
How to train your (neural) dragon
Luiz Schirmer

Unisinos
Tiago Novello

IMPA
Vinı́cius da Silva

PUC-Rio
Guilherme Schardong

U Coimbra
Hélio Lopes

PUC-Rio
Luiz Velho

IMPA

Abstract—Neural fields have emerged as a promising frame-
work for representing different types of signals. This tutorial fo-
cus on the existing literature and shares practical insights derived
from hands-on experimentation with neural fields, specifically in
approximating implicit functions of surfaces. Our emphasis lies
in strategies leveraging differential geometry concepts to enhance
training outcomes and showcase applications within this domain.

Index Terms—neural fields, differential geometry

I. INTRODUCTION

A neural field (NF) is a (coordinate-based) neural network
parametrizing a smooth signal. Similarly to classic function ap-
proximation techniques, such as radial base functions (RBF),
NFs provide a high-quality smooth approximation for discrete
data. Moreover, NFs allow the calculation in closed form
of higher-order derivatives through automatic differentiation
present in modern machine learning frameworks. Schirmer et
al. [1] presented a survey of NF’s techniques to represent sur-
faces parametricaly and implicitly. In this work, we approach
the implicit representation in which an NF is used to represent
an implicit function of a surface S. Precisely, the surface S is
approximated as the zero-level set f−1(0) of a NF f :R3→R.

Two main implicit surface representations are unsigned
distance functions (UDF) and signed distance functions (SDF).
UDFs are used to represent surfaces that are not “water-
tight” [2]. Existing methods for converting UDFs into explicit
meshes often suffer from either high computational costs or
compromised accuracy. In the SDF case, the distance value can
be positive or negative, representing whether a point is inside
or outside the underlying compact surface. If the distance is
positive (negative), it means the point is outside (inside) the
surface. A distance value of zero indicates that the point lies
on the surface. SDFs are solutions of the Eikonal equation
∥∇f∥ = 1 which is used to regularize the underlying implicit
function. By leveraging the properties of SDFs, various algo-
rithms can be applied, such as sphere marching or level-set
methods, to render or manipulate surfaces.

This paper explores seminal strategies considering state-of-
the-art shape representations using NFs. We present practical
approaches to model and train NFs to fit SDFs. For this,
we employ an implicit regularization based on the Eikonal
equation to force the NF to be a SDF and a normal alignment
constraint to regularize the orientation near the zero-level set.

We also present methods for enhancing the training perfor-
mance of NFs by employing a strategy to dynamically sample

979-8-3503-3872-0/23/$31.00 ©2023 IEEE

data points during training. Finally, we utilize the fact that an
NF is a smooth function to estimate the curvature measures
of its level sets analytically (no discretization is needed).

II. SIGNED DISTANCE FUNCTIONS AND IMPLICIT
REPRESENTATIONS

Implicit representations are commonly used in computer
graphics to represent 3D shapes. Unlike explicit geometric
representations, which use lists of vertices and triangles,
implicit geometric representations encode a surface S as the
(regular) zero-level set of a function f : R3 → R. For the
surface S to be regular, the zero must be a regular value of f ,
that is, ∇f ̸= 0 on S = f−1(0). SDF is a common example of
an implicit representation, where the function f is the solution
of the Eikonal equation ∥∇f∥ = 1 subject to f = 0 on S.

In this work, we parametrize the function f : R3 → R by
a coord-based neural network (NF). Thus, the zero-level set
f−1(0) of the NF represents a surface. For such a (neural)
surface to be regular we force f to be a SDF by asking it to
satisfy the Eikonal equation. Solving this equation reveals that
⟨∇f,N⟩ = 1 on S, indicating that ∇f aligns with the normals
N of S. Examples of NFs include SIREN [3] and IGR [4].

A. Classic approaches

Radial basis functions (RBFs) [5] is a classical method
which can be used to approximate the SDF of a surface S
from a sample {pi, fi} of this function. The RBF is expressed
as s(p) =

∑
λiϕ(∥p− pi∥), where the coefficients λi ∈ R

are determined by imposing s(pi) = fi. The radiological
function ϕ : R+ → R is a real function and pi are the centers
of RBF [6]. Observe that the RBF representation depends on
the data since its interpolant s depends on pi.

