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Traffic Signal Optimization Based on Fuzzy Control
and Differential Evolution Algorithm

Haifeng Lin , Yehong Han , Weiwei Cai , Member, IEEE, and Bo Jin

Abstract— Urban traffic congestion is often concentrated at
urban intersections. An urban road traffic signal control system
is needed to prevent problems such as driving delays caused
by frequent traffic congestions on trunk lines, exhaust emissions
owing to frequent start and stop of vehicles, and fuel wastage
due to long idling times. Maximizing the traffic capacity of an
intersection and reducing the delay rate of vehicles has always
been a problem for traffic control research. The coordinated
control of urban traffic signals is regarded as a multi-objective
optimization problem. A mathematical model for urban trunk
traffic is studied herein. An average delay model, average queue
length model, total delay calculation model for vehicles at inter-
sections, and vehicle exhaust emission model are established to
obtain an optimization model for a new traffic trunk coordinated
control system. In addition, our study combines the fuzzy control
theory with the adaptive sequencing mutation multi-objective
differential evolution algorithm (FASM-MDEA). This new opti-
mization method for traffic signal control at urban intersections
is proposed as a solution for the traffic flow optimization model
to solve the problem of traffic signal coordination and control
of urban trunk lines. The simulation results demonstrate the
effectiveness of the model optimization algorithm proposed in
this study.

Index Terms— Urban traffic signal, coordinated control, multi-
objective optimization, fuzzy control, adaptive sorting mutation,
differential evolution algorithm (DEA).

I. INTRODUCTION

THE main reason for urban traffic congestion is the traffic
demand that exceeds the current urban traffic service
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capacity in specific periods of time. The total travel time is one
of the most important issues affecting travelers. Because the
urban road network consists of road sections and intersections
connecting different roads, the total travel time for urban
motor vehicles consists of two parts: road section travel time
and intersection waiting time (or delay). The travel time on
road sections is mainly determined by the road’s condition,
driving speed of the vehicle, and driving speed of other
vehicles on the same road. The delay time at intersections
is mainly determined by the traffic geometric conditions of
the intersection itself, the traffic demand in all directions, and
the traffic control mode at the intersection [1]. In an urban
road network, the randomness of traffic demand is one of
the main reasons for the uncertainty in vehicle travel time.
Specifically, at intersections, the uncertainty of traffic demand,
vehicle driving path, and lane selection directly lead to the
randomness of the vehicle queuing process. Therefore, the
uncertainty of vehicle travel time largely depends on the delay
time of vehicles at intersections, which is mainly determined
by the traffic demand, road use mode, and traffic control
mode at these intersections. Unreasonable traffic control at
intersections further aggravates the problem of traffic conges-
tion [2], [3]. As these are critical nodes for traffic assembly
and evacuation, improving the traffic service capacity at these
intersections is the key to solving urban traffic congestion [4].

Traffic congestion should be addressed considering the
intersections. New strategies for intersection control mode are
needed to control a large number of intersections, minimize
delay, and improve traffic capacity and safety, as intersections
are of great practical significance when solving current traffic
problems. To alleviate traffic congestion at intersections, it is
necessary to comprehensively and accurately estimate their
service capacity under various traffic conditions [5]. The traffic
congestion at these intersections is directly reflected in the
long queues and waiting time, which leads to more waste of
time and fuel. In practical applications, queue length and delay
index are used as effective tools to monitor the operation of a
single traffic movement from a single intersection to the entire
traffic network [6]. The estimation of vehicle queue length
and delay is helpful to effectively evaluate the target control
strategy to identify the problems in traffic control to help
decision makers further improve traffic control methods and
strategies. For road users, the delay estimation of vehicles at
intersections can also help them make the best travel decision
and choose the best travel time and paths to avoid unnecessary
delays and high travel costs. Therefore, the queue length and
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delay of vehicles at the intersection are important indicators for
evaluating the operation efficiency and service level. These not
only directly evaluate the traffic service level at intersections,
the rationality of lane design, fuel consumption, and emissions
but also reflects the degree of obstruction of road users and
their perception of the service quality at the intersection [7],
[8]. Because the traffic system is a nonlinear, time-varying, and
lagging large-scale system, it is difficult to obtain satisfactory
results using traditional control methods. Therefore, in this
study, we make use of the fuzzy control theory and intelligent
optimization methods, take a single intersection and trunk
road signal control as the research object, and perform a
series of in-depth and detailed discussions on the control mode
and optimization algorithm; some phased research results are
obtained.

The specific contributions of this study are as follows:
(1) A multi-objective traffic organization optimization

model of a signalized intersection with the objectives of
maximizing capacity, minimizing both average delay, and
vehicle density in the target area is established and solved.

(2) Based on the fuzzy control theory and multi-objective
differential evolution algorithm (DEA), a traffic signal control
algorithm for urban intersections based on traffic intensity is
proposed.

(3) To overcome the unreasonable shortcomings of manu-
ally determining the membership function of fuzzy controller
variables and fuzzy control rules, a method using a DEA to
optimize the membership function and fuzzy control rules is
proposed.

(4) A traffic signal coordination control method for adjacent
intersections is proposed. The traffic flow conditions of each
phase of the intersection are integrated to determine the
candidate green light phase, and whether to extend the current
green light phase is determined by fuzzy reasoning.

The remainder of this paper is organized as follows.
Section 2 discusses related work and is followed by a dis-
cussion of the design of the HFC of regional intersections in
Section 3. A traffic signal multi-objective optimization control
model is proposed in Section 4. Section 5 discusses the real-
ization of fuzzy adaptive sequencing mutation multi-objective
differential evolution algorithm (FASM-MDEA) for signal
control, coordination, and optimization of urban intersections.
Section 6 presents the simulation experimental results and
analysis, and Section 7 concludes the paper with a summary
and future research directions.

II. RELATED WORK

An intersection is the basic unit of an urban road network.
Research on intersection signal control is the foundation of
urban traffic system research. In general, according to the
signal control range, intersection control can be divided into
point, line, and area control. Point control is the independent
control of an urban road-level intersection without considering
the coordination relationship with adjacent intersections. Its
purpose is to reduce the traffic delay at the intersection
as much as possible. This is the basis of a traffic control
system [9]. Wire control is used to control the signal of
urban traffic trunk lines with multiple plane intersections.

