric features of
he data. For example, regions containing points with higher
rincipal curvatures κ1 and κ2 in absolute codify more details
han points with lower absolute curvatures. These are the elliptic
κ1κ2 > 0), hyperbolic (κ1κ2 < 0), or parabolic points (when only
ne κi is zero). Regions consisting of points close to planar, where
κ1| and |κ2| are small, contain less geometric information, thus,
e do not need to visit all of them during sampling. Also, planar
oints are abundant, see Fig. 1.
We propose a non-uniform strategy to select the on-surface

amples {pi} using their curvatures to obtain faster learning while
aintaining the quality of the end result. Specifically, we divide

pi} in three sets V1, V2, and V3 corresponding to low,medium, and
igh feature points. For this, choosing n = n1+n2+n3, with ni > 0
nteger, and sorting {pi} using the feature function κ = |κ1|+|κ2|,
e define V1 = {pi | i ≤ n1}, V2 = {pi | i > n1 and i ≤ n1 + n2},
nd V3 = {pi | i > n1+n2}. Thus, V1 is related to the planar points,
nd V2 ∪ V3 relates to the parabolic, hyperbolic and parabolic
oints.
Therefore, during the training of fθ , we can prioritize points

ith more geometrical features, those in V2 ∪ V3, to accelerate
he learning. For this, we sample less points in V1, which contains
ata redundancy, and increase the sampling in V2 and V3.
The partition V = V1 ⊔ V2 ⊔ V3 resembles the decomposition

f the graph of an image in planar, edge, and corner regions, the
arris corner detector [32]. Here, V2 ∪V3 coincides with the union
f the edge and corner regions.
We chose this partition because it showed good empirical

esults (see Section 5.2), however, this is one of the possibilities.
sing the absolute of the Gaussian or the mean curvature as the
eature function has also improved the training. In the case of
he mean curvature, the low feature set contains regions close
o a minimal surface. In future works, we intend to use the re-
ions contained in the neighborhood of extremes of the principal
urvatures, the so-called ridges and ravines.

. Experiments

We first consider the point-sampled surface of the Armadillo,
ith n = 172974 vertices {pi}, to explore the loss function
nd sampling schemes given in Section 4. We chose this mesh
ecause it is a classic model with well-distributed curvatures. We
54
pproximate its SDF using a network fθ with three hidden layers
i : R256

→ R256, each one followed by a sine activation.
We train fθ using the loss functional L discussed in Section 4.2.
e seek a minimum of L by employing the ADAM algorithm [33]
ith a learning rate 1e − 4 using minibatches of size 2m, with m

on-surface points sampled in the dataset {pi} and m off-surface
points uniformly sampled in R3

−{pi}. After
⌈ n

m

⌉
iterations of the

algorithm, we have one epoch of training, which is equivalent to
passing through the whole dataset once. We use the initialization
of parameters of Sitzmann et al. [1].

The proposed model can represent geometric details with pre-
cision. Fig. 3 shows the original Armadillo and its reconstructed
neural implicit surface after 1000 epochs of training.

Fig. 3. Comparison between the ground truth Armadillo model (right) and its
reconstructed neural implicit surface (left) after 1000 epochs of training.

Next, we use the differential geometry of the point-sampled
surface to improve the training of fθ by adding curvature con-
straints in L and changing the sampling of minibatches in order
to prioritize the points with more geometrical information.

5.1. Loss functional

As we saw in Section 4.2, we can improve the loss functional
L = LEikonal + LDirichlet + LNeumann by adding curvature terms.
Here, we use the alignment between the direction of maximum
curvature (e1)θ of f −1

θ (0) and the principal direction e1 of the
(ground truth) surface S, which leads to a regularization term.

LDir(θ) =

∫
E
1 − ⟨e1, (e1)θ ⟩2 dS (16)

To evaluate LDir in {pi}, we calculate e1 in a pre-processing step
considering {pi} be the vertices of a mesh. Due to possible numer-
ical errors, we restrict LDir to a region E ⊂ S where |κ1 − κ2| is
igh. A point with |κ1 − κ2| small is close to be umbilical, where
he principal directions are not defined.

Fig. 4 compares the training of fθ using the loss function L
line 1) with the improved loss function L + LDir (line 2).

Asking for the alignment between the principal directions
uring training adds a certain redundancy since we are already
sking for the alignment between the normals N: the principal
irections are extremes of dN . However, as we can see in Fig. 4
t may reinforce the learning. Furthermore, this strategy can lead
o (modeling) applications that rely on adding curvature terms in
he loss functional. For example, we could choose certain regions
f a neural surface and ask for an enhancement of its geometrical
eatures. Another application could be deforming specific regions
f a neural surface [34].

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60

c
f
p
d

f
f
s

w
h

p

I
V
c

i
w

t

m
n
w

i
a
i
t
n

Fig. 4. Neural implicit surfaces trained to approximate the Armadillo. The
columns indicate the neural surfaces after 100, 200, 300, and 500 epochs of
training. Line 1 shows the results using the SDF functional. Line 2 also consider
the alignment between the principal directions in the loss functional.