Poisson surface reconstruction [7] is another classical
method widely used in computer graphics to reconstruct a
surface from an oriented point cloud {pi, Ni}. It revolves
around solving the Poisson’s equation, using {pi, Ni}. The
objective is to reconstruct an implicit function f of the under-
lying surface by asking it to be zero at pi and to have gradients
at pi equal to Ni. The pairs {pi, Ni} are used to define a vector
field V . Then, f is computed by optimizing minf ∥∇f − V ∥
which results in a Poisson problem: ∆f = ∇ · V .

B. Coordinate-based network approaches

1) Implicit Geometric Regularization: Implicit geometric
regularization (IGR) [4] is a technique used to improve the
quality and smoothness of NFs. The goal is to compute the
parameters θ of a NF fθ(x) by forcing it to fit the SDF
of a surface S. IGR aims to refine and regularize the shape

264

20
23

 3
6t

h
SI

BG
RA

PI
 C

on
fe

re
nc

e
on

 G
ra

ph
ic

s,
 P

at
te

rn
s a

nd
 Im

ag
es

 (S
IB

GR
AP

I)
|

97
9-

8-
35

03
-3

87
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SI

BG
RA

PI
59

09
1.

20
23

.1
03

47
17

7

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 07,2024 at 05:55:05 UTC from IEEE Xplore. Restrictions apply.

defined by the zero-level set of an implicit function, making it
more visually pleasing and mathematically well-behaved. The
authors observe that a relatively simple loss function, similar
to the loss function in SIREN, encourages the neural network
to vanish on the input point cloud and to have a unit norm
gradient (Eikonal constraint). IGR drives the optimization
methods to reach a plausible interpretation for the learning
and favors smooth and natural zero-level sets.

Let X = {pi}i∈I ⊂ R3 be a point cloud with normals
N = {Ni}i∈I . IGR computes the parameters θ of a multilayer
perceptron network (MLP) fθ : R3 → R to fit the SDF of a
surface. The proposed loss function has the form

l(θ) = lX (θ) + λEp

(
∥∇fθ(p)∥ − 1

)2
(1)

where λ > 0 is a parameter, ∥.∥ is the l2 norm, and

lX (θ) =
1

|I|
∑
i∈I

(
|fθ(pi)|+ ∥∇fθ(pi)−Ni∥

)
(2)

which encourages f to vanish on X and ∇f to be close to
the normals N .

In Equation 1, the second term, known as the Eikonal
term, ensures that the gradients ∇f have a 2-norm equals
one. The implicit geometric regularization occurs due to the
fact that the loss function used during training encourages
certain geometric properties to be preserved by using the
Eikonal term. These properties are not explicitly encoded in
the training data or loss function but emerge as a result of the
neural network structure and the optimization process [4], [8].
Figure 1 shows some level sets of MLPs trained using IGR.

Fig. 1. Level sets of MLPs trained with IGR method [4]

2) Sinusoidal Implicit Networks: Sitzmann et al. [3] pro-
pose to leverage periodic activation functions for implicit
neural representations and demonstrate that these networks
are ideally suited for representing complex natural signals and
their derivatives. As in IGR [4], we can use Siren to estimate
an SDF to a plausible 3D surface. SIRENs can be used for
high-quality reconstruction of objects and 3D scenes where
it can be used in order to approximate a sampled implicit
function f : R3 → R. SIREN has important properties that
are suitable for reconstructing signals, where it has a simple
architecture and uses the sine as a periodic activation [1], [3]:

fθ(p) = Wn ◦ fn−1 ◦ fn−2 ◦ · · · ◦ f0(p) + bn, (3)

fi(pi) = sin(Wi · pi + bi), (4)

where the function fi : RNi → RNi+1 is the ith layer of the
network. This map is obtained by applying the sine to each
coordinate of the affine map given by the linear transformation
Wi : RNi → RNi+1 translated by bi ∈ RNi+1 . The linear

operators Wi can be represented as matrices and bi as vectors.
Therefore, the union of their coefficients corresponds to the
coefficients θ of the SIREN function fθ.

The SIREN can recover an SDF from a point cloud and
surface normals by solving the Eikonal equation, a first-order
PDE [3]. As we show in figure 2 given only the point cloud and
surface normals of a 3D object, this approach can reproduce
fine details of the object’s surface. However as we will see
in later sections, we can use the principal directions and
curvatures of a shape to improve the reconstruction resulting in
smooth and high-fidelity representation, avoiding noise regions
and spurious objects.

