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Existing unsupervised domain adaptation approaches primarily focus on reducing the data distribution gap between the source
and target domains, often neglecting the influence of class information, leading to inaccurate alignment outcomes. Guided by this
observation, this paper proposes an adaptive inter-intra-domain discrepancy method to quantify the intra-class and inter-class
discrepancies between the source and target domains. Furthermore, an adaptive factor is introduced to dynamically assess their
relative importance. Building upon the proposed adaptive inter-intradomain discrepancy approach, we develop an inter-intra-
domain alignment network with a class-aware sampling strategy (IDAN-CSS) to distill the feature representations. The class-
aware sampling strategy, integrated within IDAN-CSS, facilitates more efficient training. Through multiple transfer diagnosis
cases, we comprehensively demonstrate the feasibility and effectiveness of the proposed IDAN-CSS model.
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1 Introduction

Rotating machinery is widely used in aerospace, marine
surveying, material mining, and other fields, including large
rotor systems (generators, engines, internal combustion en-
gines, and steam turbines), as well as small equipment
(electric motors and pumps) [1,2]. In practical engineering,
the structure of rotating machinery is extremely complicated,
so long-term operation in a harsh environment could easily
trigger a series of problems. Therefore, developing efficient
and precise fault diagnosis technology is necessary for im-
proving the operational safety and maintenance economy of

rotating machinery. Therefore, it is crucial to perform a
rolling bearing fault diagnosis [3–6].
Data-driven intelligent fault diagnosis methods are im-

portant technical tools that aim to use deep learning techni-
ques to learn the manifestations of faults and the rules for
identifying failure modes from large amounts of equipment
monitoring data [7,8]. The powerful learning capability of
deep learning enables the tools to automatically learn fault
characteristics from more complex and diverse mechanical
signals and build end-to-end intelligent diagnostic models
[9,10]. However, deep learning intelligent diagnosis methods
face the following problems in practical engineering appli-
cations. (1) Massive labeled fault samples are a necessity
[11,12]: The complex network structure of deep learning
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models places high demands on the training samples, and
most methods rely on a labeled supervised learning para-
digm, which imposes more demanding requirements on the
training samples. (2) Strict distribution consistency as-
sumption for training and testing samples [13,14]: For deep
learning intelligent diagnostic models to truly perform the
diagnostic function, training data and test data must have an
equal probability distribution. However, it is challenging to
ensure this result because the previous training samples in
the case of variable test environments, fluctuating or chan-
ging mechanical equipment operating conditions that di-
rectly lead to fault detection. This gap will immediately
cause the previously trained intelligent diagnostic model to
perform worse or possibly fail completely, which will lead to
a significant negative impact on the actual application effect.
A viable solution to the above problems is offered by the

transfer learning hypothesis [15]. Transfer learning is a un-
ique learning technique that uses familiarity with previous
activities to aid learning of the current activity, which can
effectively alleviate the domain shift phenomenon caused by
differences in data distribution, thus broadening the appli-
cation of data-driven intelligence-based models, and has
received increased attention [16–18]. The three main types of
transfer-intelligent diagnostic techniques are instance trans-
fer-based techniques [19], model transfer-based techniques
[20], and feature transfer-based techniques [21]. Unlike in-
stance and model transfer techniques, feature transfer tech-
niques consider comparable and shared feature space
information [22]. In rolling bearing fault diagnosis, feature
transfer-based techniques are often used because they can
solve the problem of unpredictability. Lee’s group [23] de-
signed an MMD strategy for a convolutional neural network
and used the transfer model to accurately identify the un-
labeled data. Zhu et al. [24] conducted an MMD regulation
term for a deep neural network loss and distilled the invariant
representations of two domains. Lu et al. [25] developed a
feature alignment approach based on MMD and achieved the
cross-domain fault diagnosis. Li et al. [26] proposed a deep
generative network and used sufficient cross-domain ex-
periments to validate it. To diagnose bearing problems with

variable condition transfer, Wu et al. [27] suggested a do-
main adaptation framework based on deep adaptation net-
works and lightweight models. A dynamic joint distribution
alignment network was suggested by Shen et al. [28] to
successfully identify bearing problems with varying operat-
ing circumstances. Zhao et al. [29] developed a transfer ap-
proach based on adversarial learning, and the proposed
method was validated by many bearing transfer diagnosis
cases with an average accuracy of 99.24%. Qin et al. [30]
created a novel joint method that simultaneously aligns the
marginal and conditional distributions.
However, the above approaches can only overall align the

