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a b s t r a c t

We present MR-Net, a general architecture for multiresolution sinusoidal neural networks, and a
framework for imaging applications based on this architecture. We extend sinusoidal networks, and
we build an infrastructure to train networks to represent signals in multiresolution. Our coordinate-
based networks, namely L-Net, M-Net, and S-Net, are continuous both in space and in scale as
they are composed of multiple stages that progressively add finer details. Currently, band-limited
coordinate networks (BACON) are able to represent signals at multiscale by limiting their Fourier
spectra. However, this approach introduces artifacts leading to an image with a ringing effect. We
show that MR-Net can represent more faithfully what is expected of sequentially applying low-pass
filters in a high-resolution image. Our experiments on the Kodak Dataset show that MR-Net can
reach comparable Peak Signal-to-Noise Ratio (PSNR) to other architectures, on image reconstruction,
while needing fewer additional parameters for multiresolution. Along with MR-Net, we detail our
architecture’s mathematical foundations and general ideas, and show examples of applications to
texture magnification, minification, and antialiasing. Lastly, we compare our three MR-Net subclasses.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the computer science community has seen an
xplosion in research in neural networks, motivated mainly by
dvances in Deep Learning [1,2]. For visual computing, this was
purred by the creation of Convolutional Neural Networks (CNNs)
3], which had a significant impact both for the research com-
unity and the society at large [4,5]. The effectiveness of CNNs
omes from the translation invariant properties of the convo-
ution operator, which makes it a proper architecture for the
nalysis of visual imagery.
Deep neural networks such as CNNs, employ an array-based

iscrete representation of the underlying signal. In this case,
he network input consists of a vector of pixel values (in RGB)
epresenting the image directly by data samples. We call this kind
of network a data-based network.
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Moreover, the revolution in the media industry caused by deep
neural networks motivated the development of new image repre-
sentations using neural networks. While the data-based network
is appropriate for analysis tasks, relying on a discretization of
the image, another kind of network called coordinate-based net-
work is suitable for synthesis, and provides a continuous and
compact representation. For its characteristics, there is a growing
interest in using these networks in imaging applications [6].
For instance, coordinate-based networks have been successfully
applied in image compression [7] and super-resolution [8].

A coordinate-based network represents the image indirectly
using a fully connected multi-layer perceptron (MLP) that takes as
input a pixel coordinate and outputs a RGB color. These networks
provide a continuous implicit representation for images [9], and
allow for various applications, from Neural Signed Distance Func-
tions (NeuralSDFs) [10] to Neural Radiance Fields (NeRFs) [11].
Since the coordinates are continuous, images can be presented in
arbitrary resolution.

Imaging applications benefit greatly from multiresolution rep-
resentations, as they allow us to represent an image hierarchically
at different levels of details. This hierarchical model is aligned
with some classical image and human visual perception mod-
els [12], and it is instrumental for many tasks in computer vision

and graphics, such as compression, analysis and rendering.
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For example, in image compression, we can use a multires-
lution representation to identify and discard details that are
ot perceptually important, while preserving important features
f the image. This can significantly reduce the amount of data
eeded to represent the image, while still maintaining its overall
uality [13]. Additionally, in rendering, multiresolution represen-
ations have built-in support for antialiasing, which traditionally
s implemented using image pyramids [14]. Another important
pplications of imaging in Graphics is texture synthesis. In that
ealm, besides antialiasing, the creation of visual patterns from
xamples has great relevance [15].
Traditionally, multiresolution representations for images have

een based on signal processing techniques derived from Fourier
heory [16]. Such operators were primarily motivated by image
ompression [17] and played an important role in the develop-
ent of JPEG-2000 [18]. For instance, the Discrete Cosine Trans-

orm [19] have been used as an efficient way to get a frequency
ontent of the image, and estimate the importance of certain
oefficients to the image quality perception. Although Fourier
ransforms were initially popular for decomposing signals into
ultiple frequencies, the wavelet transform, introduced by Mallat

20], soon gained popularity as it enabled representing a signal
n levels of detail and scale, and was widely applied to a first
eneration of wavelet-based image codecs [21]. Subsequently,
avelet analysis of multiscale edges led to a second generation of

mage coding methods, with higher compression rates [22]. Nev-
rtheless, understanding and controlling the frequencies present
n a signal has been critical on interpreting its details and avoiding
rtifacts such as aliasing. In this sense, sinusoidal functions have
een instrumental in the development of the multiresolution
heory.

Sinusoidal neural networks are examples of coordinate-based
etworks in which their activation function is the sine function.
s such, they bridge the gap between the spatial and spectral
omains, given the close relationship of the sine function with
he Fourier basis. However, these sinusoidal neural networks
ave been regarded as difficult to train [23]. To overcome this
roblem, Sitzmann et al. [24] proposed a sinusoidal network for
ignal representation called SIREN. One of the key contributions
f this work is the initialization scheme that guarantees stability
nd good convergence. Furthermore, it also allows modeling fine
etails in accordance with the signal’s frequency content.
A multiplicative filter network (MFN) is a sinusoidal network

impler than SIREN which is equivalent to a shallow sinusoidal
etwork [25]. Lindell et al. [26] presented band-limited coordinate
etwork (BACON), an MFN that produces intermediate outputs
ith an analytical spectral bandwidth (specified at initialization)
nd achieves multiresolution of the underlying signal. While its
tructure allows BACON to be expressed as a linear combinations
f sines, avoiding the composition of sines present in sinusoidal
LPs, it creates multiresolution representations by truncating the

requency spectra of the signals. This approach produces ringing
rtifacts in some levels of detail, and becomes evident when we
ook at the Fourier transform of the images.

The control of frequency bands in the representation is closely
elated with the capability of adaptive reconstruction of the signal
n multiple levels of detail. In that context, Müller et al. [27]
eveloped a multiresolution neural network architecture based
n hash encoding. Also, Martel et al. [28] designed an adaptive
oordinate network for neural signals.
In this context, we introduce multiresolution sinusoidal neural

etworks (MR-Net) based on classical signal multiresolution rep-
esentations. Our results, presented in Section 5.2, indicate that
sing MR-Net produces better results compared to the previous
tate-of-the-art technique, BACON, while employing a smaller

umber of parameters. We describe three MR-Net subclasses:
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S-Net, L-Net and M-Net. Finally, we present applications on an-
tialiasing and level-of-detail reconstruction.

In summary, we make the following contributions:

• We extend the sinusoidal neural networks and introduce a
family of multiresolution coordinate-based networks, with
unified architecture, that provides a continuous represen-
tation spatially and in scale. For this, we show how the
initialization proposed for SIREN [24] can be better explored
to control the frequencies learned by the model, and how we
can decompose a network in multiple stages, inspired by the
multiresolution analysis.
• We develop a framework for imaging applications based on

this architecture, leveraging classical multiresolution con-
cepts such as pyramids. Also, we show that this approach
can more faithfully represent the frequency spectra of mul-
tiresolution signals, avoiding artifacts present in BACON [26]
representation.
• We show that our architecture can represent images with

good visual quality, being competitive with related meth-
ods in PSNR and number of parameters; we also demon-
strate its use in applications of texture magnification and
minification, and antialiasing.