Fig. 2. Shape representation. SIREN fit signed distance functions parameter-
ized by implicit neural representations directly on point clouds.

3) Geometry Processing with Neural Fields: NFGP [9] sug-
gests utilizing neural fields for geometry processing, as they
offer distinct advantages. The authors propose approximating
a local surface of a level set by utilizing the derivatives of the
underlying field. By solely relying on the field derivatives, it
is possible to use intrinsic geometric properties of the level
set, such as curvatures. This enables the construction of loss
functions that capture surface priors like elasticity or rigidity.
This is made possible by exploiting the inherent infinite
differentiability of neural fields which facilitates the opti-
mization of loss functions involving higher-order derivatives
through gradient descent methods. Consequently, unlike mesh-
based geometry processing algorithms that rely on surface
discretizations to approximate these objectives, this strategy
can directly optimize the derivatives of the field.

4) Physics-Informed Neural Networks: Physics-Informed
Neural Networks (PINNs) [10] usually refer to modeling the
solution of partial differential equations (PDEs) using artificial
neural networks. PDEs play a crucial role in several scientific
problems, such as the boundary conditions in fluid simulations
or even quantum mechanics and reaction–diffusion systems.
Physics-informed neural networks (PINNs) combine neural
networks with known physical laws. They learn from data
while respecting the fundamental principles of physics. PINNs

265
Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 07,2024 at 05:55:05 UTC from IEEE Xplore. Restrictions apply.

are useful when traditional physics-based models become
computationally expensive or impractical due to complexity
or limited data. The authors address two types of problems:
finding solutions based on data and discovering partial differ-
ential equations using data. Depending on the characteristics
of the data, it can be used to model two types of algorithms:
continuous time models and discrete-time models. Continuous
time models are effective in approximating spatiotemporal
functions with high efficiency using limited data. On the
other hand, discrete-time models enable the use of highly
accurate implicit Runge-Kutta time-stepping schemes with an
unlimited number of stages. While both PINNs and neural
representations have the potential to solve problems related to
partial differential equations, their core focuses differ. Neural
implicit representations mainly target geometry and shape
reconstruction in 3D contexts, whereas PINNs are designed for
modeling physical processes. Nevertheless, there are instances
where these concepts can merge. For instance, neural implicit
representations might be incorporated into a PINN framework
to depict intricate shapes that influence a physical phenomenon
[11]. Such integration would unite the geometric strengths
of neural implicit methods with the physics-driven essence
of PINNs, enhancing precision in simulations and predictions
within specific applications and it remains an open problem
of research.

C. Exploring Differential Geometry in Neural Implicits

Exploring Differential Geometry in Neural Implicits, as
known as I3D [6], introduces a new implicit neural represen-
tation model, which includes a framework that takes a sample
of points from a surface S, along with their corresponding
normals and curvatures, as input (the ground truth). Then, a
neural network generates the SDF approximation as its output.
Also, the authors proposes a loss function that enables the
incorporation of tools from continuous differential geometry
during the training of the neural implicit function. During the
network’s training, the method leverages the discrete differ-
ential geometry of the point-sampled surface to selectively
sample significant regions. This approach ensures a robust and
efficient training process while preserving essential geometri-
cal details. The method uses the closed-form derivatives of the
neural implicit function to estimate differential measures, such
as normals and curvatures, for the underlying point-sampled
surface. This estimation is feasible because the point-sampled
surface lies in the vicinity of the network’s zero-level set.
This feature allows for the accurate calculation of differential
measures using the neural implicit function.

III. NEURAL FIELD FRAMEWORK

Several techniques exist for creating neural implicit repre-
sentations. In this section, we delve into a training frame-
work primarily influenced by the I3D approach [12]. In
the upcoming sections, we will present two approaches for
shaping the loss function of a neural network, drawing from
principles of differential geometry, as well as an “biased”

sampling technique aimed at enhancing convergence rates in
our experiments.

A. Input data

Given an (oriented) point cloud {pi, Ni} sampled from a
surface S, we can try to reconstruct the SDF of S. For this,
points outside S may be added to the point cloud {pi}. After
estimating the SDF on the resulting point cloud we obtain a
set pairs {pi, fi} of points and the approximated SDF values.