source and target domain distributions without considering
the corresponding classes, which inevitably affects the
identification results. When the source domain samples are
from various classes, and the target domain samples are not
aligned, for instance, MMD and JMMD can still be reduced,
and this may result in poor generalization of the learned
decision boundaries to the target domain. Many suboptimal
solutions exist near the decision boundary, which may have
high recognition results for source domain data but poor
recognition for the target domain. Therefore, to promote the
domain-adaptive effect, the distribution alignment process
should consider two measures. The first is transferability,
which involves reducing the variation in distribution within a
single category across many domains. The other is dis-
criminability, or maximizing the distributional differences
between different categories in different domains. On this
basis, an adaptive inter-domain discrepancy method is de-
signed to evaluate the intra-class and inter-class differences,
and an adaptive factor is used to quantify the proportion
between the two differences.
Therefore, an inter-intra-domain alignment network with a

class-aware sampling strategy (IDAN-CSS) is constructed
based on the proposed adaptive inter-intra-domain dis-
crepancy method. The developed class-aware sampling
strategy can help IDAN-CSS obtain a more efficient training
way. The comparison is shown in Figure 1. Then, an IDAN-
CSS is constructed to simultaneously minimize the inter-
class domain differences and maximize the intra-class do-

Figure 1 (Color online) Comparison between the proposed and previous feature alignment methods.
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main differences. Consider that during model training, for
category A, the randomly selected small batch of samples
may only come from a single domain, and the inter-class
domain differences cannot be measured, affecting the final
domain adaptation effect. Therefore, to increase training
efficacy and ensure adaptive outputs, we collect data from
both domains for each class within a randomly selected
subset of classes in each iteration. The innovations and
contributions of the suggested framework can be concluded
as follows.
(1) The proposed inter-intra-domain discrepancy method

can measure the inter-class and intra-class domain dis-
crepancies between domains.
(2) The designed adaptive factor can quantify the propor-

tion between the two discrepancies to achieve better domain
adaption performance.
(3) The constructed inter-intra-domain alignment network

with a class-aware sampling strategy can simultaneously
increase the transferability and discriminability for better
domain adaption performance.
(4) The class-aware sampling strategy can efficiently

tackle the small batch training problem in the training pro-
cess.

2 Primaries

2.1 Unsupervised domain adaptation

In an unsupervised domain adaptation, the labeled source
data and the unlabeled target data are defined in eqs. (1) and
(2), respectively.
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where Ds and Dt denote the source and target domains, re-
spectively. xi

s is the ith sample in the source domain, xj
t is the

ith sample in the target domain, and yi
s means the corre-

sponding label of the ith sample. ns and nt represent the total
number of samples in the source and target domains, re-
spectively. The source and target domains share the same
label space C{1, 2, , }, and C is the total number of failure
modes, but with different distributions. Moreover, the cur-
rent work trains a model with the labeled source data to
accurately predict the unlabeled target data.

2.2 Maximum mean discrepancy

MMD is a crucial indicator of the distributional difference
between common inter-class samples between the source and
target domains and is frequently used in domain adaptation

techniques. For marginal probability distributionsQ X( )s s and
Q X( )t t , the MMD distance between them is expressed as
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Reproducing Kernel Hilbert Space.
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m . Ds

m and Dt
m denote the mini-batch samples from

Ds and Dt respectively, and kl is the kernel function corre-
sponding to the network layer l.

3 Methodology

3.1 Inter-intra domain discrepancy

Compared with other distance measurement methods, the
proposed inter-intra-domain discrepancy method can mea-
sure the inter-class and intra-class domain discrepancies
between domains. The transferability of domain adaptation
can be improved by minimizing the distributional difference
of the same class across domains, whereas the discrimin-
ability of domain adaptation can be improved by increasing
the distributional difference of various classes across do-
mains. The domain adaptation effect can be improved by
optimizing both the intra-class and inter-class domain dis-
crepancies. The proposed inter-intra-domain discrepancy
approach uses MMD to compute the discrepancy between
the conditional probability distributions of various domains,
considering how convenient it is to compute the distribution
discrepancy, Q X Y( )s s s and Q X Y( )t t t .