The control schemes of each intersection are coordinated with
each other so that the motorcade entering the trunk line can
pass through the trunk line without or as few red lights as
possible when driving at a certain speed. Area control is
used to control the signal of a plane intersection in a certain
area of the city. Starting from the strategic goal of the entire
system and according to the traffic volume detection data,
it coordinates the traffic signal timing of each intersection in
the area, with the goal of achieving the overall optimal effect
[10]. If the intersection has adopted the real-time intelligent
control method, and then the wire control system is designed
according to the traditional method of adjusting the phase
difference, it will inevitably lead to an increase in control
parameters and the complexity of control methods. When
we analyzed and researched some classical traffic control
optimization systems, we found that in urban traffic control,
fixed-period control is simple and effective when the traffic
flow is small and stable. When traffic is crowded and changes
significantly, dynamic feedback control should be adopted to
reduce vehicle delays. This control mode requires the use of
a mathematical model to describe the traffic signal control
system [11]. However, the nonlinearity and randomness of
traffic systems make modeling very difficult. Therefore, the
optimal goal pursued in dynamic feedback control is often
difficult to achieve. Artificial intelligence, such as intelligent
algorithms, fuzzy theory, and machine learning, have attracted
increasing attention. At present, fuzzy logic is a mature method
for responding to vehicle traffic signal control, and has been
successfully applied to the theoretical research of traffic signal
control systems. The advantage of fuzzy control is that it does
not need to obtain a complex relationship in the model to
establish an accurate mathematical model. It is a rule-based
intelligent control method that is especially suitable for urban
traffic control systems with great randomness [12], [13]. The
DEA realizes global and fast search in solution space by
using the principle of natural evolution. It is widely used to
solve large-scale combinatorial optimization problems. When
solving the problem of model design and calculation in real-
time traffic control systems, a DEA can be used to carry out
a global search and determine the common cycle, or to solve
the optimal cooperation problem of intersection signal control
schemes in regional control systems, so as to effectively avoid
the possible combination contradiction of traffic schemes.

In recent years, many researchers have found that the inte-
gration of traffic signal control and dynamic traffic guidance
can more effectively alleviate urban traffic congestion. The
integration of the two has become one of the hotspots of
urban traffic system research and the development trend of
urban traffic control [14]. Jafari et al. [15] propose a novel
stable predictive controller for urban traffic, and state-space
dynamics are used to estimate the number of vehicles at an
isolated intersection and the length of its queue. This is a
novel control strategy based on the type of traffic light and
on the duration of the green-light phase and aims to achieve
an optimal balance at intersections. Liu et al. [16] establish
to solve the intersection vehicle delay and parking times,
and to establish an intersection signal control model with
the minimum parking times and delay as the optimization
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objective. Taking the phase saturation as the index of the
control effect and considering the influence of speed guidance
on the vehicle running state, they establish an optimization
model of road intersection signal control in a vehicle road
coordination environment. Li et al. [17] study the adaptive
optimal control method of a single-point signalized intersec-
tion, establish the logical architecture of an information inter-
action network for urban single-point signalized intersections,
define the prototype scene of traffic flow data acquisition and
transmission based on vehicle road cooperation, and introduce
a neural network model and fuzzy decision technology into
the design of a signal optimal control strategy. Xu et al. [18]
study the adaptive signal timing optimization model. In view
of the poor robustness of the existing traffic signal control
system, an adaptive signal optimization model is established
using the real-time position and speed information of vehicles.
The model takes the minimum average vehicle delay as the
optimization goal and the green light duration of phase as
the constraint condition, uses the genetic algorithm to design
the model-solving algorithm, and compares the simulation
experiment to the induction control. Wang et al. [19] propose
a multi-objective adaptive traffic signal control model based
on multi-agent cooperation to optimize vehicle travel time and
waiting time. Jiang et al. [20] propose an eco-driving system
for an isolated signalized intersection under partially Con-
nected and Automated Vehicles (CAV) environment. This sys-
tem prioritizes mobility before improving fuel efficiency and
optimizes the entire traffic flow by optimizing speed profiles
of the connected and automated vehicles. The optimal control
problem was solved using Pontryagin’s Minimum Principle.
Feng et al. [21] propose a spatio-temporal optimization traffic
control model that optimizes signal lights and vehicle trajecto-
ries. Dynamic programming and nonlinear programming mod-
eling were adopted to minimize the delay, fuel consumption,
and exhaust emission when the penetration rate was 100%.
Yu et al. [22] further propose a mixed integer linear program-
ming model to optimize traffic signals and vehicle trajectories.
In their study, the traffic flows in left turn, straight ahead,
right turn and U-turn directions are considered, and the phase
sequence, green light start, phase interval, cycle time, vehicle
lane change behavior and vehicle arrival time are optimized
together with the goal of minimizing delay. Luo et al. [23]
study the intersection adaptive signal timing in an intelligent
networked vehicle environment. First, he explores the influ-
ence of signal control variables on vehicle speed guidance,
establishes an intersection traffic signal optimization model
in an intelligent networked vehicle environment, and uses a
dynamic programming algorithm to solve it. Xia et al. [24]
study the coordinated control of intersection signal lights and
vehicles in the intelligent network environment, considering
vehicle following, traffic flow balance, intersection safety,
signal phase setting and other factors, and then built a phase
time traffic model for the intersection control in the mixed
vehicle environment. Tang et al. [25] propose the bus prior-
ity control at intersections, applies a green light time loss
equalization method, combines this with the data environment
provided by vehicle road coordination, and aims at reducing
the maximum per capita total delay at intersections. They

discuss the single point control of bus priority in a vehicle road
coordination environment and the optimization of bus prior-
ity control considering intersection group filter coordination.
Tao et al. [26], take a two one-way road intersection as an
example, assuming that only a fixed proportion of vehicles can
be interconnected with the intersection in real time, taking into
account factors such as allowing vehicles to leave the parking
line according to the fleet as much as possible and flexibly
adjusting signal control, they propose a method exhausting all
possible traffic sequences, and an optimization method aimed
at minimizing the overall delay of intersection. Lin et al. [27]
consider the trajectory of vehicles and intersection signal
as control variables and take the minimum delay and vehi-
cle emission as optimization objectives to build a vehicle
trajectory and signal control model. Based on the above
analysis, using micro traffic system simulation technology,
optimization method, artificial intelligence, numerical analysis,
traffic control, combining dynamic traffic organization and
static traffic organization, a multi-objective optimization model
of urban signalized intersection is established with the goal of
maximum traffic capacity, minimum average vehicle delay and
minimum vehicle density in conflict area, So as to determine
the best position of parking line, the best signal period and the
best signal timing index. In our study, a combination of fuzzy
logic and a DEA is used to dynamically control urban traffic
signals, and an optimization model of an urban traffic trunk
line coordination control system is established to improve the
coordination control effect.