B. Network architecture

Sines were first proposed as non-linearities for MLPs by
[13]. Their main advantage compared to other functions is
that their derivatives are a phase-shifted version of the original
function. However, they were not promptly adopted due to
instabilities and proneness to converge to local minima during
training. Interest in their usage surfaced with the work of [14],
where the authors performed a thorough study of sines as an
activation function and correctly inferred that the main issue
is in the initialization of the network’s weights, although they
still failed to find a proper solution for the instability issue.
Sitzmann et al. [3] proposed a weight initialization technique
that drastically mitigated this instability, leading to the proper
implementation of sines as activation layers for MLPs.

We assume the neural function fθ : R3 → R to be MLP

fθ(p) = Wn ◦ fn−1 ◦ fn−2 ◦ · · · ◦ f0(p) + bn (5)

where fi(pi) = φ(Wipi + bi) is the ith layer, and pi is the
output of fi−1, i.e. pi = fi−1 ◦ · · · ◦ f0(p). Here we applies
the smooth activation function φ : R → R to each coordinate
of the affine map, which is formed by the linear map Wi :
RNi → RNi+1 and the bias bi ∈ RNi+1 . The operators Wi

are represented as matrices, and bi as vectors, combining their
coefficients to form the parameters θ of the function fθ [6].

C. Loss function

In this context, we investigate a loss functional L, which
is composed of three components: LEikonal, LDirichlet, and
LNeumann. These components are employed to train neural
implicit functions effectively [3], [12].

Consider a compact surface S in R3 with its Signed
Distance Function (SDF) denoted by f : R3 → R. We aim
to find an unknown neural implicit function fθ : R3 → R by
training the parameters θ. To do this, we minimize the loss
function given by Equation (6), which enforces fθ to be a
solution of the 3D Eikonal equation.

L(θ) =
∫
R3

∣∣1− ∥∇fθ∥
∣∣dp

︸ ︷︷ ︸
LEikonal

+

∫
S

|fθ|dS

︸ ︷︷ ︸
LDirichlet

+

∫
S

1−
〈

∇fθ
∥∇fθ∥

, N

〉
dS

︸ ︷︷ ︸
LNeumann

. (6)

Here, LEikonal encourages fθ to be the SDF of a set X by
ensuring that ∥∇fθ∥ = 1, LDirichlet encourages X to contain
S, and LNeumann asks for the alignment between ∇fθ and the
normal field of S.

Typically, an additional term is added to Equation (6) to
penalize points outside S, forcing fθ to be the SDF of S (i.e.,

266
Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 07,2024 at 05:55:05 UTC from IEEE Xplore. Restrictions apply.

X = S). In practice, we extended LDirichlet to consider points
outside S by using an approximation of the SDF of S.

We need to define the signed distance constraints. We need
to sample points {pi}ni=1 being the vertices of a triangulation
T of S. W can replace LDirichlet by the following equation [12]:

L̃Dirichlet(θ) =
1

n

n∑
i=1

|fθ(pi)|. (7)

Equation 7 forces fθ = f on {pi}.
Also, to avoid the neural network to generate spurious

components we can enhance L̃Dirichlet by incorporating off-
surface points. To achieve this, we consider the point cloud
pii = 1n+k, consisting of the n vertices of T along with a
sample of k points in R3 outside the surface S. We extend the
constraint as follows:

L̃Dirichlet(θ) =
1

n+ k

n+k∑
i=1

|fθ(pi)− f(pi)| (8)

The proper signed distance function, is defined by, during
the training of the network fθ, an approximation of the Signed
Distance Function (SDF) f for surface S. To achieve this, we
utilize a point-sampled surface, consisting of n points {pi}
and their corresponding normals {Ni}. The absolute value of
f is approximated as follows:

|f(p)| ≈ min
i≤n

∥p− pi∥ (9)

The sign of f(p) at a specific point p is negative if p lies in-
side the surface S and positive otherwise. This approximation
method enables the training of the neural network to work
effectively with the SDF for surface reconstruction. Notice
that for each vertex pi with a normal vector Ni the sign
of ⟨p− pi, Ni⟩ indicates the side of the tangent plane that
p belongs to [12]. Therefore, we can estimate the sign of f(p)
by adopting the dominant signs of the numbers ⟨p− pj , Nj⟩,
which {pj} ⊂ V is a set of vertices close to p. This set can be
estimated using an Octree or KD-tree, to store the points {pi}
[12] By employing the eikonal approach and incorporating
model curvatures, we can explore an implicit regularization
strategy instead of relying on a simple loss function.