5.2. Sampling

This section presents experiments using the sampling dis-
ussed in Section 4.3. This prioritizes points with important
eatures during the training implying a fast convergence while
reserving quality (see Fig. 9). Also, this analysis allows finding
ata redundancy, i.e., regions with similar geometry.
During training it is common to sample minibatches uni-

ormly. Here, we use the curvatures to prioritize the important
eatures. Choosing n = n1 + n2 + n3, with ni ∈ N, we define the
ets V1, V2, and V3 of low, medium, and high feature points.
We sample minibatches of sizem = p1m+p2m+p3m = 10000,

ith pim points on Vi. If this sampling is uniform, we would
ave pi =

ni
n . Thus, to prioritize points with more geometrical

features, those in V2 and V3, we reduce p1 and increase p2 and
3. Fig. 5 gives a comparison between the uniform sampling (first

line) and the adaptive sampling (line 2) that consider pi = 2 ni
n for

i = 2, 3, i.e. it duplicates the proportion of points with medium
and high features. Clearly, these new proportions depend on ni.
n this experiment, we use n1 =

n
2 , n2 =

4n
10 , and n3 =

n
10 , thus

1 contains half of V . This sampling strategy improved the rate
onvergence significantly.

Fig. 5. Neural implicit surfaces approximating the Armadillo model. The columns
indicate the zero-level sets of the neural implicit functions after 29, 52, 76, and
100 epochs of training. Line 1 shows the results using minibatches sampled
uniformly in V . Line 2 presents the results using the adapted sampling of
minibatches with 10%/70%/20% of points with low/medium/high features.
55
Returning to minibatch sampling. In the last experiment, we
were sampling more points with medium and high features in
V2 ∪ V3 than points with low features in V1. Thus the training
visits V2 ∪ V3 more than once per epoch. We propose to reduce
the number of points sampled per epoch, prioritizing the most
important ones. For this, we reduce the size of the minibatch in
order to sample each point of V2 ∪ V3 once per epoch.

Fig. 6 provides a comparison between the two training strate-
gies. The first line coincides with the experiment presented in
the second line of Fig. 5. It uses minibatches of size m, and

⌈ n
m

⌉
terations of the gradient descent per epoch. In the second line,
e sample minibatches of size m

2 and use
⌈ n

m

⌉
iterations of the

gradient descent. Then the second line visits half of the dataset
per epoch. We are using the same minibatch proportions pi and
sets Vi, as in the previous experiment.

Fig. 6. The columns indicate the zero-level sets of the neural implicit functions
after t , 2t , 4t , and 6t minutes of training. Line 1 shows the results using
he n points of the dataset per epoch and minibatches of size m containing
20%/60%/20% of points with low/medium/high features. The results in line 2
use n

2 points per epoch and minibatches of m
2 points with 20%/60%/20% of

low/medium/high features. Both experiments use
⌈ n

m

⌉
steps per epoch.

As we can see in Fig. 6, going through all the points with
edium and higher features once per epoch, while reducing the
umber of points with low features, resulted in faster training
ith better quality results.
To keep reducing the size of the minibatches such that we visit

mportant points once per epoch, we consider smaller medium
nd high feature sets. That is, to visit V2 ∪ V3 once per epoch
t is necessary to update the sizes ni of the feature sets Vi. For
his, we present three experiments that use n1 =

6n
10 ,

75n
100 ,

85n
100 ,

2 =
3n
10 ,

2n
10 ,

n
10 , and n3 =

n
10 ,

5n
100 ,

5n
100 , respectively. Then we

can consider minibatches of size m
2 ,

3m
10 , and

m
10 , i.e. 50%, 30%

and 10% of the original minibatch of size m. Fig. 7 shows the
results of the experiments. They are all using

⌈ n
m

⌉
iterations per

epoch, then, we visit n
2 ,

3n
10 , and

n
10 points of the dataset on each

epoch, respectively. Thus, as we reduce the minibatches sizes, we
remove points from V2 ∪ V3, which implies that we are going to
learn fewer intermediate features. This can be visualized in Fig. 7.
Observe that points with higher features, such as the shin, thighs
and abdomen, are learned faster than points with lower features,
mainly around the Armadillo chest.

Finding the optimal parameters of the proposed curvature-
based sampling can be a hard task for a general surface. The
experiments above show empirically that visiting the ‘‘important’’
points once per epoch implies good geometrical results. Another
way to select important points is using the concept of ridge and
ravine curves [35]. These are extremes of the principal curvatures
along the principal directions and indicate where the surface
bends sharply [36] .