III. DESIGN OF HIERARCHICAL FUZZY CONTROLLER OF

REGIONAL INTERSECTIONS

A. Major Parameters of Fuzzy Controller

1) Degree of Urgency of Green Light Phase: The degree
of urgency Bu of green light phase is determined by the
number of vehicles BL in line for the green light phase and
the arrival rate BAR of vehicles for the green light phase. BL

was calculated according to the following formula:
BL = BL0 + CB (1)

where BL0 is the number of remaining vehicles within the
detection zone after the last green light ends, and CB is the
number of vehicles arriving during the red light.

2) Degree of Urgency in the Red Phase: The degree of
urgency of Ru of the red phase is determined by two factors:
RL -the number of queuing vehicles during the red phase
and RAR -the arrival rate of vehicles in the red phase. The
calculation formula for RL is as follows:

RL = RL0 + CR (2)

where RL0 is the number of remaining vehicles within the
detection zone after the last green light and CR is the number
of vehicles arriving during the red light.

3) Degree of Urgency of Adjacent Intersection Entrance
Lane Phase: The degree of urgency Nu of the adjacent
intersection entrance lane phase is determined by the number
of vehicles NL in line in that phase and the arrival rate of
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TABLE I

CONTROL RULE TABLE OF GREEN LIGHT PHASE

vehicles NAR during the phase, among which, NL is calculated
using the following formula:

NL = NL0 + CN (3)

where NL0 refers to the number of remaining vehicles within
the detection zone after the last green light, and CN is the
number of vehicles arriving during the red light [28].

B. Module Design

1) Detection Module for Green Light Direction in Current
Intersection: The detection module for the green light direc-
tion is used to detect the degree of urgency of vehicles in
the traffic flow along the green light direction. Its input is the
number of vehicles BL in line for the current phase with a
change scope of {0, 20} and the unit of piece. The arrival rate
BAR of vehicles in the current phase changes within the range
of (0, 1). Its output is the degree of urgency Bu of vehicles
for the green light direction in the current intersection with a
change scope of (0, 1).

a) Fuzzification: Fuzzify the basic domain of discourse
of BL , that is, {0,1,2,3,…,20} into {very few, few, medium,
many, a great many}. For convenience, it is simplified into
{VS, S, M, H, VH}. The basic domain of discourse of BAR ,
that is, (0,1), is also fuzzified into {very low, low, medium,
high, very high}and simplify it as {VS,S,M,H,VH}, and the
basic domain of discourse of Bu , that is, (0, 1) into {very light,
light, medium, heavy, very heavy}and simplify as {VS, S, M,
H, VH}.

b) Selection of membership function: The membership
functions frequently used in fuzzy control include the tri-
angle membership function, trapezoid membership function,
and Gaussian membership function. The triangle membership
function adopted in this study is simple, curved, with a small
computing workload, saves spaces and has great sensitivity.

c) Establishment of fuzzy control rules: The control rules
of green light phase are shown as Table I.

This fuzzy control system is based on Mamdani inference
algorithm; the fuzzy statement is “IF A and B then C”. For
example, Control Rule No.1 in Table I can be presented as:
IF BL is VS and BAR is VS then Bu is VS.

By analogy, there are 25 fuzzy control rules in total [29].
d) Fuzzy inference relationships: In the control rule table

of the green light phase, there are 25 rules altogether, each
corresponding to a fuzzy relationship. For the fuzzy statement
“IF A and B then C ,” its relationship matrix Ris:

R = (A × B)T1 × C (4)

TABLE II

CONTROL RULE TABLE OF RED LIGHT PHASE

The corresponding fuzzy relationship for the i th control rule
is:

Ri = (BL j × BARk)
T1 × Bul (5)

where i = 1, 2, 3, · · · , 25 and j, k, 1 = 1, 2, 3, 4, 5; T1 is the
transfer matrix of the column vector, namely, it presents an
5 × 5 matrix into an 25 × 1 column vector; and BARk & Bul

are the vectors corresponding to the control rules, respectively.
The total fuzzy relationships of all the 25 control rules are:

R = 25
U

i=1
Ri (6)

2) Detection Module for Red Light Phase in Current Inter-
section: The detection module of the red-light phase is used
to detect the degree of urgency of vehicles in the traffic flow
for the current red light phase. Its input is RL with a change
scope of (0, 20) and the unit of piece. RAR changes within the
scope of (0, 1). Its output is the degree of urgency of vehicles
in the red light phase of the current intersection with a change
scope of (0, 1).

a) Fuzzification: Fuzzify the basic domain of discourse
of RL , that is, {0,1,2,3,…,20} into {very few, few, medium,
many, a great many}. For convenience, it is simplified into
{VS,S,M,H,VH}. Likewise, fuzzify the basic domain of dis-
course of RAR , that is, (0,1), into {very low, low, medium,
high, very high }and simplify it as {VS,S,M,H,VH}, and the
basic domain of discourse of Ru , that is, (0, 1) into {very
light, light, medium, heavy, very heavy}and simplify it as
{VS,S,M,H,VH}.

b) Selection of membership function: The red light phase
makes the same membership function selection as the green
light phase, as well as the triangle membership function.

c) Establishment of fuzzy control rules: By summarizing
the experience of experts, the control rules for the red light
phase were obtained and are represented in Table II.

This fuzzy control system is based on the Mamdani infer-
ence algorithm, that is, the fuzzy statement is “IF A and B
then C .” For example, Control Rule No.1 in Table II can be
expressed as:

IF RL is VS and RAR is VS then Ru is VS.
By analogy, there are 25 fuzzy control rules in total.
3) Detection Module of Adjacent Intersection Entrance

Lane Phase: The detection module for the adjacent inter-
section entrance lane phase is used to detect the degree of
urgency of traffic flow in the entrance driveway phase of the
current adjacent intersections. Its input is NL , which changes
within the scope of (0,20) and has a unit of piece. NAR has a

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 07,2024 at 05:51:00 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: TRAFFIC SIGNAL OPTIMIZATION BASED ON FUZZY CONTROL AND DEA 8559

TABLE III

CONTROL RULE TABLE OF ADJACENT INTERSECTION
ENTRANCE LANE PHASE

change scope of (0, 1). Its output is Nu with a change scope
of (0, 1).

a) Fuzzification: Fuzzify the basic domain of discourse
of NL , that is, {0,1,2,3,…,20} into {very few, few, medium,
many, a great many} simplified as {VS, S, M, H, VH}.
Likewise, fuzzify the basic domain of discourse of NAR ,
that is, (0,1), into {very low, low, medium, high, very high}
and simplify it as {VS,S,M,H,VH}, and the basic domain of
discourse of Nu , that is, (0, 1) into {very light, light, medium,
heavy, very heavy}and simplified as {VS,S,M,H,VH}.

b) Selection of membership function: The adjacent inter-
section entrance lane phase makes the same membership
function selection as the green light phase as well as the
triangle membership function.

c) Establishment of fuzzy control rules: The control
rules are obtained by summarizing the experience of experts,
as shown in Table III.