This paper is an extension of our previous work [29], where
we introduced a class of neural networks called Multiresolution
Neural Networks (MR-Net). In this work, we present a complete
description of this class of networks along with the motiva-
tions and a detailed mathematical model (see Section 2). We
added Section 3, which explains our framework in detail and
should help the construction of an independent implementation.
We expanded the comparisons to include an analysis of the
frequency spectra of the representations provided by MR-Net
and BACON (see Section 5.2). We also present a broader set
of experiments (see Section 5.3), using the Kodak dataset [30],
for comparison of the MR-Net with other network architectures.
Finally, we added Section 6, which compares the different MR-
Net subclasses (S-Net, L-Net, and M-Net) in both qualitative and
quantitative aspects.

2. Multiresolution sinusoidal neural networks

This section presents multiresolution sinusoidal neural networks
(MR-Net) to represent signals in multiple levels of detail using
sinusoidal MLPs.

2.1. Overview of the MR-Net framework

Our proposal is a family of coordinate-based networks with
an unified architecture, and a framework for training neural net-
works on multiscale signal representation. We derive three main
subclasses of MR-Nets: S-Net, L-Net, and M-Net. Each of them
offers different trade-offs in terms of frequency control in the
signal representation.

The characteristics of the MR-Net framework are:

• Flexible training data — the input signal can be given either
by regular sampling, by multiresolution structure such as
pyramids, or by stochastic/stratified sampling.
• 2 Types of Level of Detail — when training with multireso-

lution data, the level of details are determined by spectral
projections, whereas with a single-resolution input signal,
the level of details are determined by the network capacity.
• Progressive Training — the network is trained progressively,

each stage at a time, using a variety of schedule regimes.
• Continuous Multiscale — the representation is continuous

both in space and scale. Therefore, it can reconstruct the

signal at any desired resolution/level of detail.
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The next sections present the motivations and concepts un-
erlying our approach, as well as the MR-Net architecture.

.2. Motivation

Let f : D → C be a signal, the ground-truth, where D and C
re finite vector spaces representing the domain and codomain
f f. For instance, to represent an image, we can choose D =
2 to represent the image’s support and C = R3 to represent
he RGB color space. Throughout the text, the cursive letter will
ndicate the ground-truth while the standard letter indicates the
orresponding neural network.
We can decompose the signal into a sum f= g0+ · · · + gN−1

f N stages, where g0 is its coarsest approximation and gi, for
i > 0, progressively introduce finer details. The level of detail i is
defined as fi = g0 + · · · + gi, or as fi = f− (gi+1 + · · · + gN−1).
Thus, the stages can be defined as

gi = fi+1 − K ∗ fi+1, with fN−1 = f.

That is, each stage gi is the difference between the level i+ 1
and its convolution with a low-pass filter K . For example, K could
be a Gaussian kernel G(x, t) = 1

2π t exp (− ∥x∥
2

2t ), where t is the scale
arameter. The sequences {fi} and {gi} resemble the Gaussian and
aplacian pyramids, which are widely used in the multiresolution
nalysis of digital images [31–33].
We address the problem of representing a signal f in mul-

iresolution using sinusoidal neural networks. Motivated by the
ecomposition f= g0 + · · · + gN−1, we consider an aggregation
f N sinusoidal MLPs gi : D → C, which we call stages,
o approximate f. Therefore, we propose training each network
tage gi by fitting it to the stages gi of f. This approach allows us
o learn the frequency of f in a controlled manner, starting from
ower details and gradually moving towards higher ones.

.3. MR-Net architecture

We define the MR-Net as a function f : D × [0,N] → C,
xpressed as follows:

(x, t) = c0(t)g0(x)+ · · · + cN−1(t)gN−1(x), (1)

Each function gi : D → C is a sinusoidal MLP (see Section 2.4
for its precise definition) and represents the ith stage of f , whose
contribution is controlled by the function

ci(t) = max
{
0,min

{
1, t − i

}}
. (2)

Note that when t < i, ci(t) = 0; when i ≤ t ≤ i+ 1, ci(t) = t − i;
and when t > i+ 1, ci(t) = 1. Therefore, if t = k+ δ with k ∈ N
and 0 ≤ δ ≤ 1, we obtain

f (x, t) = g0(x)+ · · · + gk(x)+ δgk+1(x).

ft := f (·, t) : D→ C is the level of detail t of the MR-Net f . These
levels evolve continuously, allowing us to encode a continuous
multiresolution of f at full resolution fN = g0+· · ·+gN−1. For this,
we propose fitting f to the multiresolution given by the ground-
truth signal f = g0 + · · · + gN−1. We initialize the parameters
of each stage gi with sufficient capacity to fit the stage gi (see
Section 2.6), then train each gi to approximate gi.

The resulting MR-Net f learns the decomposition of the
ground-truth signal f as a projection into the coarse scale space
and a sequence of finer detail spaces. For instance, the initial
stage f1 = g0 provides the least detailed approximation of fN . The
subsequent stages, represented by gi with i < 0, progressively
introduce finer details and are regulated by the scale parameter
t . Essentially, the multiresolution can be navigated using the scale
parameter t within the interval [0,N], which makes this architec-
ture closely aligned with the Multiresolution Analysis [20]. Fig. 1
shows the structure of a MR-Net having N stages.
389
Fig. 1. Anatomy of the MR-Net family.

Fig. 2. General Anatomy of a MR-Module.

2.4. MR Module

Each stage gi of the MR-Net f is a sinusoidal MLP, called MR-
Module, that learns a signal representation as a combination of
sinusoidal functions with induced frequency band.

We write each stage as gi = Li ◦Hi ◦ Si. The first layer projects
the input x into a list of sines Si(x), which is the input of the
composition Hi of the MLP hidden layers. The output Hi ◦ Si(x)
is a dictionary of sine combinations that are passed to the linear
layer Li. Finally, the control layer ci(t), with t ∈ [i, i + 1], blends
the stage gi with the level of detail f (x, i− 1).

There are two kinds of MR-Modules: Pure sine MR-Module
(Hi = ∅) and modulated sine MR-Module (Hi ̸= ∅). In the first
case the network has only the first layer and the linear layer, and
in the second case the network has the three blocks, including
the hidden layers (see Fig. 2).

Without loss of generality, let us assume that the ground-truth
signal is a grayscale image unless stated to the contrary. In this
case, the stages of the MR-Net will have R2 and R as domain and
codomain respectively. Consequently, a MR-Net with N stages
gi : R2

→ R has the form f : R2
× [0,N] → R. Under this

assumption, we present the building blocks of the MR-Net with
details.

2.4.1. Pure sine MR-Module
The pure sine MR-Module is a shallow sinusoidal MLP defined

as the composition L◦ S of a sinusoidal layer S with a linear layer
L. The layer S : R2

→ Rm projects the input x into a dictionary
of m sines of the form S(x) = sin (Wsx+ bs), where Ws ∈ Rm×2

and bs ∈ Rm are the weight matrix and bias. The integer m is the
width of the MR-Module. The layer L : Rm

→ R is an affine map
L(x) = Wlx+bl, where Wl ∈ R1×m and bl ∈ R are the final weight
matrix and bias. Hence, L ◦ S acts as a spectral filter controlled by
the initialization of Ws.

Since the risk landscape for the network loss has many lo-
cal minima, it is expected that the weights Ws cannot move
much further than their initialization. Therefore, Ws determine
the range of frequencies one can filter from the input signal.
Fig. 3 shows the structure of the L ◦ S and an example of a signal
consisting of a linear combination of two frequencies. In this
example, we have the layers S : R → R2, S(x) = (sin(x), sin(5x))
and L : R2

→ R, L(x , x ) = x + x .
1 2 1 2
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Fig. 3. Pure sine MR-Module.