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60

a

s
1
p
f

5

R
s
a
c
B
a
c
g
c

e
s
p
f
p
a
f
H
t
p

a
t
g
b
F
s
o
o

c
θ
m
w

s
d

e
t

W
t
e
t
w
u
m

p
s
I
a
a
p

Fig. 7. The columns present the zero-level sets of the model after t , 2t , 3t ,
nd 4t minutes of training. The results in line 1 use n

2 points per epoch and
minibatches of m

2 points with 20%/60%/20% of low/medium/high features. Line 2
hows the results using 3n

10 points per epoch and minibatches of 3m
10 points with

7%/67%/17% of low/medium/high features. The results in line 3 use n
10 points

er epoch and minibatches of m
10 points with 10%/70%/20% of low/medium/high

eatures. The experiments use
⌈ n

m

⌉
steps per epoch.

.3. Additional experiments and comparisons

This section presents a comparison of our framework with
BF [13] and SIREN [1]. For this, we introduce two analytical
urfaces with ground truth in closed form: sphere and torus;
nd four discrete surfaces: Bunny, Dragon, Buddha and Lucy. We
hoose these models because they have distinct characteristics:
unny has a simple topology/geometry, Dragon and Lucy have
simple topology with complex geometry, and Buddha has a

omplex topology/geometry. It is important to mention that the
oal is not showing that our method outperforms RBF, but is
omparable in the function approximation task.
For method comparison, we consider RBF since it is a well-

stablished method to estimate an implicit function from a point-
ampled surface. Although both RBF and our approach can ap-
roximate implicit functions, their nature is fundamentally dif-
erent. RBF solves a system of equations to weigh the influence of
airs {pi, fi} on neighboring points. If we wish to include normal
lignment (Hermite data) in this process [14], it demands pro-
ound changes in the interpolant estimation. However, including
ermite data in neural implicit models demands only additional
erms in the loss function, the model architecture and training
rocess remains unchanged.
To reconstruct the sphere and the torus models we consider

network fθ consisting of two hidden layers fi : R80
→ R80 and

rain its parameters for each model using the basic configuration
iven in Section 4.2. We trained fθ for 500 epochs considering
atches of m = 2500 on-surface points and m off-surface points.
or SIREN, we use the same network architecture and uniform
ampling scheme, only the loss function was replaced by the
riginal presented in [1]. For the RBF interpolant, we use a dataset
f m = 2500 on-surface points and m off-surface points.
We reconstruct the other models using a neural function fθ

onsisting of three hidden layers fi : R256
→ R256. Again, we train

using the basic training framework. We consider minibatches of
= 10000 on-surface points and m off-surface points. For SIREN,
e use the same network architecture and the loss function and
56
ampling scheme given in [1]. For the RBF interpolant, we used a
ataset of 10000 on-surface points and 10000 off-surface points.
Table 1 presents the quantitative comparisons of the above

xperiments. We compare the resulting SDF approximations with
he ground truth SDFs using the following measures:

• The absolute difference |f̄ − f |, in the domain R3
− S and on

the surface, between the function approximation f̄ and the
ground truth SDF f ;

• The normal alignment 1−

⟨
∇ f̄

∥∇ f̄∥
, ∇f

⟩
between the gradients

∇ f̄ and ∇f on the surface.

e used a sample of 2500 on-surface points, not included in the
raining process, to evaluate the mean and maximum values of
ach measure. We also ran the experiments 100 times and took
he average of the measures. Note that, for the RBF interpolation,
e did not calculate the analytical derivatives because we are
sing a framework without support for this feature, a numerical
ethod was employed in this case.
Our method provides a robust SDF approximation even com-

ared with RBF. Fig. 8 gives a visual evaluation presenting a
phere tracing of the zero-level sets of the SIREN and our method.
n both cases, we used an image resolution of 1024 × 1024
nd 80 sphere tracing iterations. Since we obtain a better SDF
pproximation the algorithm is able to ray cast the surface with
recision avoiding spurious components.

Fig. 8. Sphere tracing of neural implicit functions representing the Armadillo
and Bunny models. On the left, the network was trained using the SIREN
framework. On the right, the results using our method. Both networks have
the same architecture and were trained on the same data during 500 epochs.

We did not visualize RBF approximations because the algo-
rithm implemented in SciPy [37], which is employed in this work,
is not fully optimized, making the ray tracing unfeasible.

Table 2 shows the average training and inference time for RBF,
SIREN, and our method. For this experiment, we train SIREN and
our method for 50 epochs using 20000 points per batch, only
on CPU, to provide a fair comparison. As for RBF, we used a
single batch of points to build the interpolant, with each point
weighting the 300 nearest points, to diminish the algorithm’s
memory requirements. Training time for RBF consists mostly of
creating the matrices used to solve the interpolation problem.
This is a relatively simple step, thus as expected, takes only
a fraction of time compared to other methods. Still regarding
training time, SIREN and our method are in the same magnitude,

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60

l
i
b
i
D
p
H
a

m
b
t
a
o
w

Table 1
Comparison between RBF, SIREN, and our framework. We consider two analytical models, the sphere and the torus, and five classical
computer graphics models, Bunny, Dragon, Armadillo, Happy Buddha, and Lucy.