This fuzzy control system is based on the Mamdani infer-
ence algorithm, that is, the fuzzy statement is “IF A and B
then C .” For example, Control Rule No.1 in Table III can be
expressed as

IF NL is VS and NAR is VS then Nu is VS.
By analogy, there are 25 fuzzy control rules in total [30].

IV. ESTABLISHING THE TRAFFIC SIGNAL

MULTI-OBJECTIVE OPTIMIZATION CONTROL MODEL

A. Average Queueing Length Model

Because the intersections are not saturated, the vehicle
queuing length of the nth signal cycle can be expressed as

ln = exp
[− 4

3

√
λCqs × 1−x

x

]
2(1 − x)

+ qnC(1 − λ) (7)

where λ is the green signal ratio, qs is the saturated traffic
flow rate, x is the degree of saturation, qn is the arrival rate
of vehicles in the nth signal cycle, and C is the public signal
cycle.

Assuming that the traffic flows in the up-run and down-run
directions of the arterial road are qu and qd , respectively; thus,
in a complete signal cycle, if the total up-run traffic flow along
an arterial road is N , mathematically, N = Cqu . Assuming
that the total number of vehicle stops within a signal cycle is
S, it is easy to deduce the calculation formula of stop rate h:

h = S

N
(8)

The mathematical expression of vehicle stops of up-run traffic
flow in the arterial road within a certain period of time is:

S = q0 + q

[
qr + q0

qm − q
+ r

]
(9)

where qm is the saturated release flow during the green light.

q0 = I ex p

{
−

(
μ + 1

2
μ2

)}
1

2
x (1 − x) (10)

μ = (1 − x) (qm g)
1
2 x = qT

qm g
(11)

After summarizing all the above formulas, in the traffic artery,
I represents the difference between the random arrival rate and
average arrival rate of vehicles, while assuming that the vehicle
arrival is uniform and the difference is 0, which means that
I = 0. So

h = S

N
=

q qr
qm−q + r

qT
(12)

Simplified as:
h = 1 − g/T

1 − q/qm
(13)

Considering the dual-lane green waves and summarizing the
above analysis, it can be learned that the up-run stop rate hu

to travel from Intersection R1 to Intersection R2 is represented
as:

hu = 1 − tG/T

1 − qu/u
(14)

Likewise, the down-run stop rate hd from Intersection R2 to
Intersection R1 is

hd = 1 − tG/T

q − qd/u
(15)

Regarding the green signal rate and the restrictions of phase
difference, green signal ratio: λmin ≤ λ ≤ λmax ; phase
difference: 0 ≤ φT ≤ T ; cycle length: T = max (Ti ) and
i = 1, 2, . . . , Ti is the cycle of every intersection [31].

B. Calculation of Total Delay of Vehicles in Intersections

At present, the frequently used delay calculation methods
include the Webster and HCM methods. The HCM formula
considers the impact of the initial queue and is more suitable
for the status quo of highly saturated urban roads. The specific
formulae are:

di = d1 + d2 + d3 (16)

d1 = 0.5C(1 − λ)2

1 − [min(1, X)λ] (17)

d2 = 900T

[
(X − 1) +

√
(X − 1)2 + 8K I X

cT

]
(18)

d3 = 1800Q0(1 + U)T 2
0

cT
(19)

If Q0 = 0, then T0 = 0, that is d3 = 0; otherwise,

T0 = min

{
T,

Q0

c[1 − min(1, X)]
}

(20)
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When T0 < T, U = 0; otherwise,

U = 1 − cT

Q0[1 − min(1, X)] (21)

where di is the average delay time per vehicle (s/veh) of the
vehicle lanes divided by an entrance lane; d1 the equilibrium
delay time (s/veh); d2 the randomly-added delay time (s/veh);
d3 the initial queue added delay time (s/veh); λ the green
signal ratio; X the saturation; C the length of signal cycle (s);
c the traffic capacity (veh/h); T the analytical time of duration
(h); K the incremental delay correction coefficient of inductive
control (for fixed-cycle signals, K = 0.5); I the incremental
delay correction coefficient of upstream signal vehicle lane
change and adjustment (here I = 1.0); Q0 the number of
queueing vehicles (vel) when the analytical time starts;T0 the
time with queueing vehicles (h) in the analytical time T ; and
U the traffic delay feature parameter.

Therefore, the total delay of one-direction entrance lane in
the intersection is

dA =
∑

di qi∑
qi

(22)

where i represents different vehicle lanes; dA, the total delay
of one-direction entrance lanes, di represents the average delay
per vehicle of the vehicles in the i th lanes, and qi the vehicle
arrival rate corresponding to the traffic flow of the i th lanes.

Then the total delay of intersection is:
D =

∑
dAqA (23)

where A represents different entrance lanes, D represents
the total delay, and qA represents the vehicle arrival rate
corresponding to the traffic flow of entrance lane A [32].

C. Building of Traffic Signal Multi-Objective Optimal
Control Model

Roads take care of time and delay the most; therefore,
it has always been a research hotspot and difficult to realize
low-emission and low-delay control of vehicles in traffic
signal control systems. Thus, the multi-objective optimization
model is built to achieve environmentally friendly traffic signal
control using the model as shown below [33], [34]:

min E =
∑

i

∑
k

ωk Eik (24)

min D =
∑

dAqA (25)

where i represents different traffic flows, k represents differ-
ent pollutants (k = 1, 2, 3 represents VOC, CO, and NOx ,
respectively) and ωk is the weight of pollutant k.