Assuming µ y y y c y c( , ) = 1,  if = ,  =
0,           otherwisecc , for classes c1

and c2 (which can be identical or different), Q QMMD ( , )s t
2

can be denoted as

y y y a a aMMD ( , , , ) = + 2 , (5)c c
t t

n
t2

1 2 1 2 3t1 2
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Note that when c c=1 2, eq. (5) means the inter-class do-
main discrepancy, and when c c1 2, eq. (5) means the intra-
class domain discrepancy. In addition, the calculation of
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domain labels, so the pseudo-labels need to be obtained
using the classifier.

3.2 Adaptive factor

Considering the dynamic change in the importance of
transferability and discriminability during domain adapta-
tion, the adaptive factor is designed to quantify the propor-
tion between the two differences at each iteration. As the
intra-class domain discrepancy is optimized in the direction
opposite to the inter-class domain discrepancy, the inter-in-
tra-domain discrepancy is expressed as
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Note that the issue of unidentified target domain labels is
one that this study addresses, so it is difficult to calculate µ
directly. We adopt an alternative idea of approximating µ
with the help of global and local domains. Specifically, A-
distance is introduced as the basic measure, where A-dis-
tance stands for the mistake made when creating a classifier
to differentiate between the two domains. Using f( ) denotes
the error in distinguishing the domains Ds and Dt of linear
classifier f . A-distance is then defined as
d D D f( , ) = 2(1 2 ( )). (10)A s t

The A-distance of the global domain, expressed as dG, can
be calculated directly using the above formula. For the A-
distance of a local domain, using class c as an example, it can
be expressed as ( )d d D D= ,c A s

c
t

c( ) ( ) , where Ds
c( ) and Dt

c( ) re-

present samples of class c in Ds and Dt, respectively. Even-
tually, we can obtain the value of µ using the following
formula:
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d d
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+
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This adaptive factor is carried out dynamically during the
iterative process because domain adaptation affects the re-
lative importance of transferability and discriminability. This
dynamic way of measuring the importance of each dis-
tribution can undoubtedly achieve more accurate domain
adaption effects and provide new ideas for future domain
adaption research.

3.3 Inter-intra-domain alignment network

Compared with other deep learning models, convolutional
neural networks can extract more representative features
from bearing vibration signals and are widely used in domain
adaption models. Therefore, in this paper, the inter-intra-
domain alignment network is constructed using a convolu-
tional neural network (Table 1). The schematic diagram of
our framework is presented in Figure 2. As the deep network
extracts the key fault characteristics of the vibration signal
layer by layer, this paper chooses to add an intra-class do-
main discrepancy to the last two fully connected layers. This
addition can ensure that the network can be extracted ef-
fectively at a small computation cost. The domain-invariant
features and domain-discriminative features are expressed as

L L= . (12)
l

L
l

IDD
=1

IDD

In addition, the softmax cross-entropy loss function is used
during network training to obtain accurate source domain
prediction based on label information, denoted as
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where P ( )c represents the probability output for the cth class
and M means the number of training samples.

Table 1 Structural parameters of IDAN-CSS

Layer Parameters Output size

Input – (1, 784)

Conv1 20, 5×1 (20, 780)

Pool1 20, 2×2 (20, 390)

Conv2 20, 5×1 (20, 386)

Pool2 20, 2×2 (20, 193)

Conv3 40, 5×1 (40, 189)

Pool3 40, 2×2 (40, 94)

FC0 ReLU (1, 3760)

FC1 ReLU (1, 1000)

FC2 ReLU (1, 100)

Output Softmax (1, C)
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Eventually, the final loss function of IDAN-CSS is denoted
as
L L L L L Lµ µ= + = + (1 ) , (14)C CIDD intra inter

where is the balancing factor, which is calculated by
2 / (1 + 2 × e ) 1q( 10 ) , where q is from 0 to 1, as the training
proceeds.
The conventional training approach for deep models

samples a small batch of samples randomly at each iteration
without following a specific class. If the conventional
training method is chosen, the randomly selected samples
may contain only a single domain. This option results in the
inability to calculate the inter-class domain discrepancy and
affects the subsequent calculation. If the conventional
training method is applied directly, it inevitably affects the
IDAN-CSS training efficiency and jeopardizes the final do-
main adaption effect. Therefore, a class-aware sampling
strategy is developed to train IDAN-CSS to facilitate the
computation of the inter-intra-domain discrepancy during
domain adaptation. Specifically, we randomly select a subset
of classes Te from the source domain target domain samples,
respectively, and then sample source data and target data for
each class in Te. This option ensures that the randomly se-
lected small batches of data for each training round can sa-
tisfy the requirement of inter-class-domain discrepancy
calculation.