Method |f̄ − f | in the domain |f̄ − f | on the surface Normal alignment

Mean Max Mean Max Mean Max

Sphere
RBF 4e−5 0.021 5e−8 1e−4 1.81e−6 1.36e−5
SIREN 0.129 1.042 0.0031 0.013 6e−4 0.005
Ours 0.001 0.015 0.0018 0.007 6e−5 6e−4

Torus
RBF 6e−4 0.055 2e−5 0.001 1.61e−5 3.17e−4
SIREN 0.254 1.006 0.0034 0.013 0.0007 0.005
Ours 0.003 0.036 0.0029 0.011 0.0002 0.002

Bunny
RBF 0.002 0.024 0.0002 0.004 0.0007 0.453
SIREN 0.145 0.974 0.0010 0.004 0.0006 0.019
Ours 0.003 0.081 0.0015 0.005 0.0005 0.017

Dragon
RBF 0.002 0.035 0.0006 0.009 0.0160 1.459
SIREN 0.106 1.080 0.0010 0.006 0.0063 0.866
Ours 0.003 0.104 0.0010 0.005 0.0034 0.234

Armadillo
RBF 0.003 0.008 0.0030 0.056 0.0134 1.234
SIREN 0.126 0.941 0.0010 0.005 0.0021 0.168
Ours 0.009 0.136 0.0012 0.006 0.0016 0.164

Lucy
RBF 0.002 0.048 0.0003 0.011 0.1581 1.998
SIREN 0.384 1.048 0.0007 0.003 0.0070 0.313
Ours 0.013 0.155 0.0009 0.006 0.0056 0.170

Buddha
RBF 0.002 0.050 0.0004 0.010 0.0687 1.988
SIREN 0.337 1.124 0.0007 0.008 0.0141 1.889
Ours 0.096 0.405 0.0069 0.024 0.0524 1.967
e
o
t
t
e

with SIREN being slightly faster in all experiments. This is mainly
due to our method performing SDF querying at each training step.
Even with efficient algorithms, this step impacts measurably in
the training performance.

Table 2
Comparison between RBF, SIREN, and our framework. We use the same models
as in Table 1, except for the sphere and torus.

Method Training
time (s)

Inference
time (s)

Bunny
RBF 0.0055 417.3928
SIREN 173.6430 0.5773
Ours 199.3146 0.6460

Dragon
RBF 0.0046 411.1710
SIREN 319.8439 0.5565
Ours 391.4102 0.5885

Armadillo
RBF 0.0045 392.0836
SIREN 380.5361 0.9522
Ours 443.3634 0.9290

Buddha
RBF 0.0044 410.6234
SIREN 1297.0681 0.9158
Ours 1646.2311 0.9689

Lucy
RBF 0.0077 358.7987
SIREN 560.1297 0.8888
Ours 654.1596 0.8023

Regarding inference time, both our method and SIREN take
ess than a second for all models in a 643 grid. As for RBF, the
nference time is close to 400 s for all tested cases. It is affected
y the size of the interpolant, which explains the proximity in
nference performance even for complex models (Buddha and
ragon). However, the RBF inference could be improved using a
artition of unity methods [38,39] or fast multipole method [40].
ere, we opt for the implementation in Scipy [37] of the RBF
pproach since it is widely available.
Fig. 9 shows the training loss per epoch for each considered

odel. We did not include the dragon because its loss function
ehavior is similar to the Bunny. Note that the Dirichlet condi-
ion for on-surface points (sdf_on_surf) quickly converges and
pproaches zero at the first 5 epochs. In all tested cases, the
ff-surface Dirichlet condition (sdf_off_surf) converges quickly as

ell, usually by the first 20 epochs. The Eikonal and Neumann

57
constraints take longer to converge, with the notable example of
Buddha, where the Neumann constraint remains at a high level,
albeit still decreasing, after 100 epochs.

Fig. 9. Training loss per epoch for all constraints for the Bunny (top-left),
Armadillo (top-right), Buddha (bottom-left), and Lucy (bottom-right).

5.4. Curvature estimation

An additional application of our work is the use of a neural
implicit function fθ : R3

→ R to estimate differential properties
of a triangle mesh T . We train fθ to approximate the SDF of T .
Since the vertices of T lie in a neighborhood of the zero-level
set of fθ we use the network to map properties of its level sets
to T . Afterwards, we can exploit the differentiability of fθ to
stimate curvature measures on T . Fig. 10 shows an example
f this application. We trained two neural implicit functions
o approximate the SDF of the Bunny and Dragon models. We
hen analytically calculate the mean curvature on each vertex by
valuating div ∇fθ

∥∇fθ ∥
. Compared to classical discrete methods, the

curvature calculated using fθ is smoother and still respects the
global distribution of curvature of the original mesh. We com-
puted the discrete mean curvatures using the method proposed

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60

t
H
a
s
t
s

Fig. 10. Estimating mean curvature using neural implicit functions. On both
images, we present the curvature at each vertex of the Bunny 10(a) and Dragon
10(b) overlaid as color on the mesh. On the top of each figure, the discrete
mean curvature was calculated using the method in [9], while on the bottom
of each figure, we used div ∇fθ

∥∇fθ ∥
, where fθ approximates an SDF of meshe.

by Meyer et al. [9]. For our method, we used PyTorch’s automatic
differentiation module (autograd) [28].