The main idea of the utility optimization model is to first
confirm all objective functions. These functions relate to all
concerned problems and can be solved using methods such as
the weighting method [35]:

max Z = �(X) (26)

s.t .�(X) ≤ G (27)

where � is the sum function of the utility function related to
the objective function.

max � =
k∑

i=1

λ j�i (28)

�i (x1, x2, · · · , x3 ) ≤ gi (i = 1, 2, · · · , n) (29)

In the formula, λi shall meet:
k∑

k=1

λi = 1 (30)

In vector form:
max � = λT � (31)

s.t�(X) ≤ G (32)

Given that delay time and emission have different units,
normalization is required; thus, the following model is built:

P I = α × D/D0 + β × E/E0 (33)

where P I is the comprehensive benefit value of the function,
α the weight of delayed time, β the weight of emissions,
Dand E the total delay time and total emissions of intersec-
tions respectively, and D0 and E0 the value of delay time
and emission of the initial signal timing dial. For different α
and β, the value of P I has different focuses. When α = 1 and
β = 0, the operation benefit of intersections depends only on
the delay [36].

This objective function needs to satisfy certain constraints:
the cycle length is not less than the sum of the green period
and the lost time and green period not less than the effective
green time, namely,

Tc =
∑

j

(
Tg( j ) + Tl( j )

) ≤ Tc max (34)

where Tg( j ) ≥ Tg( j ) min, 20 ≤ C ≤ 200, 0.3 ≤ λ ≤ 1.

V. REALIZATION OF FASM-MDEA IN SIGNAL CONTROL,
COORDINATION AND OPTIMIZATION OF URBAN

INTERSECTIONS

A. Traditional Multi-Objective DEA

The main idea of the conventional multi-objective DEA
includes the following five steps:

Step 1: Construct the initial population with a size of
N P and calculate the fitness value of the individuals in the
population. For every individual Xi in the population, carry
out Steps 2-4 successively.

Step 2: According to mutation Formula (35), perform muta-
tion on Xi .

Vi = Xr1 + F · (Xr2 − Xr3) (35)

where F is the size factor, the value of which changes within
(0, 1). Xr1, Xr2, and Xr3 are individuals randomly selected
from the population and different from Xi .

Step 3: According to Formula (36), perform crossover on
Xi = (xi,1, xi,2, · · · , xi,n) and Vi = (vi,1, vi,2, · · · , vi,n ).
Obtain the experiment vectorUi = (ui,1, ui,2, · · · , ui,n). C R
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is the crossover probability and values within (0,1). rand j ∈
(0, 1) and sn are random figure within {1, 2, · · · , n}.

ui j =
{

vi j , if rand j C R or j = sn

xi j , otherwise
, j = 1, 2, . . . , n

(36)

Step 4: By comparing the domination relation between Xi

and Ui , select the individuals to enter the current population.
If Ui dominates Xi , replace Xi with Ui ; if Xi dominates Ui ,
abandon Ui directly; and if Xi and Ui do not dominate each
other, add Ui into the current population.

Step 5: After all individuals in the population finish muta-
tion, crossover, and selection, the population size grows
between N P and 2N P . At this point, a cutting operation is
required, that is, after sorting the individuals in the popula-
tion with the non-dominated sorting algorithm and crowding
distance calculation formula, the former N P good individuals
are selected for the optimization of the next generation until
the termination conditions are met.

B. Fuzzy Adaptive Sorting Mutation Strategy

In mutation, FASM-MDEA adopts a sorting operation and
selects the individuals with better fitness to participate in a
mutation with a large probability, accelerating the convergence
speed of the algorithm. However, as individuals with poor
fitness are less likely to participate in the mutation, it affects
the maintenance of diversity of the whole population to a
certain extent. FASM-MDEA performs mutation using the
fuzzy mutation Formula (37).

Vi = γ Xbest + (1 − γ ) ∗ Xi + F ∗ (Xr1 − Xr2) (37)

where Xbest is the individual with the best fitness in the current
population, and Xr1 and Xr2 are different and unequal to
Xi . After the optimization of every generation, calculate the
relative change value of the performance measurement indexes
for the non-dominated solution set in the current population
to the previous generation and take it as the input of the fuzzy
system. Through the fuzzy system, the balance coefficient γ
and size factor F of the next generation and dynamically
balance the local search ability and global search capacity
of the algorithm in different optimization phases in order to
maintain population diversity while expediting the algorithm
convergence.

Based on the sorting mutation, this study combines the
feedback method of the fuzzy system and proposes a fuzzy
adaptive sorting mutation strategy, shown as Formula (38):

Vi = γ Xr1 + (1 − γ ) ∗ (Xr2 + F ∗ (Xr3 − Xr4)) (38)

The selection of Xr1 selects individuals with better fitness
in the current population with a large probability. Xr2, Xr3,
and Xr4 are randomly selected individuals from the current
population and are not equal to Xi ; besides, they are different
from each other. The values of γ and F can be calculated by
inputting into the fuzzy system the relative change value of
the performance measurement indexes of the non-dominated
solution set in the current population to the last generation and
applied to the optimization of the next generation [37], [38].

C. Fuzzy Adaptive Sorting Mutation-Multi-Objective DEA

The fuzzy adaptive sorting mutation-multi-objective DEA
(FASM-MDEA) proposed in this paper adopts a fuzzy adaptive
sorting mutation strategy, uniform population initialization,
and double population-based selection methods. The imple-
mentation steps are as follows.

Step 1: Input the optimization problem and relevant parame-
ters, including the population sizeN P , crossover probability
C R, the initial value, the maximum value Fmax, and the
minimum value Fmin of the size factor F , the initial value,
the maximum value γmax, and the minimum value γmin in
the 1st generation of the balance coefficient γ , the number of
regions L split in the uniform population initialization, and
the termination conditions of the algorithm.

Step 2: Apply a uniform population initialization method,
obtain the current population Pop1 with a size of N P and
construct an empty population Pop2 with the same size.
Calculate the fitness values of all individuals in Pop1.

Step 3: Starting from the i(i = 1)th individual of Pop1,
implement the following operations to all individuals Xi one
by one: first, use fuzzy adaptive sorting mutation strategy
and obtain the mutation vector Vi according to Formula (38);
second, perform crossover on Vi and Xi as per Formula (36)
and get the experiment vector Ui ; third, perform out-of-bound
operation on Ui , if not exceeds the boundary value, continue;
otherwise, make Ui the boundary value which is closest
to it; finally, according to double population-based selection
method, select Ui and Xi , and update Pop1 and Pop2.