Fig. 4. Modulated sine MR-Module.

2.4.2. Modulated sine MR-Module
The Modulated MR-Module is a deep sinusoidal MLP L ◦ H ◦ S

hat considers a hidden sinusoidal layer block H : Rm
→ Rm.

his map is the composition of k layers H = Hk ◦ · · · ◦ H1 with
Hi(xi) = sin (Wixi + bi) = xi+1 where x0 ∈ Rm is the input. The
integers m and k+ 1 are the width and depth of the MR-Module.

The MR-Module L◦H ◦S is a linear combination of a dictionary
of (spectral) atoms H◦S containing composition of sines. This fact
has two consequences. First, the capacity of L ◦ H ◦ S is greater
than the capacity of L ◦ S with the same number of neurons [34].
Second, the initialization of L ◦ H ◦ S does not directly control its
frequency band as in the case of L ◦ S.

In terms of localization properties in space and frequency,
we can say the spectral atoms of the Modulated MR-Module
are semi-local in the sense that these functions are adapted by
the learning process to fit local variations of the signal (i.e., fre-
quencies) across its (spatial) domain. This characteristic is evi-
dent in Fig. 4 that shows a network structure and the graph of
sin

(
3 sin

(
5 sin(1.9x)

))
. In this example, the first layer is repre-

sented by S(x) = sin(1.9x), the hidden block is the composition
of two sine layers H(x) = sin

(
3 sin(5x)

)
, and the linear layer is

the identity function L(x) = x.

2.5. MR-Net subclasses

Here, we describe three subclasses of the MR-Net: S-Net, L-
Net, and M-Net. The characteristics of their level of details depend
on the configuration of their stages. Recall, from Eq. (1), that a
MR-Net is a function f : R2

× [0,N] → R, expressed as:

f (x, t) = c0(t)g0(x)+ · · · + cN−1(t)gN−1(x).

Therefore, to define the subclasses S-Net, L-Net, and M-Net, we
only need to define the stages gi.

2.5.1. S-Net
A S-Net is a MR-Net in which each stage gi is a pure sine MR-

Module, i.e. gi = Li ◦ Si where Si and Li are the first and the linear
layers (see Fig. 5). For this reason, each stage gi can be expressed
as a sum of sine functions

gi(x) = a0 +
m∑
j=1

aj sin
(
ωjx+ ϕj

)
,

where the frequencies ωj and phase-shifts ϕj are given by the
weights and bias of the first layer Si. The amplitudes aj are given
by the linear layer Li. As a consequence, the resulting S-Net f can
provide level of detail based on the controlled initialization of
frequency band of each stage g (see Section 2.6).
i

390
Fig. 5. S-Net architecture.

Fig. 6. L-Net architecture. Note that the stages are independent of each other.

Fig. 7. M-Net architecture. Notice how the hidden-layers blocks of adjacent
MR-Modules are connected.

2.5.2. L-Net
A L-Net is a MR-Net f in which each stage gi = Li ◦Hi ◦ Si is an

independent modulated sine MR-Module: Si, Hi, Li are the first,
hidden, and linear blocks (see Fig. 6). For this reason, the level of
detail capacity of f is determined by the width and depth of each
stage gi.

The Nth level f (·,N) of a L-Net is an example of a sinusoidal
MLP. Without loss of generality, let f (·, t) = c0(t)g0+c1(t)g1 be a
L-Net with two stages having the same architecture with a single
hidden layer. We show that f (·, 2) = L◦H ◦ S. For this, define the
matrices of S, H , and L, respectively, using Ws =

(
W0

s
W1

s

)
, Wh =(

W0
h 0

0 W1
h

)
, Wl =

(
W0

l W1
l

)
, where W j

s , W
j
h, W

j
l are the matrices

of the stages gj. The biases are defined in a similar way. Such
rocedure can be extended to a sum of N stages in a analogous
ay. Thus, the L-Net gives us a controllable way of increasing the
idth of a sinusoidal MLP during training.

.5.3. M-Net
While the stages of S-Nets and L-Nets are independent, with

-Net we propose a way to reuse information learned at previous
tages. A M-Net is a MR-Net where each stage gi is a modulated
R-Module linked to its subsequent stage gi+1. That is, Hi ◦ Si

s composed both with the linear layer Li, producing the stage
i = Li ◦ Hi ◦ Si, and the hidden block Hi+1 resulting in gi+1 =
i+1 ◦ Hi+1 ◦ (Si+1,Hi ◦ Si) (Fig. 7). This way, the hidden block has
the form Hi+1 : R2m

→ Rm; m is the number of neurons.
The hidden block of a stage of the M-Net is composed with a

sequence of hidden blocks coming from previous stages. That is,
the M-Net contains a deep MLP LN−1 ◦ HN−1 ◦ · · · ◦ H1 ◦ H0 ◦ S0
with N hidden blocks; Hi is the part of Hi connecting to the stage
g . Thus, the M-Net also allows us to increase the depth of a
i+1
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Fig. 8. Nyquist limit.

sinusoidal MLP during training implying that the capacity of each
stage increases with its depth in the hierarchy. This feature makes
the M-Net a suitable and compact architecture for multiresolution
training, as discussed in Section 6, and we will utilize this subclass
in the applications of Section 4.

2.6. Frequency control

Let f = g0 + · · · + gN−1 be the ground-truth signal in
ultiresolution, and f : R2

× [0,N] → R be a MR-Net with N
tages. To train each stage gi, we propose to initiate its parameters
ased on the frequency content of gi. There are two ways to
ontrol the frequency band of gi. First, we can initialize the weight
atrix of the first layer of gi. Second, we can vary its width and
epth. Moreover, these mechanisms can be combined.

.6.1. Frequency initialization
Training sinusoidal MLPs can be challenging, as periodic acti-

ation functions may lead to instability in deep architectures [23].
itzmann et al. [24] propose an initialization scheme that guar-
ntee stability during training. They initialize the weights W =
W̃ of the MLP first layer sin (Wx+ b) such that W̃ is uniformly

ampled in [−1, 1] and the number ω controls the range of
requencies. That is, the layer projects the input x in a list of sines
ith frequencies in [−ω, ω]. They empirically choose ω = 30 in
heir experiments. For the hidden layers, they choose the weights
istributed uniformly in

(
−
√
6/m,

√
6/m

)
, where m is the width

f the layer. See [24] for the details.
Regarding the initialization of the MR-Net f , let gi = Li ◦Hi ◦ Si

be its ith stage, where Si, Hi, and Li are its first, hidden, and
linear blocks. Observe that each coordinate of the sinusoidal layer
Si(x) = sin

(
Wsix+ bsi

)
has the form sin(ω1x1 +ω2x2 + ϕ), where

the frequencies ω1 and ω2 form a line of the matrix Wsi , x =
(x1, x2) is the input, and the phase-shift ϕ is a coordinate of the
bias bsi . We follow the above initialization approach to initialize
gi. However, instead of using ω = 30 we consider it to be a
bandlimit frequency on the ground-truth stage gi.

Ideally, the initialization of frequencies in gi should match
the frequency content of the ground-truth signal at the stage gi.
However, as we usually do not have access to this information, we
opt to use an upper bound. Specifically, we assume that gi has
no frequency higher than a bandlimit Bi. The Nyquist–Shannon
sampling theorem says that we can reconstruct gi from a sample
gi(xkl)}, where the regular grid xkl has points spaced with size
1
ri

< 1
2Bi

. The number ri is the sample rate. Fig. 8 illustrates such
equirement using the frequency rate notation.