5.5. Anisotropic shading

Another application is the use of the principal directions of
curvatures in the rendering.

Let fθ be a network such that its zero-level set Sθ approximates
the Armadillo. We present a sphere tracing visualization of Sθ

using its intrinsic geometry. For this, we consider PyTorch to
compute the shape operator of Sθ . We use its principal directions
v1 and v2 to compute an anisotropic shading based on the Ward
reflectance model [41]. It consists of using the following specular
coefficient at each point p ∈ Sθ .

kspec =
1

4πα1α2
√

⟨N, l⟩ ⟨N, v⟩
· exp

(
−2

(
⟨H,v1⟩

α1

)2
+

(
⟨H,v2⟩

α2

)2

1 + ⟨N,H⟩

)
.

where N is the normal at p, v is the unit direction from p to
he observer, l is the unit direction from p to the light source,

=
v+l

∥v+l∥ , and αi are two parameters to control the anisotropy
long the principal directions vi. Fig. 11 presents two anisotropic
hadings of Sθ . The first considers α1 = 0.2 and α2 = 0.5, and
he second uses α1 = 0.5 and α2 = 0.2. We used white as the
pecular color and gray as the diffuse color.
58
Fig. 11. Ward anisotropic specular reflectance on the Armadillo neural surface.
On the left, we consider a high deviation towards the maximum curvature
directions. On the right, it presents the analogous for the minimum curvature
directions. The principal directions were computed analytically using PyTorch.

5.6. Limitations

The main bottleneck in our work is the SDF estimation for off-
surface points. We use an algorithm implemented in the Open3D
library [42]. Even with parallelization, this method still runs on
the CPU, thus greatly increasing the time needed to train our
neural networks. Also our method is designed to run with implicit
visualization schemes, such as sphere tracing. However the infer-
ence time still does not allow for interactive frame-rates using
traditional computer graphics pipelines. Besides recent advances
in real-time visualizations of neural implicits [43,44], this is still
a challenge for future works. Finally, surfaces with sharp edges
cannot be accurately represented using smooth networks. Thus,
trying to approximate them using smooth functions may lead to
inconsistencies.

5.7. Hardware

To run all of those comparisons and tests, we used a computer
with an i7-9700F with 128GiB of memory and an NVIDIA RTX
3080 with 10GiB of memory. Even to run our model in modest
hardware, our strategy is lightweight with 198.657K parameters
and 197.632K multiply-accumulate (MAC) operations. Running
on another computer with an AMD Ryzen 7 5700G processor,
16GiB of memory, and an NVIDIA GeForce RTX 2060 with 6GiB of
memory, our model took 1.32 s to process 172974 point samples
of the Armadillo mesh.

6. Conclusions and future works

We introduced a neural network framework that exploits the
differentiable properties of neural networks and the discrete ge-
ometry of point-sampled surfaces to represent them as neural
implicit surfaces. The proposed loss function can consider terms
with high order derivatives, such as the alignment between the
principal directions. As a result, we obtained reinforcement in the
training, gaining more geometric details. This strategy can lead
to modeling applications that require curvature terms in the loss
function. For example, we could choose regions of a surface and
ask for an enhancement of its features.

We also present a sampling strategy based on the discrete
curvatures of the data. This allowed us to access points with more
geometric information during the sampling of minibatches. As a
result, this optimization trains faster and has better geometric
accuracy, since we were able to reduce the number of points in
each minibatch by prioritizing the important points.

This work emphasized the sampling of on-surface points dur-
ing the training. Future work includes a sampling of off-surface
points. Using the tubular neighborhood of the surface can be a
direction to improve the sampling of off-surface points.

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60

C

g

RediT authorship contribution statement

Tiago Novello: Formal analysis, Conceptualization, Investi-
ation, Methodology, Writing – reviewing, and editing. Guil-

herme Schardong: Software, Validation, Conceptualization, In-
vestigation, Methodology, Writing – reviewing, and editing. Luiz
Schirmer: Visualization, Validation, Conceptualization, Investiga-
tion, Methodology, Writing – reviewing, and editing. Vinícius
da Silva: Validation, Conceptualization, Investigation, Method-
ology, Writing – reviewing, and editing. Hélio Lopes: Super-
vision, Conceptualization, Investigation, Methodology, Writing
– reviewing, and editing. Luiz Velho: Supervision, Conceptu-
alization, Investigation, Methodology, Writing – reviewing, and
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cag.2022.09.003.