The on-surface constraint
∫
1 − ⟨∇fθ, N⟩ dS ensures that

the gradient of fθ aligns with the normals of the surface S.
To extend this constraint further, we seek to match the

shape operators of f−1
θ (0) and S. This involves aligning their

eigenvectors and matching their eigenvalues, leading to the
following expression:∫

S

∑
i=1,2,3

(
1− ⟨(ei)θ, ei⟩2 + |(κi)θ − κi|

)
dS, (10)

where (ei)θ and (κi)θ represent the eigenvectors and eigen-
values of the shape operator of f−1

θ (0), and ei and κi refer
to the eigenvectors and eigenvalues of the shape operator of
the surface S. By incorporating this constraint, we enhance
the regularization and ensure alignment between the two
shape operators, contributing to the overall performance of
the method.

We use the square of the dot product because the principal
directions do not consider vector orientation. As the normal
is one of the shape operator eigenvectors associated with the
zero eigenvalue, Equation (10) simplifies to:∫

S

1−
〈

∇fθ
∥∇fθ∥

, N

〉
dS +

∫
S

∑
i=1,2

(
1− ⟨(ei)θ, ei⟩2 + |(κi)θ − κi|

)
dS

(11)
The first integral in Equation (11) coincides with

LNeumann. In the second integral, the term 1 − ⟨(ei)θ, ei⟩2
enforces the alignment between the principal directions, and
|(κi)θ−κi| demands the matching of the principal curvatures.
Requesting alignment between (e1)θ and e1 automatically
ensures alignment between (e2)θ and e2 since the principal
directions are orthogonal.

D. Sampling

Let {pi, Ni,Si} be a sample from an unknown surface S,
where {pi} are points on S, {Ni} are their normals, and {Si}
are samples of the shape operator. Also, {pi} is a set composed
of the vertices of a triangle mesh, normals, and its curvatures.

In practice, we could evaluate L using a dataset of points
dynamically sampled during training. This dataset includes on-
surface points {pi} and off-surface points in R3 − S.

For the off-surface points, we can choose uniform sampling
within the domain of fθ. Alternatively, we may bias the
sampling by including points in the tubular neighborhood of
S, which is a region around the surface formed by segments
along the normals.

The shape operator contains important geometric features of
the data. Regions with points having higher absolute principal
curvatures κ1 and κ2 encode more detailed information, while
points with lower absolute curvatures represent less intricate
geometry. This allows us to focus sampling efforts on regions
with significant geometric variations and minimize the need
to sample planar regions where curvatures are small.

We can use a smart method to select on-surface points
{pi} for faster learning without compromising quality. We
divide {pi} into three sets based on their features: V1 (low),
V2 (medium), and V3 (high). During training, we prioritize
points in V2 and V3 as they have more geometrical features.
We sample fewer points from V1 to avoid redundancy and
increase sampling from V2 and V3 for faster learning. In this
way, we focus on essential points for faster and better results.

During training, we usually pick minibatches uniformly. But
here, we can use curvature information to focus on important
features. We set n as the sum of n1, n2, and n3, where each ni

is a positive integer. This allows us to create three categories:
low, medium, and high feature points, denoted as V1, V2, and
V3, respectively.

When forming minibatches, each of size m = p1m +
p2m + p3m = 10000, we can allocate pim points to the
corresponding category Vi. Instead of uniform sampling, we
adjust p1, p2, and p3 to prioritize V2 and V3.

In Figure 3, we can see a comparison of uniform (first
line) and this adaptive approach (line 2), where we double the
proportion of medium and high feature points. This depends

267
Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 07,2024 at 05:55:05 UTC from IEEE Xplore. Restrictions apply.

on specific values such as ni. In this test, n1 is half of n,
n2 is 4n

10 , and n3 is n
10 , making sure V1 contains half of

all points. This innovative sampling strategy greatly enhanced
convergence rates during our experiments.

Fig. 3. Neural implicit surfaces approximating the Armadillo model. The
columns indicate the zero-level sets of the neural implicit functions after
29, 52, 76, and 100 epochs of training. Line 1 shows the results using
minibatches sampled uniformly in V . Line 2 presents the results using the
adapted sampling of minibatches with 10% / 70% / 20% of points with
low/medium/high features.