Therefore, to fit the stage gi to the sample {gi(xkl)}, we opt
to initialize gi such that it can represent frequencies up to ωi :=
ri
2 . For this, we initialize the lines of the first matrix Wsi of gi
uniformly in the set Ωi = [−ωi, ωi]2. Thus, the sinusoidal layer
Si may contain frequencies already initialized at previous stages
because {gi} is a Laplacian pyramid of f, thus, Ω0 ⊂ · · · ⊂ ΩN−1.
The weights of the hidden block Hi are initialized following the
same scheme in [24].
391
Fig. 9. MR-Net framework components.

Fig. 10. MR-Structure.

2.6.2. MR-Module capacity
The capacity of each MR-Net stage gi = Li ◦Hi ◦ Si is controlled

y its width m and depth k + 1. The width m determines that
n input x will be transformed into a list of m sines Si(x) =
in

(
Wsix+ bsi

)
, whereWsi has rows sampled at the set Ωi defined

in Section 2.6.1. By increasing m, the dictionary of input frequen-
cies is augmented. The hidden block Hi consisting of k sinusoidal
layers, further enhances this list of frequencies.

Regarding the training of the MR-Net stage gi, we recall that
it is a MLP. Rahaman et al. [35] shows that during training a MLP
learns lower frequencies first, a phenomenon known as spectral
bias. They also show that increasing the network depth (for fixed
width) improves the network’s ability to fit higher frequencies,
while increasing the width (for fixed depth) also helps, but the
effect is considerably weaker.

To mitigate the effects of the spectral bias, we employ the
above frequency initialization approach to the stage gi. This en-
sures that the training of gi begins with frequencies that are close
to those present in the corresponding ground-truth data gi.

Furthermore, the MR-Net architecture enables us to gradually
increase its width and depth by adding stages (see Sections 2.5.2
and 2.5.3), providing us with a controlled way of increasing net-
work capacity while allocating ground-truth frequencies across
stages in a controllable manner. For example, a L-Net can be
viewed as a specific MLP where adding a new stage increases
its width. As a result, L-Net allows us to divide a given MLP
into stages. On the other hand, M-Net has a more sophisticated
structure, as adding a stage results in a network that is wider and
deeper.

3. MR-Net in detail

This section presents the MR-Net framework in detail by con-
ceptually dividing it in four main components: MR-Structure, MR-
Stages, MR-Training, and MR-Inference (see Fig. 9).

Let f : D → C be the ground-truth signal (input data), and
f : D × [0,N] → C be a MR-Net with N stages {gi} to fit f in
multiresolution. We use this setting to present the framework.

3.1. MR-Structure

The MR-Structure is a data structure that encapsulates the
input data f. It includes f and metadata about its sampling mode,
filtering type, and the multi-stage stack (see Fig. 10).

The training of MR-Net stage gi receives pairs {xj, yj} as input,
with points xj sampled in the domain D of f and yj = f(xj) ∈ C.
For a squared image, we could have D = [−1, 1]2 ⊂ R2.
During training, we consider the signal f to have codomain in
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Fig. 11. Image values (RGB and monochromatic).

Fig. 12. Examples of image attributes (mask and edges).

Fig. 13. Sampling modes.

onochromatic (C = R) or RGB color (C = R3) (see Fig. 11).
epending on the application, other color spaces or additional
ttributes, such as masks and features, could be used (see Fig. 12).
The data input for the training of each of the N stages gi is

organized in a multi-stage stack {xj, yj}i. Specifically, for each i, the
set of pairs {xj, yj}i is a sample of the ith level of detail fi of the
ignal f or a sample of the original signal f, with {xj}i ⊂ D and
yj}i = {fi(xj)}. From the point of view of representation theory,
e can interpret this as a projection of the function fi onto the
rimal Shannon basis (i.e., Dirac delta distribution). In the context
f signal processing, this basis is a sampling grid of impulses
nd the representation consists of the sequence {yj}i at the grid
ocations {xj}i.

The type of sampling used to extract the multi-stage stack
xj, yj}i from the signal f is an important aspect in the MR-Net
raining. In that respect, it is instrumental to consider two types
f samplings: regular and irregular (Fig. 13). In the regular case,
he sampled points are organized in a regular grid discretization
xk,l} of the domain D. For flexibility, we implement a sampler
odule that take regular samples or stochastic samples using the
oisson disk sampling [36,37].
The multi-stage stack of the input signal f could have different

esolutions. For the regular case where the sampled points are
392
Fig. 14. Examples of multi-stage stacks.

Fig. 15. Examples of filter types.

rganized in a regular grid {xk,l} (the highest resolution), we can
structure the multi-stages in dyadic lattice following the 2i rule:

xk,l}i = {x2k,2l}i+1 with {xk,l}N = {xk,l}.

Here we are assuming that {xk,l} is a grid of size 2k
× 2k for

some integer k > N . Thus each dimension of a stage grid {xk,l}i
has twice the size of the previous one (Fig. 14(a)). On the other
hand, we could consider that the sampling grids {xk,l}i have a
fixed resolution, and sample the signal f on its highest level or
consider the level of detail fi for each grid stage {xk,l}i (Fig. 14(b)).
See Section 3.3.4 for more details.

Each level i of the multi-stage stack can be filtered to separate
the level of detail fi+1 into different frequency bands. In this
sense, we can use the unfiltered signal f, a low-pass version of
i+1 or a band-pass version of fi+1. For this, it is common to
employ a Gaussian kernel as the low-pass kernel and a difference
of Gaussians as the band-pass kernel (see Fig. 15). Precisely, we
can filter fi+1 by convolving it with a Gaussian kernel K :

i(k, l) = (K ∗ fi+1) (k, l) (3)

We abuse the notation and denote by fi(k, l) the function fi
evaluated at xk,l. Similarly, the ith band-pass stage gi = fi − fi−1
is defined using gi(k, l) = (fi − K ∗ fi) (k, l).

3.2. MR-Stages

The MR-Stages {gi} are the build blocks of the MR-Net f .
They constitute a stack of MR-Modules that are interconnected
according to the chosen MR-Net subclass as illustrated on Figs. 5,
6, and 7.

The MR-Net configuration is given by the parameters of the
MR-Stages: number of stages, depth and width of the stages.
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Fig. 16. MR-Training.

.3. MR-Training

The training of the MR-Net f must consider the mechanisms
or learning different levels of detail at each stage gi of f . The
capacity of gi to represent the underlying ground-truth stage gi
can be achieved by initializing its first layer or adjusting its width
and depth, as explained in Section 2.6. Regarding the network
input, we can either use the original signal, or pre-process the
signal with a low-pass filter.

The MR-Training incorporates a loss functional, a logger to
monitor the training, as well as, a scheduler (see Fig. 16). We
describe each of these components, as well as the multiresolution
regime in the following sections.

3.3.1. Loss functional
Signal reconstruction is related to interpolation and fitting. We

would like to fit the MR-Net f to the ground-truth signal fusing a
given sample of f. For this, we observe that training f is related to
a regression in multi-scale. This means that: i) the approximation
should take into account a multiresolution f= g0+· · ·+gN−1 of
the ground-truth signal; and ii) each MR-Net stage gi should fit
to a sample of gi.