References

[1] Sitzmann Vincent, Martel Julien, Bergman Alexander, Lindell David, Wet-
zstein Gordon. Implicit neural representations with periodic activation
functions. Adv Neural Inf Process Syst 2020;33.

[2] Gropp Amos, Yariv Lior, Haim Niv, Atzmon Matan, Lipman Yaron. Implicit
geometric regularization for learning shapes. 2020, arXiv preprint arXiv:
2002.10099.

[3] Novello Tiago, da Silva Vinícius, Schardong Guilherme, Schirmer Luiz,
Lopes Hélio, Velho Luiz. Neural implicit surfaces in higher dimension. 2022,
arXiv preprint.

[4] Amenta Nina, Choi Sunghee, Dey Tamal K, Leekha Naveen. A simple
algorithm for homeomorphic surface reconstruction. In: Proceedings of the
sixteenth annual symposium on computational geometry; 2000, p. 213–22.

[5] Mitra Niloy J, Nguyen An. Estimating surface normals in noisy point
cloud data. In: Proceedings of the nineteenth annual symposium on
computational geometry; 2003, p. 322–8.

[6] Alexa Marc, Behr Johannes, Cohen-Or Daniel, Fleishman Shachar,
Levin David, Silva Claudio T. Computing and rendering point set surfaces.
IEEE Trans Vis Comput Graphics 2003;9(1):3–15.

[7] Mederos Boris, Velho Luiz, de Figueiredo Luiz Henrique. Robust smoothing
of noisy point clouds. In: Proc. SIAM conference on geometric design and
computing, Vol. 2004. Philadelphia, PA, USA: SIAM; 2003, p. 2.

[8] Kalogerakis Evangelos, Nowrouzezahrai Derek, Simari Patricio, Singh Karan.
Extracting lines of curvature from noisy point clouds. Comput Aided Des
2009;41(4):282–92.

[9] Meyer Mark, Desbrun Mathieu, Schröder Peter, Barr Alan H. Dis-
crete differential-geometry operators for triangulated 2-manifolds. In:
Visualization and mathematics III. Springer; 2003, p. 35–57.

[10] Cohen-Steiner David, Morvan Jean-Marie. Restricted delaunay triangu-
lations and normal cycle. In: Proceedings of the nineteenth annual
symposium on computational geometry; 2003, p. 312–21.

[11] Taubin Gabriel. Estimating the tensor of curvature of a surface from a
polyhedral approximation. In: Proceedings of IEEE international conference
on computer vision. IEEE; 1995, p. 902–7.

[12] Wardetzky Max, Mathur Saurabh, Kälberer Felix, Grinspun Eitan. Discrete
Laplace operators: no free lunch. In: Symposium on geometry processing.
Switzerland: Aire-la-Ville; 2007, p. 33–7.

[13] Carr Jonathan C, Beatson Richard K, Cherrie Jon B, Mitchell Tim J,
Fright W Richard, McCallum Bruce C, Evans Tim R. Reconstruction and
representation of 3D objects with radial basis functions. In: Proceedings
of the 28th annual conference on computer graphics and interactive
techniques; 2001, p. 67–76.
59
[14] Macêdo Ives, Gois Joao Paulo, Velho Luiz. Hermite radial basis functions
implicits. In: Computer graphics forum, Vol. 30. Wiley Online Library;
2011, p. 27–42.

[15] Kazhdan Michael, Bolitho Matthew, Hoppe Hugues. Poisson surface re-
construction. In: Proceedings of the fourth eurographics symposium on
geometry processing, Vol. 7; 2006.

[16] Mescheder Lars M, Oechsle Michael, Niemeyer Michael, Nowozin Sebas-
tian, Geiger Andreas. Occupancy networks: Learning 3D reconstruction in
function space. 2018, CoRR, abs/1812.03828. URL http://arxiv.org/abs/1812.
03828.

[17] Chen Zhiqin, Zhang Hao. Learning implicit fields for generative shape
modeling. 2019.

[18] Park Jeong Joon, Florence Peter, Straub Julian, Newcombe Richard, Love-
grove Steven. Deepsdf: Learning continuous signed distance functions
for shape representation. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition; 2019, p. 165–74.

[19] Michalkiewicz Mateusz. Implicit surface representations as layers in neural
networks. In: International conference on computer vision (ICCV). IEEE;
2019.

[20] Genova Kyle, Cole Forrester, Sud Avneesh, Sarna Aaron,
Funkhouser Thomas A. Deep structured implicit functions. 2019, CoRR,
abs/1912.06126. URL http://arxiv.org/abs/1912.06126.

[21] Chen Zhiqin, Tagliasacchi Andrea, Zhang Hao. BSP-Net: Generating compact
meshes via binary space partitioning. In: Proceedings of IEEE conference
on computer vision and pattern recognition (CVPR); 2020.