Step 4: Complete one iteration on all individuals in the
population, merge Pop1 and Pop2 into a new population with
a size of 2N P and assign it to Pop1. According to the adaptive
sorting mutation strategy, the relative change value of the per-
formance measurement indexes in the non-dominated solution
set in the merged population to the previous generation into the
fuzzy system in order to determine the size factor F and the
balance coefficient γ for the evolution of the next generation.

Step 5: Use the non-dominated sorting algorithm and crowd-
ing distance calculation formula to tailor the merged Pop1 and
the former N P individuals as the current population Pop1 for
the next generation evolution.

Step 6: Determine termination conditions and if they are not
met, return to Step 3 and enter the next generation; otherwise,
output Pop1 as the approximate Pareto optimal solution set
to the problem and end the procedure.

VI. TRUNK TRAFFIC SIGNAL TIMING SCHEME AND

SYSTEM SIMULATION ANALYSIS

The basic conditions of the selected trunk line are as
follows: it is a traffic trunk line with six two-way lanes in the
east, west, north, and south directions of a six intersection.
The two one-way lanes are straight lanes, left-turn straight
lanes, and right-turn straight lanes. The width of each lane
is 3.5m. The distances between adjacent intersections were
340m, 380m, 350m, 400m, 370m and 420 m. The east-west
direction is the main road direction, the north-south direction
is the branch direction, and a two-phase release is adopted. The
first phase is the release phase of the east–west inlet straight
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Fig. 1. Traffic arterial model of six intersections.

TABLE IV

VEHICLE CONVERSION COEFFICIENTS

TABLE V

DISTRIBUTION OF INTERSECTION TRAFFIC FLOW

TABLE VI

TIMING SCHEME OF WEBSTER MODEL

and left-turn traffic flow, and the second phase is the release
phase of the north-south inlet straight and left-turn vehicles.
Fig. 1 shows the experimental trunk line model.

A. Model Solving

1) Timing Scheme of Webster Model: Before computing,
we calibrated basic parameter information. First, all observed
vehicles are converted into standard units of measurement,
namely pcu, according to the vehicle conversion coefficient
table in Table IV.

The saturated flow information of the road entrance is deter-
mined and the traffic conditions of urban arterial intersections

TABLE VII

TIMING SCHEME OF MAXBAND SOLUTION

TABLE VIII

TIMING SCHEME OF MDEA SOLUTION

TABLE IX

TIMING SCHEME OF FASM-MDEA SOLUTION

are comprehensively referred to. Table V summarizes the
traffic flow in the direction of each entrance lane for each
intersection. The saturated flow of each through lane of the
selected trunk is 1650 pcu / h, the saturated flow of each
left-turn lane is 1550 pcu/h, and the saturation flow of each
right-turn lane is 1450 pcu/h.

After determining the parameters on the trunk line, the
next step of solving and determining the timing scheme of
the traffic signal system was carried out. The common signal
period and green signal ratio of the six intersections are
calculated according to the Webster model method, as well
the phase difference of each intersection. The timing scheme
determined by the proposed FASM-MDEA is presented in
Table VI.
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TABLE X

COMPARISON OF EVALUATION INDICATORS OF TWO KINDS OF DEA
(EAST WEST DIRECTION)

TABLE XI

COMPARISON OF EVALUATION INDICATORS OF TWO KINDS OF DEA
(NORTH SOUTH DIRECTION)

Fig. 2. Timing scheme of Webster model.

2) MAXBAND Model Timing Scheme: According to the
MAXBAND method and the above known conditions, the
traffic signal timing scheme determined by the proposed
FASM-MDEA algorithm is shown in Table VII.

3) Model Timing Scheme Based on MDEA: The evaluation
index of the traffic signal multi-objective optimization control
model in this study was taken as the constituent factor of the
coordinated control model of the trunk traffic system. For the
new model proposed in this study, MDEA was used to solve
the traffic signal timing scheme in the trunk model. The results
are listed in Table VIII.

Fig. 3. MAXBAND timing scheme.

Fig. 4. Timing scheme of MDEA model.

Fig. 5. Model timing scheme of FASM-MDEA algorithm.

4) Model Timing Scheme of FASM-MDEA: Similarly,
according to the actual situation of the built traffic trunk line
system, the new model is solved by FASM-MDEA with the
help of the MATLAB platform, and the final signal timing
scheme is determined, as shown in Table IX.
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Fig. 6. Comparison of traffic evaluation indexes of three control models.

B. Analysis of Simulation Results
1) Comparison of Three Trunk Control Models: The micro

simulation software VISSIM was used to simulate the estab-
lished trunk model. In this study, the statistical data set
in the time period of 3000-7200s is the collected data.
The signal timing parameters obtained from the MDEA and
FASM-MDEA solution models proposed in this paper are
input into VISSIM, and then ten cycle times are simulated to
output the statistical data of average delay time, average queue
length, and vehicle exhaust emission, and the results obtained
by the two model solving methods are compared and analyzed.
The comparison results are presented in Tables X and XI.
In the east-west direction of the experimental trunk line (trunk
direction), the solution of FASM-MDEA is better than that
of MDEA in terms of average delay time and average queue
length, and the improvement rates from west to east are 47.6%
and 8.4%, respectively; the lifting rates from east to west
are 55.4% and 4.4%, respectively, from north to south are
44.4% and 10%, respectively, and from south to north are
41.5% and 3.1%, respectively, indicating that the signal timing
scheme solved by the FASM-MDEA algorithm is better than
that obtained by MDEA.

Finally, the Webster model, MAXBAND model, and
the model proposed in this paper are set to VISSIM by
using the trunk traffic signal timing parameters obtained
by FASM-MDEA. Ten cycle times were simulated, and the
statistical data of delay time, queue length, and vehicle
exhaust emissions are output. The results obtained using
several methods were compared and analyzed as shown
in Fig. 6.

After ten simulation cycles, it can be seen that based on
FASM-MDEA, the traffic signal timing of the trunk traffic
coordination control model proposed in this paper is sig-
nificantly optimized compared to the Webster model and
MAXBAND model in the three performance indexes: average
delay time, average queue length, and vehicle exhaust emis-
sion. After 600s-3600s simulation, the distribution histograms
of the three models on the two performance indicators of the
average delay time and average queue length of the traffic
system are drawn. It can be seen that the distribution of the
traffic timing scheme based on the FASM-MDEA model on
the two indicators is small and centralized. Next, we select
the data of 600s-3600s in the whole period, sum it in four
directions, and calculate its average, as shown in Fig. 7.