To accomplish these goals above, we define a loss functional
Li to train each stage gi of the MR-Net f . For this, we assume
that the signal fwas sampled and organized in a multi-stage stack
{xj, yj}i such that yj = gi(xj). Thus Li is defined by minimizing the
differences between the true values yj at the sample points xj and
the predicted values g(xj) at the ith stage:

Li(θi) =
1
Ki

∑gi(xj)− yj
2

. (4)

Where θi are the parameters of gi and Ki is the size of {xj, yj}i.
When the multi-stage stack {xj, yj}i is constructed by filtering

using a Gaussian filter (Eq. (3)), we should replace
gi(xj)− yj


by

fi(xj)− yj
 in Eq. (4). Recall that fi is the ith level of detail of

the MR-Net f , i.e. fi = g0 + · · · + gi.
During training, the network can be over-fitted to the data. To

avoid this, we explore regularization strategies such as defining
convergence criteria for early stopping to fit the network to the
data. In the future, we plan to enhance these strategies by adding
regularization terms based on network derivatives.

3.3.2. Logger
The training of the MR-Net f is monitored by a logging module

that helps to visualize the learning progress. During training,
the logger receives messages when the network training starts
and ends, when a stage training starts and ends, when a epoch
training ends, and when a batch training ends.

This architecture allows the logger to be customized to ac-
commodate different MR-Net configurations and different actions
for visualizing the training progress. For instance, it is possible to
write a logger to save partial results to the disk, display them in a

development environment, or send them to a cloud based service.

393
3.3.3. Scheduler
Since a MR-Net f has N stages gi, each learning a level of detail

of the ground-truth signalf, one important aspect is their training
schedule. If the input multi-stage stack {xj, yj}i is organized as
Laplacian pyramid and f is a L-Net, it is possible to train all

tages in parallel by summing the loss functions Li of the MR-
stages. However, in general, it may be beneficial to train each
stage sequentially, from the lowest to the highest level. This
scheduling is our choice and a common strategy in the traditional
multiresolution analysis of signals.

Furthermore, we adopt a progressive learning strategy by
‘‘freezing’’ the weights of a stage once it is trained in the sched-
uled sequence. This strategy guarantees that the details are added
to the representation incrementally from coarse to fine.

We also employ an adaptive training scheme for each stage
optimization, combining both accuracy loss thresholds and con-
vergence rates. The training process is outlined in Algorithm
1.

Algorithm 1: MR-Net training.
Data: A multi-stage stack {xj, yj}i with N levels.
Result: A MR-Net f with N stages gi.

1 Initialize a MR-Net model with a single stage g0;
2 Notify Logger that network training will start;
3 for stage← 0 to N − 1 do
4 if stage ̸= 0 then
5 Create a new stage gstage and add it to the model;
6 Freeze the parameters of the stage gstage−1;
7 Notify Logger that stage training will start;
8 current_traindata← multires_stack[stage];
9 for epoch← 0 to current_limit_of_epochs do

10 for batch in current_traindata do
11 Train gstage using the loss Lstage (Eq. (4)) ;
12 Notify Logger that batch training has finished;
13 Notify Logger that epoch training has finished;
14 if convergence_criteria_reached() then
15 break;

16 Notify Logger that stage training has finished;
17 Notify Logger that network training has finished;

3.3.4. Level of detail schemes
By combining the different aspects discussed in the previous

sections we can define various schemes for learning level of
detail representations using MR-Nets. The main ones are: capac-
ity based with original signal; filtering with Gaussian/Laplacian
tower; and filtering with Gaussian/Laplacian pyramid.

Capacity based with original signal. In this scheme, we train each
stage gi of the MR-Net f on the same sampling of the ground-
truth signal f which we consider to have no frequency higher
han a bandlimit ω. That is, the input multi-stage stack {xj, yj}i is
omposed of N copies of a sample {xj, yj} of f. Thus, the training
f each stage gi receives the same input. This scheme is based on
he fact that even when f does not have enough capacity to fit f,
t can learn its lowest frequencies and represent a filtered version
f f. Section 2.6.2 describes the frequency control by network
apacity, and Fig. 17 illustrates this phenomenon by showing the
econstruction in 1D example. The MR-Net used in this case has
single stage with width 16 and a single layer in all blocks.
To initialize the N stages gi of f , we follow the scheme pre-

ented in Section 2.6.1. We initialize the rows of the first matrix
f each stage gi with values in Ωi = [−ωi, ωi]

2, where ωi is
partition of the interval [0, ω], and ω is the bandlimit of f.
onsequently, g0 is initialized and trained to learn the lowest
requencies of f up to a limit determined by its capacity. We
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Fig. 17. Capacity-filtering in the reconstruction of a 1D signal.

then add stage g1 to the network to learn more details of f, and
ontinue adding stages until the Nth stage is reached.
Note that, in this scheme, the training data and the test data

or each level of detail is the original signal. This way, we can also
top adding stages if a desired error tolerance is achieved.

iltering with Gaussian/Laplacian tower. To have control over the
requencies present in the signal f, we sample a filtered multi-
tage stack {xj, yj}i and train the stages gi of MR-Net f to approx-
mate each level i of this stack.

We start by feeding our model with a Gaussian tower, that is,
multi-stage stack {xj, yj}i where each level i is a version of the

evel i + 1 filtered by a low-pass filter. Precisely, the Gaussian
ower {xj, yj}i is defined recursively by convolving the level of
etail fi of fwith a Gaussian kernel K :

i(xj) = (K ∗ fi+1) (xj),
fN−1 = f.

hus, we define yj = fi(xj). This way, each level i is reconstructed
ith the same amount of samples. The MR-Net f must be trained

rom the less detailed scale to the most detailed one using the
oss Li that minimizes the differences

fi(xj)− yj
2, where fi =

0 + · · · + gi.
Similarly, we could represent the multi-stage stack {xj, yj}i as

Laplacian tower {gi} by using:

gi(xj) = (fi − K ∗ fi) (xj),
g0(xj) = (K ∗ f1) (xj).

hus, we define yj = gi(xj) and train the MR-Net f using the loss
i that minimizes the differences

gi(xj)− yj
2.

iltering with Gaussian/Laplacian pyramid. The Gaussian pyramid
s a classical multiscale representation of uniformly sampled sig-
als. Based on the Shannon sampling theorem, the Gaussian
ower is a highly redundant multiscale representation. On the
ther hand, the Gaussian pyramid is ‘‘critically sampled’’, i.e., it
as the minimum number of samples required to represent each
requency band.

Precisely, the Gaussian pyramid {xk,l, yk,l}i is defined by recur-
ively downsampling the above Gaussian tower of the signal f by
factor 2. As in Section 3.1, we are assuming that the sampled
oints {xk,l} forms a grid of size 2k

× 2k for some integer k > N .
imilarly, the Laplacian pyramid is defined using the Laplacian
ower of f.

While the reconstruction of signals using the Gaussian tower is
erfect, it is also wasteful if we can generalize correctly the model
ased only on the samples of a Gaussian pyramid. In terms of
fficiency, it is faster to train the model on fewer samples, aligned
ith classical sampling theory results.
394
When training with a multi-stage stack with grids of different
esolutions such as a Gaussian pyramid, we can build another
ulti-stage stack where each level has the same resolution as

he original signal and use it as test data. In this case, this
econd multi-stage stack, a tower, should have each level filtered
ccordingly to its corresponding level in the pyramid, so that
hey are separated in similar frequency bands. With this pre-
rocessing, we can train the network on the multiresolution
yramid data, and evaluate it on the original signal resolution,
omparing it against the multiresolution tower data to check if it
s generalizing as expected.