[22] Deng Boyang, Genova Kyle, Yazdani Soroosh, Bouaziz Sofien, Hinton Geof-
frey, Tagliasacchi Andrea. CvxNet: Learnable convex decomposition. In: The
IEEE/CVF conference on computer vision and pattern recognition (CVPR).
2020.

[23] Peng Songyou, Niemeyer Michael, Mescheder Lars M, Pollefeys Marc,
Geiger Andreas. Convolutional occupancy networks. 2020, CoRR, abs/2003.
04618. URL https://arxiv.org/abs/2003.04618.

[24] Do Carmo Manfredo P. Differential geometry of curves and surfaces:
revised and updated second edition. Courier Dover Publications; 2016.

[25] Kindlmann Gordon, Whitaker Ross, Tasdizen Tolga, Moller Torsten.
Curvature-based transfer functions for direct volume rendering: Methods
and applications. In: IEEE visualization, 2003. VIS 2003. IEEE; 2003, p.
513–20.

[26] Goldman Ron. Curvature formulas for implicit curves and surfaces. Comput
Aided Geom Design 2005;22(7):632–58.

[27] Hart John C. Sphere tracing: A geometric method for the antialiased ray
tracing of implicit surfaces. Vis Comput 1996;12(10):527–45.

[28] Paszke Adam, Gross Sam, Massa Francisco, Lerer Adam, Bradbury James,
Chanan Gregory, Killeen Trevor, Lin Zeming, Gimelshein Natalia,
Antiga Luca, Desmaison Alban, Kopf Andreas, Yang Edward, De-
Vito Zachary, Raison Martin, Tejani Alykhan, Chilamkurthy Sasank,
Steiner Benoit, Fang Lu, Bai Junjie, Chintala Soumith. PyTorch: An im-
perative style, high-performance deep learning library. In: Wallach H,
Larochelle H, Beygelzimer A, d’Alché Buc F, Fox E, Garnett R, editors.
Advances in neural information processing systems, Vol. 32. Curran
Associates, Inc.; 2019, p. 8024–35.

[29] Cybenko George. Approximation by superpositions of a sigmoidal function.
Math Control Signals Systems 1989;2(4):303–14.

[30] Benbarka Nuri, Höfer Timon, Zell Andreas, et al. Seeing implicit neural
representations as Fourier series. 2021, arXiv preprint arXiv:2109.00249.

[31] Barill Gavin, Dickson Neil, Schmidt Ryan, Levin David IW, Jacobson Alec.
Fast winding numbers for soups and clouds. ACM Trans Graph 2018.

[32] Harris Christopher G, Stephens Mike, et al. A combined corner and
edge detector. In: Proc. of fourth alvey vision conference; 1988,
p. 147–51.

[33] Kingma Diederik P, Ba Jimmy. Adam: A method for stochastic optimization.
2014, arXiv preprint arXiv:1412.6980.

[34] Yang Guandao, Belongie Serge, Hariharan Bharath, Koltun Vladlen. Ge-
ometry processing with neural fields. Adv Neural Inf Process Syst
2021;34:22483–97.

[35] Ohtake Yutaka, Belyaev Alexander, Seidel Hans-Peter. Ridge-valley lines on
meshes via implicit surface fitting. In: ACM SIGGRAPH 2004 papers. 2004,
p. 609–12.

[36] Belyaev Alexander G, Pasko Alexander A, Kunii Tosiyasu L. Ridges
and ravines on implicit surfaces. In: Proceedings. Computer graphics
international (Cat. No. 98EX149). IEEE; 1998, p. 530–5.

[37] Virtanen Pauli, Gommers Ralf, Oliphant Travis E, Haberland Matt,
Reddy Tyler, Cournapeau David, Burovski Evgeni, Peterson Pearu,
Weckesser Warren, Bright Jonathan, van der Walt Stéfan J, Brett Matthew,
Wilson Joshua, Millman K Jarrod, Mayorov Nikolay, Nelson An-
drew RJ, Jones Eric, Kern Robert, Larson Eric, Carey C J, Polat İl-
han, Feng Yu, Moore Eric W, VanderPlas Jake, Laxalde Denis, Perk-
told Josef, Cimrman Robert, Henriksen Ian, Quintero EA, Harris Charles R,
Archibald Anne M, Ribeiro Antônio H, Pedregosa Fabian, van Mulbregt Paul,
SciPy 10 Contributors. SciPy 1.0: Fundamental algorithms for scientific
computing in python. Nature Methods 2020;17:261–72. http://dx.doi.org/
10.1038/s41592-019-0686-2.