It is clearly evident from the Fig. 7 that the proposed
model has been greatly improved in terms of average queue
length. In contrast, the average delay time increased negatively.
Therefore, when using FASM-MDEA to solve the trunk traffic
signal timing scheme, the trunk traffic system coordination
control model proposed in this paper is better than other
models, which is more helpful in alleviating traffic congestion
and improving urban air quality.

This model effectively describes the synergistic relation-
ship of the arrival flow rates for different inflow directions.
Although the relationship between the parameters of the model
is not specified in the prior distribution, the synergistic rela-
tionship of arrival flow rates between different flow directions
is reflected in the posterior distribution (that is, the joint
distribution of different parameters) through the effect of the
likelihood function on the probability surface of the prior
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Fig. 7. Histogram of average value of traffic evaluation indexes of three
control models.

distribution. In the posterior sample, it can also be found
that the higher flow rate in one inflow direction corresponds
to a smaller flow rate in other inflow directions. Therefore,
the likelihood function or the number of arriving vehicles
has an important impact on the description of the cooperative
relationship.

VII. CONCLUSION AND FUTURE WORK

We took the traffic signal control of the main road of
an urban intersection as the research object and reduced
the average vehicle delay as the control goal, to establish
common evaluation models of a traffic system, including the
average delay, queue length, and vehicle exhaust emission
models. By detecting the fleet length in each entrance lane,
we used the fuzzy time series to predict the traffic flow in each
direction of the next cycle, and we selected the appropriate
timing scheme for the next cycle according to the traffic flow
data to determine the optimal phase sequence arrangement.
In one cycle, we used the real-time detected traffic flow as the
input parameter of the adaptive fuzzy controller to obtain the
green light delay of each traffic phase. Subsequently, we used
the multi-objective DEA to optimize the fuzzy controller.
The optimized fuzzy controller was simulated under different
traffic conditions and compared to the non-optimized fuzzy
controller in the same traffic environment. In addition, we stud-
ied the classical Webster model and MAXBAND model to
optimize the timing of the coordinated traffic control system,
proposed a new optimization method FASM-MDEA, and
solved the signal timing problem of the established traffic trunk
line model using the optimal timing method. The simulation
results showed the intelligent control technology based on
the combination of multi-objective DEA and fuzzy control
effectively reduced the average delay time of passing vehicles
at the intersection and adapted to the complex and changeable
traffic environment.

The future work of this study is as follows:
(1) In the research scope of urban traffic control, while

continuing to improve the traffic flow mathematical model and
control algorithm of single intersection and urban trunk road,

we should focus on the modeling and control of urban regional
traffic flow.

(2) Collaborative research between traffic control and guid-
ance systems must be carried out to solve urban traffic
problems and improve traffic efficiency.

(3) Traffic system simulation research is unrealistic to test an
urban traffic signal control strategy in an actual traffic system.
Therefore, the research on urban road traffic intelligent control
in the virtual environment can obtain twice the result with half.

REFERENCES

[1] K. H. N. Bui, H. Yi, H. Jung, and J. Cho, “Video-based traffic flow
analysis for turning volume estimation at signalized intersections,”
in Proc. Asian Conf. Intell. Inf. Database Syst., vol. 12034, 2020,
pp. 152–162.

[2] X. Fu, H. Gao, H. Cai, Z. Wang, and W. Chen, “How to improve urban
intelligent traffic? A case study using traffic signal timing optimization
model based on swarm intelligence algorithm,” Sensors, vol. 21, no. 8,
p. 2631, Apr. 2021.

[3] H. X. Zhao, R. C. He, and N. Yin, “Modeling of vehicle CO2 emissions
and signal timing analysis at a signalized intersection considering fuel
vehicles and electric vehicles,” Eur. Transp. Res. Rev., vol. 13, no. 1,
p. 5, Jan. 2021.

[4] J. Zhao, W. Ma, and H. Xu, “Increasing the capacity of the intersection
downstream of the freeway off-ramp using presignals,” Comput.-Aided
Civil Infrastruct. Eng., vol. 32, no. 8, pp. 674–690, Aug. 2017.

[5] Y. Gao, Y. Liu, H. Hu, and Y. E. Ge, “Signal optimization for an
isolated intersection with illegal permissive left-turning movement,”
Transportmetrica B, Transp. Dyn., vol. 7, no. 1, pp. 928–949, Dec. 2019.

[6] W. Anlin, D. Qiancheng, L. Guangcheng, and J. Tao, “Waiting traffic
volume calculation rule of phase for self-organizing control of urban
traffic signal,” in Proc. 3rd World Conf. Mech. Eng. Intell. Manuf.
(WCMEIM), Dec. 2020, pp. 571–574.

[7] H. Yao, X. Qu, and Y. Chen, “Research on start-up behavior and capacity
at signal intersection in vehicle interconnection environment,” in Proc.
Int. Conf. Transp. Develop., Aug. 2020, pp. 62–74.

[8] W. Rao, J. Xia, W. Lyu, and Z. Lu, “Interval data-based k-means
clustering method for traffic state identification at urban intersections,”
IET Intell. Transp. Syst., vol. 13, no. 7, pp. 1106–1115, Jul. 2019.

[9] L. Chai, B. Cai, W. ShangGuan, J. Wang, and H. Wang, “Connected
and autonomous vehicles coordinating approach at intersection based
on space–time slot,” Transportmetrica A, Transp. Sci., vol. 14, no. 10,
pp. 929–951, Nov. 2018.

[10] Y. Guo, C. Xiong, J. Ma, and X. Li, “Joint optimization of vehicle
trajectories and intersection controllers with connected automated vehi-
cles: Combined dynamic programming and shooting heuristic approach,”
Transp. Res. C, Emerg. Technol., vol. 98, pp. 54–72, Jan. 2019.

[11] S. Gong and L. Du, “Cooperative platoon control for a mixed traffic
flow including human drive vehicles and connected and autonomous
vehicles,” Transp. Res. B, Methodol., vol. 116, pp. 25–61, Oct. 2018.

[12] D. J. Torbic, D. Cook, J. Grotheer, R. Porter, J. Gooch, and K. Kersavage,
“New intersection crash prediction models for the second edition of
the highway safety manual,” Transp. Res. Rec., J. Transp. Res. Board,
vol. 2676, no. 2, pp. 263–278, Sep. 2021.

[13] B. Xu et al., “Distributed conflict-free cooperation for multiple con-
nected vehicles at unsignalized intersections,” Transp. Res. C, Emerg.
Technol., vol. 93, pp. 322–334, Aug. 2018.