The training of the MR-Net stages gi using Gaussian/Laplacian
s analogous to the tower’s case. Regarding the initialization of
i, observe that 2k−N+1+i is the height and width of the ith stack
xk,l, yk,l}i, thus it cannot contain frequencies higher than ωi =
k−N+i. Thus we propose to initialize the frequencies of {gi} fol-

lowing a dyadic sequence of frequency bands ωN−1, ωN−2, . . . , ω0,
hich is equivalent to

N−1,
ωN−1

2
, . . . ,

ωN−1

2N−1 with ωN−1 = 2k−1.

These are the bandlimits used to define the sets Ωi = [−ωi, ωi]2

to initialize the frequencies of the first layer of each stage gi.

3.4. MR-Inference

Arguably, the primordial purpose of a signal representation
is to provide an accurate reconstruction of the underlying data.
Moreover, in the ideal case, the reconstruction method should be
able to work with a continuous model of the signal, generating
signal values at arbitrary points of its domain.

In that respect, coordinate-based neural networks features a
compact model of the signal as a continuous function. Addi-
tionally, our MR-Net architecture gives a representation that is
continuous both at space and scale. Therefore, it can reconstruct
the signal zooming in and out at any desired level of detail by
specifying a value t to adjust the control layer coefficients, during
the inference, according to Eqs. (1) and (2).

These characteristics are very important in media applications.
In particular, there is a need to control the signal reconstruction
for rendering, thus making it adapted to display resolution.

3.4.1. Antialiasing and progressive processing
The MR-Net architecture subsumes a model that incorporates

filtering of the signal’s frequency content in a controlled manner.
This capability is crucial for antialiasing, necessary to avoid visual
artifacts when rendering the signal.

The MR-Net representation as a hierarchy of levels of detail
has implications for transmission and processing of the signal. On
one hand, regarding the former, it is possible to send coarse ver-
sions of the signal, quickly through a channel and subsequently
update the level of detail for progressive renderings. On the other
hand, concerning the latter, level of detail facilitates data caching
using the different memory structures of the GPU.

4. Imaging applications

This section describes the implementation and experiments
of the MR-Net for imaging applications. We adopt the M-Net
subclass of the architecture, and the level of detail scheme based
on the Gaussian Pyramid in all examples. The multiresolution for
the image Pyramid is according to a dyadic structure, i.e., 2j. The
Image Pyramid is built by filtering with a Gaussian kernel and
decimation.

We have designed the MR-Module considering an empirical
exploration of the sub-network capacity to represent images with
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Fig. 18. Cameraman - reconstructed multiresolution levels 1, 3, 5 and 7 and corresponding Fourier spectra.
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ypical characteristics (i.e., photographs). Each stage has a width
f 96 neurons for all layers on its first, hidden, and linear blocks.
n each stage, the hidden block has only a single layer.

We have determined that the base resolution of the train data
t the first stage should be 23

= 8, and we have chosen the
umber of stages of the network based on the resolution of the
mage to be represented. Unless otherwise indicated, the images
sed in the experiments have a resolution of 512, in which case
he pyramid is composed of the following resolution levels: 8, 16,
2, 64, 128, 256, and 512. Consequently, the network has a total
f 7 stages.
We train the network using an adaptive scheme with the

ollowing hyper-parameters: Loss Function used is MSE (Mean
quared Error); convergence threshold = 0.001 (i.e., training of
stage stops if loss value changes less than 0.001%); maximum
umber of epochs per stage of 300; each epoch visits all the
ixels once; size of mini-batch of 65 536 (to fit the GPU memory).
raining uses Adam with a learning rate of 1e−4.
The network initialization follows the scheme in Section 2.6.1,

ith the choice of frequency bands described in the ‘‘Filtering
ith Gaussian pyramid’’ level of detail scheme (Section 3.3.4).

.1. Level of detail example

We now show an example of a multiresolution image repre-
entation using the setup described above. For this experiment,
e chose the ‘‘Cameraman’’, a standard test image used in the

ield of image processing and also in Sitzmann et al. [24]. The
ource is a monochromatic picture with 512 × 512 pixels of
esolution.

Fig. 18 depicts the levels 1, 3, 5 and 7 of the multiresolu-
ion reconstructed with resolution of 512 × 512, as well as the
orresponding Fourier spectra.
The training times for each stage of the networks are as

ollows: 5 s, 4 s, 3 s, 11 s, 17 s, 29 s and 48 s. The total training
ime is 117 s. The machine was a Windows 10 laptop with a
VIDIA RTX A5000 Laptop GPU. Note that these times result from
he adaptive training regime and the number of samples for each
evel of the Gaussian Pyramid.

The training evolution is depicted in the graph of Fig. 19
hat shows the convergence of the MSE loss with the number of
pochs for each multiresolution levels 1, 3, 5, and 7. It is worth
ointing out the qualitative behavior of the network, in that the
ase level (stage 1) takes more than 200 epochs to reach the limit,

hile detail levels (stages 3, 5, 7) take less than 150 epochs to

395
Fig. 19. Qualitative convergence behavior for Cameraman in Fig. 18.

onverge. Also, the error decreases for each level of detail. It is
ike, there are two different modes, one to fit the base level and
he other for the detail levels.

The inference time for image reconstruction, varies from 0.02 s
n the GPU to 0.7 s on the CPU, which is sufficiently fast for
nteractive visualization.

.2. Texture

The second imaging example is the usage of the MR-Net repre-
entation to model texture and patterns. Arguably, visual textures
onstitute one of the most important applications for images in
iverse fields, ranging from photo-realistic simulations to inter-
ctive games. Currently, more and more image rendering relies
n some kind of graphics acceleration, sometimes through GPUs
ntegrated with Neural Engines. In that context, it is desirable to
ave a neural image representation that is compact and supports
he level of detail.

For the experiment shown in this subsection we have cho-
en an image of woven fabric background with patterns. The
haracteristics of this texture allows us to explore the limits of
isual patterns at different resolutions. The original image has a
esolution of 1025 × 1025 pixels and the corresponding model
ontains 5 levels of detail.
In Fig. 20 we show our experiments, where Fig. 20(b) shows

he image in the original resolution, while Fig. 20(a) shows a
oom-in and Fig. 20(c) shows a zoom-out.
The zoom-in is a detail with a resolution of 562× 562. marked

y the white rectangle in Fig. 20(b) and scaled up to 1025× 1025.
hus a zoom-in factor of 1.8 times. It can be seen that the
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Fig. 20. Woven fabric texture: (a) zoom in; (b) original image resolution;
(c) zoom out.

enlargement extrapolates the fine details of the image at this
higher resolution beyond the original image.

The zoom-out is a reduction of the entire image to 118 × 118
ixels (shown enlarged to 501 × 501 in the image for better
iewing). The top sub-image is the network reconstruction at the
ppropriate level of detail (approximately 0.92). The bottom sub-
mage is point-sample nearest neighbor reduction. It can be seen
hat our reconstruction is a proper anti-aliased rendition of the
mage, while the sampled reduction exhibits aliasing artifacts.

These two behaviors in the experiment are manifestations of
‘magnification’’ and ‘‘minification’’, classical resampling regimes
or respectively scaling up and down the image [38]. In the first
ase, it is necessary to interpolate the pixel values, and in the
econd case, it is required to integrate pixel values corresponding
o the reconstructed pixel. The M-Net model accomplishes these
asks automatically. Note that we have chosen a fractional scaling
actors in both cases to demonstrate the continuous properties in
pace and scale of the M-Net model.