4 Experimental verification

4.1 Dataset illustration

SDUSTD [31]: The bearing failure locations are set as the
inner ring, outer ring, and rolling element; the failure types
are all pitting faults, and the failure levels include minor and
serious, with a total of six failure conditions and one normal
condition. The bearing fault test bench is shown in Figure 3.
The sampling frequency is set to 25.6 kHz, and the load is set

to 0 of 20, 40, and 60 N. Therefore, the vibration signals of
seven conditions are measured, and three datasets are ob-
tained. The raw vibration signals are transformed into fre-
quency domain signals and then divided into 1400 samples
with a sample dimension of 784. Finally, six cross-domain
fault diagnosis cases are implemented based on A1, A2, and
A3, and six sets of cross-domain diagnostic tasks are finally
obtained.
PUD [32]: A specially designed bearing fault test rig is

used to measure vibration signals across rotational speeds.
Five bearing conditions are designed in this experiment. The
bearing fault test bench and gear type adopted in this ex-
periment are shown in Figure 4. The sampling frequency is
set to 64 kHz. Four different operating conditions are set up
for data collection, B1 (1500 r/min, 0.1 N m, and 1000 N),
B2 (1500 r/min, 0.7 N m, and 400 N), and B3 (900 r/min,
0.7 N m, and 1000 N). The raw vibration signals are trans-
formed into frequency domain signals and then divided into
1000 samples with a sample dimension of 784. Finally, six
sets of cross-domain diagnostic tasks are finally obtained.

4.2 Result analysis of SDUSTD

To efficiently evaluate the diagnostic performance of IDAN-
AUS, some approaches are used for comparison in the fol-
lowing part, including CNN, DANN [33], DAN [34], JAN
[35], and the proposed method with no class-aware sampling
strategy (IDAN). CNN is the conventional deep learning
method without adding constraint terms, which can visualize
the difficulty of cross-domain tasks. DANN, DCORAL,
DAN, and JAN are the current mainstream domain adaption
algorithms, which can fully illustrate the diagnostic perfor-
mance. The diagnostic results are the average value of five
runs, which guarantees the credibility of the experimental
results.
The diagnostic accuracy of all methods on six cross-do-

main fault diagnosis cases is illustrated in Table 2, and the

Figure 2 (Color online) Proposed IDAN-CSS model for the transfer fault diagnosis.
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concrete results are presented in Figure 5. Table 2 helps infer
that the average accuracy of IDAN-CSS, CNN, DANN,
DAN, JAN, and IDAN for the six cross-domain fault diag-
nosis cases is 98.89%, 83.12%, 92.28%, 94.70%, 95.60%,
and 98.61%, respectively. The arguments can be obtained as
(1) The diagnostic performance of IDAN-CSS significantly
outperforms that of CNN, DANN, DAN, JAN, and IDAN,
and the results show that the feature alignment capability of

the proposed approach outperforms that of the mainstream
domain adaption methods. (2) The poor diagnostic accuracy
and robustness of CNN imply that the conventional deep
approaches cannot deal with cross-domain fault diagnosis
problems with various distributions. (3) The diagnostic ro-
bustness of IDAN-CSS is better than the other five methods,
which further demonstrates the stability of IDAN-CSS. (4)
The comparison between IDAN-CSS and IDAN further

Figure 3 (Color online) Experimental setup of SDUSTD [31].

Figure 4 (Color online) Test platform of PUD [32].

Figure 5 (Color online) Fault diagnosis results of all approaches.
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demonstrates the effectiveness of using a class-aware sam-
pling strategy.
To further illustrate the feature adaptation performance of

our approach, t-SNE is adopted to directly visualize the
feature alignment results. For the transfer task A1–A2, the
2D and 3D visualization results are displayed in Figure 6.
From the visualization results, the source and target domain
features learned by the proposed method can be easily dis-
tinguished and overlap well. This is because the proposed
method not only considers the marginal and conditional
distribution adaptation but also simultaneously increases the
transferability and discriminability for excellent domain
adaption performance. However, it is also clear from Figure
6 that the features of a small number of samples partially
overlap. The reason for this observation is the influence of
various uncertainties in the actual operation process, which
results in too significant differences in the distribution
characteristics of the source and target domains.