[14] J. Huang, M.-B. Hu, R. Jiang, and M. Li, “Effect of pre-signals in
a manhattan-like urban traffic network,” Phys. A, Stat. Mech. Appl.,
vol. 503, pp. 71–85, Aug. 2018.

[15] S. Jafari, Z. Shahbazi, and Y.-C. Byun, “Improving the performance of
single-intersection urban traffic networks based on a model predictive
controller,” Sustainability, vol. 13, no. 10, p. 5630, May 2021.

[16] S. Liu, Y. Li, Y. Qiu, B. Zhang, S. Qiu, and X. Liu, “Signal timing
optimization algorithm for an intersection connected with an urban
expressway,” Arabian J. Sci. Eng., vol. 45, no. 10, pp. 8667–8684,
Oct. 2020.

[17] S. Li, T. Wang, H. Ren, X. Kong, and X. Wang, “Coordination optimiza-
tion of VSL strategy on urban expressway and main road intersection
signal,” IEEE Access, vol. 8, pp. 223976–223987, 2020.

[18] M. Xu, K. An, L. H. Vu, Z. Ye, J. Feng, and E. Chen, “Optimizing
multi-agent based urban traffic signal control system,” J. Intell. Transp.
Syst., vol. 23, no. 4, pp. 357–369, Jul. 2019.

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 07,2024 at 05:51:00 UTC from IEEE Xplore.  Restrictions apply. 



8566 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 8, AUGUST 2023

[19] H. Wang, P. Hu, and H. Wang, “A genetic timing scheduling model for
urban traffic signal control,” Inf. Sci., vol. 576, pp. 475–483, Oct. 2021.

[20] H. Jiang, J. Hu, S. An, M. Wang, and B. B. Park, “Eco approaching
at an isolated signalized intersection under partially connected and
automated vehicles environment,” Transp. Res. C, Emerg. Technol.,
vol. 79, pp. 290–307, Jun. 2017.

[21] Y. Feng, C. Yu, and H. X. Liu, “Spatiotemporal intersection control in a
connected and automated vehicle environment,” Transp. Res. C, Emerg.
Technol., vol. 89, pp. 364–383, Apr. 2019.

[22] C. Yu, Y. Feng, H. X. Liu, W. Ma, and X. Yang, “Integrated optimization
of traffic signals and vehicle trajectories at isolated urban intersections,”
Transp. Res. B, Methodol., vol. 112, pp. 89–112, Jun. 2018.

[23] S.-D. Luo and S. Zhang, “Dynamic signal control for at-grade intersec-
tions under preliminary autonomous vehicle environment,” J. Central
South Univ., vol. 26, no. 4, pp. 893–904, Apr. 2019.

[24] X. H. Xia, “Adaptive traffic signal coordinated timing decision for
adjacent intersections with chicken game,” in Intelligent Transport
Systems—From Research and Development to the Market Uptake,
vol. 222, 2018, pp. 239–251.

[25] T. Tang, Z. Yi, J. Zhang, and N. Zheng, “Modelling the driving behaviour
at a signalised intersection with the information of remaining green
time,” IET Intell. Transp. Syst., vol. 11, no. 9, pp. 596–603, Nov. 2017.

[26] Z. Ge, “Reinforcement learning-based signal control strategies to
improve travel efficiency at urban intersection,” in Proc. Int. Conf. Urban
Eng. Manage. Sci. (ICUEMS), Apr. 2020, pp. 109–118.

[27] Z. Linjie and W. Hao, “Approach to obtaining traffic volume and
speed based on video-extracted trajectories,” in Proc. Int. Conf. Transp.
Develop., Aug. 2020, pp. 140–151.

[28] C. X. Zhu, T. Y. Wang, and J. S. Li, “Research of intersection traffic
signal control and simulation based on fuzzy logic,” IOP Conf. Ser.,
Earth Environ. Sci., vol. 153, no. 3, 2018, Art. no. 032055.

[29] R. Huang, J. M. Hu, Y. S. Huo, and X. Pei, “Cooperative multi-
intersection traffic signal control based on deep reinforcement learning,”
in Proc. 19th COTA Int. Conf. Transp. Prof., 2019, pp. 2959–2970.

[30] S. Park, E. Han, S. Park, H. Jeong, and I. Yun, “Deep Q-network-based
traffic signal control models,” PLoS ONE, vol. 16, no. 9, Sep. 2021,
Art. no. e0256405.

[31] H. Jia, Y. Lin, Q. Luo, Y. Li, and H. Miao, “Multi-objective optimization
of urban road intersection signal timing based on particle swarm
optimization algorithm,” Adv. Mech. Eng., vol. 11, no. 4, Apr. 2019,
Art. no. 168781401984249.

[32] X. Li and J.-Q. Sun, “Signal multiobjective optimization for urban
traffic network,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 11,
pp. 3529–3537, Nov. 2018.

[33] J. Navratil, K. Picha, S. Martinat, P. C. Nathanail, K. Tureckova, and
A. Holesinska, “Resident’s preferences for urban brownfield revital-
ization: Insights from two Czech cities,” Land Use Policy, vol. 76,
pp. 224–234, Jul. 2018, doi: 10.1016/j.landusepol.2018.05.013.

[34] O. A. Arqub, M. Al-Smadi, S. Momani, and T. Hayat, “Numerical
solutions of fuzzy differential equations using reproducing kernel Hilbert
space method,” Soft Comput., vol. 20, no. 8, pp. 3283–3302, Aug. 2016.

[35] J. Liu, Y. Jia, Y. Wang, and J. Wang, “Cumulative energy consumption
analysis of signal intersections based on improved genetic algorithm,”
in Proc. IEEE Int. Conf. Artif. Intell. Inf. Syst. (ICAIIS), Mar. 2020,
pp. 540–543.

[36] Y. Qian, J. Zeng, N. Wang, J. Zhang, and B. Wang, “A traffic flow model
considering influence of car-following and its echo characteristics,”
Nonlinear Dyn., vol. 89, no. 2, pp. 1099–1109, Jul. 2017.

[37] O. A. Arqub, “Adaptation of reproducing kernel algorithm for solv-
ing fuzzy Fredholm–Volterra integrodifferential equations,” Neural
Comput. Appl., vol. 28, no. 7, pp. 1591–1610, Jul. 2017, doi:
10.1007/S00521-015-2110-X.

[38] D. Formanowicz, A. Sackmann, A. Kozak, J. Błażewicz, and
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