.3. Anti-aliasing

In the previous subsection we resorted to the level of detail
ontrol to guarantee an alias free rendering independently of the
ampling resolution. However, this task was facilitated because
e could use a constant level of detail for the entire image, due
o the zooming in/out operation in 2D.

On the other hand, in texture mapping applications, this sce-
ario is no longer the case. Typically, it requires to map a 2D tex-
ure onto a 3D surface that is rendered in perspective by a virtual
amera. In such situation, the level of detail varies spatially de-
ending on the distance of the 3D surface point from the camera.
ere, proper anti-aliasing must compensate the foreshortening
aused by a projective transformation. Next we present a simple
xample of anti-aliasing using the M-Net.
Let I be a checkerboard image, T be a homography mapping

he pixel coordinates x = (x1, x2) of the screen to the texture
oordinates u = (u1, u2) of I , and f : R2

× [0,N] → R be a M-net
ith N stages approximating a multiresolution of I .
Fig. 21(a) shows aliasing effects on the image I after apply-

ing it to the inverse of T . We avoid such a problem using the
multiresolution given by f . The result is presented in Fig. 21(b).

The above procedure reduces aliasing at large distances.
Specifically, we define the scale parameter λ(x) for f at a pixel
x using the Heckbert’s formula [39]:

λ(x) = max

⎧⎨⎩
√(

∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

,

√(
∂u1

∂x2

)2

+

(
∂u2

∂x2

)2
⎫⎬⎭ .

hus λ(x) is the bigger length of the parallelogram generated by
the vectors ∂T

∂x1
and ∂T

∂x2
. We scale λ such that λ

(
[−1, 1]2

)
⊂

[0,N]. Thus, f (x, λ(x)) is the desired level of detail λ(x) of f .
396
Fig. 21. Checkerboard in perspective: (a) point sampled texture rendition;
(b) M-Net anti-aliased reconstruction.

Table 1
Comparison with SIREN and BACON.
Model # Params (↓) PSNR (↑) # Levels

SIREN [24] 198K 34.1 dB 1
BACON [26] 398K 33.1 dB 7
MR-Net (Ours) 196K 33.8 dB 7

5. Comparisons

In this section we compare the performance of MR-Net image
representation with SIREN [24] and BACON [26].

First, we evaluate the quality of the original image fitting and
the size of the representation for an instance of each model. Then,
for MR-Net and BACON, the multiresolution models, we also
evaluate the frequency spectra of the reconstructions in different
scales. Finally, we proceed to a broader quantitative evaluation
of the image reconstruction using the ‘‘Kodak Lossless True Color
Image Suite’’ [30], for which we compute the average Peak Signal
to Noise Ratio (PSNR), the model size and the average running
time for some different configurations of each model.

5.1. Image fitting evaluation

We evaluate the capability of each model in the image fitting
task using the ‘‘Cameraman’’ image, comparing the model size,
given by the number of parameters of the model, and the recon-
struction quality. We remark that to establish a fair comparison
with SIREN we evaluate only the PSNR of the final full resolution
image, which is 512 × 512. Table 1 summarizes the results.

The M-Net parameters are: 1 hidden layer per stage; 96 hid-
den features per layer in the first 6 stages, and 256 hidden
features in the last stage; ω ∈ [4, 256] and trained with a Gaus-
sian Pyramid of 7 levels. The model size has 195648 parameters
and the PSNR of the final image reconstruction is 33.8 dB. The
model was trained for 300 epochs per stage.

For SIREN we employed the configuration of the image experi-
ments and code released by the authors. The network parameters
are: 3 hidden layers, 256 hidden features and ω0 equal to 30.
The model size has 198 400 parameters and it has only 1 level
of detail. The PSNR of the reconstructed image is 34.1 dB after
training for 2000 epochs. Fig. 23 shows a comparison between our
M-Net and SIREN. Notice that, although M-Net presents a PSNR
close to Siren’s in this example, visually, it seems that it can better
represent high frequency details.

For BACON we also based the configuration on their paper
examples and code released by the authors, keeping 256 hidden
features. However, we adjusted the number of hidden layers to
6 for it to output 7 levels of details as the M-Net in this setting.
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Fig. 22. Comparison of reconstructed images.

Fig. 23. BACON image reconstruction and frequency spectra.

ccordingly, the total number of parameters is 398343. The PSNR
f the original image level is 33.1 db.
Based on the experiments we conclude that MR-Net compared

avorably in relation to BACON and SIREN, both in terms of
epresentation size and quality of image reconstruction. The M-
et model is less than 50% of the size of BACON model, while our
econstruction of the final image presents a comparable (slightly
igher) PSNR. Compared to SIREN, the M-Net is about the same
ize in number of parameters, but it encodes 7 levels of details
n a single network, in contrast with 1 level for SIREN. Addition-
lly, the PSNR of both models are comparable, and M-Net looks
harper.

.2. Frequency spectra evaluation

Figs. 22 and 24 show the reconstructions and the frequency
pectra for three levels of detail in the BACON and M-Net models
espectively (1, 2, 6) and (3, 5, 7). Note that, as Bacon is not
rained with multiresolution data, we select these levels to better
atch the frequency spectra between the representations.
BACON controls the frequency band for Level of Detail by

runcating the spectrum. Fig. 22 shows that the center of the
pectrum images of Levels 1, 2, 6 are all similar. This is analo-
ous to applying a low-pass filter with non-ideal shape in the
requency domain, which results in an image with ringing effect
see the silhouettes propagating all over Fig. 22 (left)). M-Net does
ot present such artifacts. Fig. 24 resembles more faithfully what
ould be expected to be the process of sequentially applying
aussian filters in a high-resolution image.
397
Fig. 24. M-Net image reconstruction and frequency spectra.

Table 2
Comparisons on Kodak Lossless True Color Image Suite. We present the training
time relative to BACON6hl_256hf which took 2433 s to train.
Model # Params (↓) PSNR (↑) Time (↓)

SIREN3hl_256hf 198K 41.93 8.7%
SIREN4hl_256hf 264K 44.63 11.0%
SIREN5hl_256hf 330K 46.25 13.6%
SIREN3hl_512hf 790K 48.57 23.8%

BACON5hl_128hf 84K 27.42 36.2%
BACON6hl_128hf 101K 28.23 44.1%
BACON4hl_256hf 266K 33.69 60.8%
BACON5hl_256hf 332K 34.13 75.7%
BACON6hl_256hf 398K 34.31 100.0%

MNetCap2stg_256hf 117K 35.14 3.4%
MNet7stg_24_256hf 193K 38.42 9.3%
MNet7stg_96_256hf 196K 35.04 9.6%
MNet6stg_24_288hf 197K 40.85 8.2%
MNetCap128_192_256 195K 41.05 8.0%
MNetCap3stg_256hf 332K 45.46 11.4%

5.3. Kodak dataset evaluation

The ‘‘Kodak Lossless True Color Image Suite’’ is a set of 24
images, originally 768 × 512 in size, that were extensively used
in the image processing literature. For each image, we center
crop a square of 512 × 512 pixels, convert it to grayscale and
evaluate the PSNR, model size and training time using different
network configurations of each model. The average results over
this dataset are summarized in Table 2.