https://doi.org/10.1016/j.cag.2022.09.003
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb1
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb1
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb1
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb1
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb1
http://arxiv.org/abs/2002.10099
http://arxiv.org/abs/2002.10099
http://arxiv.org/abs/2002.10099
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb3
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb3
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb3
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb3
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb3
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb6
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb6
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb6
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb6
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb6
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb7
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb7
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb7
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb7
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb7
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb8
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb8
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb8
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb8
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb8
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb9
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb9
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb9
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb9
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb9
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb11
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb11
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb11
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb11
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb11
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb12
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb12
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb12
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb12
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb12
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb14
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb14
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb14
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb14
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb14
http://arxiv.org/abs/1812.03828
http://arxiv.org/abs/1812.03828
http://arxiv.org/abs/1812.03828
http://arxiv.org/abs/1812.03828
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb17
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb17
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb17
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb19
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb19
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb19
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb19
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb19
http://arxiv.org/abs/1912.06126
http://arxiv.org/abs/1912.06126
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb22
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb22
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb22
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb22
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb22
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb22
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb22
http://arxiv.org/abs/2003.04618
http://arxiv.org/abs/2003.04618
http://arxiv.org/abs/2003.04618
https://arxiv.org/abs/2003.04618
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb24
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb24
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb24
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb25
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb25
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb25
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb25
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb25
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb25
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb25
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb26
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb26
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb26
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb27
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb27
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb27
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb28
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb29
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb29
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb29
http://arxiv.org/abs/2109.00249
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb31
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb31
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb31
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb34
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb34
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb34
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb34
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb34
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb35
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb35
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb35
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb35
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb35
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb36
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb36
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb36
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb36
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb36
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2

T. Novello, G. Schardong, L. Schirmer et al. Computers & Graphics 108 (2022) 49–60
[38] Ohtake Yutaka, Belyaev Alexander, Alexa Marc, Turk Greg, Seidel Hans-
Peter. Multi-level partition of unity implicits. ACM Trans Graph
2003;22(3):463–70. http://dx.doi.org/10.1145/882262.882293.

[39] Ohtake Yutaka, Belyaev Alexander, Seidel Hans-Peter. Sparse sur-
face reconstruction with adaptive partition of unity and radial basis
functions. Graph Models 2006;68(1):15–24. http://dx.doi.org/10.1016/j.
gmod.2005.08.001, URL https://www.sciencedirect.com/science/article/pii/
S1524070305000548. Special Issue on SMI 2004.

[40] Greengard Leslie, Rokhlin Vladimir. A fast algorithm for particle
simulations. J Comput Phys 1997;135(2):280–92.
60
[41] Ward Gregory J. Measuring and modeling anisotropic reflection. In:
Proceedings of the 19th annual conference on computer graphics and
interactive techniques; 1992, p. 265–72.

[42] Zhou Qian-Yi, Park Jaesik, Koltun Vladlen. Open3D: A modern library for
3D data processing. 2018, arXiv:1801.09847.

[43] da Silva Vinícius, Novello Tiago, Schardong Guilherme, Schirmer Luiz,
Lopes Hélio, Velho Luiz. MIP-plicits: Level of detail factorization of neural
implicits sphere tracing. 2022, arXiv preprint.

[44] Takikawa Towaki, Litalien Joey, Yin Kangxue, Kreis Karsten, Loop Charles,
Nowrouzezahrai Derek, Jacobson Alec, McGuire Morgan, Fidler Sanja.
Neural geometric level of detail: Real-time rendering with implicit 3D
shapes. 2021, arXiv preprint arXiv:2101.10994.

http://dx.doi.org/10.1145/882262.882293
http://dx.doi.org/10.1016/j.gmod.2005.08.001
http://dx.doi.org/10.1016/j.gmod.2005.08.001
http://dx.doi.org/10.1016/j.gmod.2005.08.001
https://www.sciencedirect.com/science/article/pii/S1524070305000548
https://www.sciencedirect.com/science/article/pii/S1524070305000548
https://www.sciencedirect.com/science/article/pii/S1524070305000548
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb40
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb40
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb40
http://arxiv.org/abs/1801.09847
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb43
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb43
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb43
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb43
http://refhub.elsevier.com/S0097-8493(22)00164-9/sb43
http://arxiv.org/abs/2101.10994

	Exploring differential geometry in neural implicits
	Introduction
	Related concepts and previous works
	Surface representation
	Discrete differential geometry

	Classic implicit surface reconstruction
	Neural implicit representations

	Conceptualization
	Implicit surfaces
	Differential geometry of implicit surfaces

	Neural implicit surfaces
	Learning a neural implicit surface
	Discrete surfaces

	Differentiable Neural Implicits
	Neural implicit function architecture
	Gradient of a neural implicit function
	Hessian of a neural implicit function

	Loss functional
	Signed distance constraint
	Signed distance function
	Loss function using curvatures

	Sampling

	Experiments
	Loss functional
	Sampling
	Additional experiments and comparisons
	Curvature estimation
	Anisotropic shading
	Limitations
	Hardware

	Conclusions and future works
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Appendix A. Supplementary data
	References