4.3 Result analysis of PUD

To further verify the effectiveness of the proposed method,
six sets of cross-domain fault diagnosis tasks were im-
plemented using the PUD dataset. The diagnosis results of all
methods are shown in Table 3 and Figure 7.
The average diagnostic accuracy of IDAN-CSS is 98.37%

under six fault diagnosis tasks, which is higher than that of

the other five methods. IDAN-CSS achieves optimal diag-
nostic accuracy under transfer tasks B1–B2, B1–B3, and
B3–B2. The overall diagnostic accuracy is much better than
that of DANN, DAN, and JAN and is slightly better than that
of IDAN. From the two bearing diagnosis experiments, the
conclusions that can be drawn include: (1) The diagnostic
accuracy and diagnostic robustness of IDAN-CSS are sig-
nificantly better than those of other domain adaption ap-
proaches, which means the proposed approach has a superior
feature alignment capability. (2) For cross-domain fault di-
agnosis problems, transfer learning has obvious advantages
over deep learning.
For the transfer task B1–B2, the 2D and 3D visualization

results are displayed in Figure 8. From the visualization re-
sults, the source and target domain features learned by the
proposed method can be easily distinguished and overlap
well. This is because the proposed method not only considers
the marginal and conditional distribution adaptations but also
simultaneously increases the transferability and the dis-
criminability for excellent domain adaption performance.
The visualization results fully verify the efficacy of our
feature alignment method.

5 Conclusions

In this study, an inter-intra-domain alignment network with a

Table 2 Diagnostic results of all methods

Transfer task CNN DANN DAN JAN IDAN IDAN-CSS

A1–A2 85.13±1.26 92.75±0.82 94.16±0.53 95.00±0.48 98.84±0.21 99.16±0.24

A2–A1 78.80±1.51 91.22±0.89 95.90±0.60 95.49±0.55 98.88±0.24 98.71±0.20

A1–A3 82.67±0.88 93.20±0.95 94.73±0.59 94.76±0.62 97.61±0.20 98.77±0.29

A3–A1 84.32±1.40 90.88±1.04 93.07±0.74 96.27±0.47 99.30±0.26 99.46±0.18

A2–A3 85.28±1.44 93.11±0.77 94.90±0.63 95.08±0.55 98.49±0.25 98.90±0.20

A3–A2 82.51±1.19 92.54±0.80 95.44±0.53 96.99±0.63 98.53±0.19 98.34±0.25

Average 83.12 92.28 94.70 95.60 98.61 98.89

Figure 6 Visualization results of the source and target domains on A1–A2. (a) 3D visualization results; (b) 2D visualization results.
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class-aware sampling strategy is developed to solve the
cross-domain fault diagnosis problem of rotating machinery.
The proposed adaptive inter-intra-domain discrepancy
method can dynamically evaluate the importance between
inter-class domain discrepancy and intra-class domain dis-
crepancy. Extensive experiments prove that IDAN-CSS
significantly outperforms other fault diagnosis methods.

Therefore, IDAN-CSS is a promising solution to the un-
supervised cross-domain fault diagnosis problem.
However, IDAN-CSS mainly contributes to cross-domain

fault diagnosis problems with the same class space, which
limits its wide application in practical engineering. In the
future, we will conduct in-depth research to expand the ap-
plication scenarios of IDAN-CSS.

Table 3 Diagnostic results of all methods

Transfer task CNN DANN DAN JAN IDAN IDAN-CSS

B1–B2 87.46±1.54 89.69±1.03 94.35±0.67 93.88±0.49 98.13±0.25 98.24±0.28

B2–B1 81.22±1.89 91.92±0.84 94.00±0.59 95.74±0.55 97.89±0.28 97.43±0.35

B1–B3 84.39±1.40 92.65±0.79 95.92±0.70 94.53±0.58 98.55±0.25 99.10±0.22

B3–B1 85.80±1.66 95.07±0.92 93.73±0.60 96.01±0.44 98.69±0.22 98.66±0.20

B2–B3 82.05±2.24 93.24±0.75 95.27±0.55 94.85±0.50 98.31±0.24 98.04±0.22

B3–B2 84.87±1.51 93.83±1.28 94.44±0.77 94.69±0.61 98.00±0.33 98.75±0.25

Average 84.30 92.73 94.62 94.95 98.26 98.37

Figure 7 Fault diagnosis results of all approaches.

Figure 8 Visualization results of the source and target domains on B1–B2. (a) 3D visualization results; (b) 2D visualization results.
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