We present the training time in a relative scale. All models
were trained in a NVidia GeForce RTX 3080 with 10 GB of GPU
memory. The longest average running time observed was 40 min
and 33 s (2433 s) when training an instance of BACON with 6 hid-
den layers and 256 neurons per layer (Bacon_6hl_256). Therefore,
we display this row as 100% and all others as a fraction of it.

We evaluate 4 SIREN instances: respectively 3, 4 and 5 hidden
layers with 256 neurons per layer; and 3 hidden layers with 512
neurons per layer. For Bacon, we evaluate 5 instances: 5 and 6
hidden layers with 128 neurons per layer; and 4, 5, and 6 hidden
layers with 256 neurons per layer.

All M-Net stages have depth 2, so we vary the number of
stages and their width. As we are only evaluating the recon-
struction at the final level, we trained M-Net with and without
multiresolution data. Notice that we have more flexibility on the
M-Net configuration as each MR-Module can have a different size.
We decided to explore a few configurations with heterogeneous
stages, choosing smaller modules for the coarsest levels, and
bigger modules for the finest ones.
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When training with a Gaussian pyramid, we evaluate
Net7stg_96_256hf with 7 stages and width in [96, 96, 96, 96, 96, 96,
56]; MNet7stg_24_256hf with 7 stages and width in [24, 32, 64, 96,
6, 160, 256]; and MNet6stg_24_288hf with 6 stages and width in [24,
2, 64, 96, 160, 288]. Although very different, these models have
bout the same number of total parameters. When training ca-
acity based instances using only the original image, we evaluate
NetCap2stg_256hf with 2 stages and width 256; MNetCap3stg_256hf
ith 3 stages and width 256; and MNetCap128_192_256 with 3

stages and width 128, 192, and 256 in each respective stage.
In general, inside each model category, as we increase the

total number of parameters, the quality of the reconstruction
also increases. Moreover, SIREN and M-Net models of the same
size present a comparable performance in terms of PSNR, while
BACON achieves lower values at the level of the original im-
age. The exception occurs when we compare the M-Net models
MNet7stg_24_256hf and MNet7stg_96_256hf. Both models have 7 stages
of multiresolution, but while the latter has a homogeneous ar-
chitecture on all but the last level, the former distributes its
capacity allocating less parameters in the initial levels. We think
this heterogeneous distribution is better because on the coarsest
levels we have lower frequencies and a less detailed signal to
fit. When comparing MNet7stg_24_256hf and MNet6stg_24_256hf, we see
that as we remove one stage, and increase the width of the finest
stages to keep a comparable model size, the performance of the
model also increases.

Each M-Net model is trained for 2000 epochs per stage, while
the others are trained for 5000 epochs. Although we train M-
Net for more epochs, notice that due to our scheduled training
scheme, we only update the parameters of a single stage each
2000 epochs. Besides that, when training with multiresolution
data, the coarsest stages are trained with fewer samples. This way
M-Net trains faster than the other models even when the number
of parameters is bigger and the number of epochs too.

Training a 6 stages M-Net with 197182 parameters
(MNet6stg_24_288hf) for 12000 epochs takes a similar amount of
time (199 s) as training a SIREN with 3 hidden layers and 198401
parameters for 5000 epochs (211 s); and both are faster than
training a BACON model with fewer parameters (BACON5hl_128hf
takes 881 s). The highest quality M-Net model in this evaluation,
a M-Net capacity based with 331523 parameters and 3 levels of
details (MNetCap3stg_256hf), trained for 6000 epochs takes 278 s,
which is only 15% of the time to train a BACON model of the same
size (Bacon5hl_256hf takes 1842 s) and is comparable to training a
20% smaller SIREN for 5000 epochs (Siren4hl_256hf takes 267 s).

6. Considerations for other MR-Net variants

For the imaging application in this paper, we have only used
the M-Net variant. In this section, we briefly present a compari-
son of M-Net with the others MR-Net variants.

For S-Net, we define a configuration composed of 3 stages,
with 1000, 2000, and 4000 hidden features per layer respectively,
which add to a total of 28000 parameters. For the L-Net, the
configuration follows 3 stages with 2 hidden layers with 40, 60,
and 80 neurons for each layer. This L-Net version has an overall
number of parameters of 24.280. For the last variant, the M-Net,
we set 3 stages with 1 hidden layer each. Each stage has 30,
40, and 80 hidden features per layer respectively where the final
number of parameters was 23.100. During training the S-Net, L-
Net, and M-Net were trained at the maximum of 4000, 2000, and
2000 epochs respectively and we test 10 different images with
resolution 128 × 128 for training. As we can see in Table 3, on
average, considering the PSNR, the M-Net outperforms the other
variants when reconstructing images.

Nonetheless, here it is appropriate to make a few considera-
tions about the S-Net and L-Net variants.
398
Table 3
Comparison between the MR-Net variants.
Model # Params (↓) PSNR (↑)

S-Net 28000 42.1 dB
L-Net 24280 47.8 dB
M-Net 23100 51.1 dB

Fig. 25. S-Net gradient magnitude and frequency spectra.

Fig. 26. L-Net reconstruction and frequency spectra.

The S-Net represents the image as a weighted sum of sine
functions. In that sense, S-Net is equivalent to BACON and other
Multiplicative Filter Networks based on sinusoidal atoms. As
such, it is amenable to represent periodic visual patterns. Fig. 25
presents the gradient magnitude and frequency spectra from an
image predicted by S-net, where it has three stages.

The L-Net image representation comprises a sum of level-of-
detail stages given by independent MR-Modules. The relation of
this representation with the Laplacian Pyramid makes it suitable
for image operations in the gradient domain. Fig. 26 shows the L-
Net reconstruction for the same image as S-Net and the frequency
spectra for both L-Net stages.

7. Closing remarks

In this last section we close the paper with an assessment of
our results, as well as, its limitations, and a discussion of future
directions for our research.

7.1. Limitations

We found that choosing appropriate values for the ω parame-
er, which defines the spatial frequency of the network first layer,
s important to achieve proper results. When using a shallow
inusoidal network such as the S-Net, we can use the Nyquist
requency as a direct reference to pick the frequency intervals
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t each stage. However, a deep sinusoidal network such as the
-Net can learn higher frequencies that were not present in the

nitialization.
In our experiments, we have determined the ω values for

initialization of the frequency bands empirically, testing values
below the Nyquist frequency as described in Section 2.6.1. To
better harness the power of sinusoidal neural networks, it is
important to develop mathematical theories to understand how
the composition of sine functions introduces new frequencies
based on the initialization of the network. In future works we
intend to investigate the use of the results in [34] to compute
or bound these frequencies.

7.2. Ongoing and future work

We have described a flexible method of working with signals
in multiresolution in terms of multiple ways of preparing the
input data, defining the MR-Net subclasses, and training multi-
stage networks. In the applications presented in Section 4, we
have explored a subset of this framework, showing cases where
it improves upon existing state of the art techniques. Regarding
other aspects of this groundwork, we have ongoing research on
signal reconstruction from stochastic sampling, and training of L-
Net models using the Laplacian pyramid, which may lead to novel
imaging applications. Some of the motivation and experiments
with 1D signals in these directions are documented in Velho et al.
[40].

In terms of future work, we plan to expand this research in
two main directions. On one hand, we would like to explore
the MR-Net architecture for other image applications including
super-resolution, operations in the gradient domain, generation
of periodic and quasi-periodic patterns, as well as image com-
pression. On the other hand, we would like to extend the MR-Net
representation to other media signals in higher dimensions, such
as video, volumes, and implicit surfaces.
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