IV. APPLICATIONS

Neural implicit representation has several applications for
real-time rendering, visualization and computational geometry.
Usually, the neural network presented in this paper has a
simple architecture and does not demand powerful hardware.
Also, the method can accurately represent geometric details
with precision. In Figure 4, we can se the original Bunny
model (left) with its reconstructed neural implicit surface
(right) after 886 training epochs. The Bunny model is a
triangular mesh with 106712 vertices. Notice how the original
triangulation (left) appears slightly coarse, like in the Bunny’s
ear, but the reconstructed neural Bunny fixes this and provides
a more detailed representation. We adopt the same architecture
as SIREN [3] and running it on a computer with an AMD
Ryzen 7 5700G processor, 16GiB of memory, and an NVIDIA
GeForce RTX 2060 with 6GiB of memory, the model took
1.32 seconds to run the inference.

A. Sphere tracing

One application for neural implicit representations is to use
neural networks in real-time rendering applications such as
Sphere-tracing. To do so, the I3D [12] method provides a
robust SDF approximation even compared with RBF. Figure 5
gives a visual evaluation presenting a sphere tracing of the
zero-level of this method. Since it has a good SDF approxima-
tion, the algorithm is able to ray-cast the surface with precision
avoiding spurious components.

B. Curvature estimation

To train neural implicit functions, we can use a loss func-
tion that approximates an SDF that allows the use of high-

Fig. 4. The Bunny represented by the original triangular mesh and a implicit
representation.

Fig. 5. Sphere tracing of neural surfaces representing the Armadillo and
Bunny models. Both networks to represent the objects have the same archi-
tecture and were trained on the same data during 500 epochs.

order derivatives, such as the alignment between the principal
directions of curvature, to learn more geometric details [6].

The study of discrete variations of triangle mesh normals
is an important topic in discrete differential geometry and it
is very helpful in neural fields applications, especially when
representing 3D shapes. These variations are represented by a
discrete shape operator. Principal directions and curvatures can
be defined on edges, with one curvature being zero along the
edge direction, and the other measured across the edge using
the dihedral angle between adjacent faces. The shape operator
at the vertices is estimated by averaging the shape operators
of the neighboring edges. The approach of Cohen et al. [6],
[15]–[17] can be considered in this context.

We train fθ to approximate the SDF of T . Using the
network, we map properties of its level sets to T and estimate
curvature measures. In Figure 6, we trained a neural implicit
function for the Dragon model, and the calculated curvature
using fθ is smoother and respects the original mesh’s curvature
distribution. Also, in Figure 7 we show the principal curvatures
and directions calculated for the Dragon model.

V. CONCLUSION

In this paper, we introduced techniques for training a neural
network framework that capitalizes on both the differentiabil-
ity of neural networks and the discrete geometry of point-
sampled surfaces, resulting in the creation of neural surfaces.

268
Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 07,2024 at 05:55:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Gaussian and mean curvatures of the Dragon neural surface. The
surface points were computed using sphere tracing and its analytic curvatures
using PyTorch framework.

Fig. 7. Principal curvatures and directions overlaid on the Dragon.

Our exploration included notable contributions from papers
such as Siren [3] and IGR [4] within this domain. Our focus
was on issues related to noisy and spurious data in neural
implicit representations.

The integration of concepts from differential geometry holds
promise for modeling applications requiring curvature terms
in the loss function. Additionally, we demonstrated that a
sampling strategy based on data’s discrete curvatures could
enhance training by targeting points with more comprehensive
geometric data in minibatch sampling.

In summary, this paper aimed to uncover strategies, such
as sampling approaches, to accelerate training convergence.
We harnessed the potential of using approximate SDF values
during training to mitigate artifacts and shed light on future
directions in this field through the application of discrete
geometry concepts.

REFERENCES

[1] L. Schirmer, G. Schardong, V. da Silva, H. Lopes, T. Novello,
D. Yukimura, T. Magalhaes, H. Paz, and L. Velho, “Neural networks
for implicit representations of 3d scenes,” in 2021 34th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE,
2021, pp. 17–24.

[2] B. Guillard, F. Stella, and P. Fua, “Meshudf: Fast and differentiable
meshing of unsigned distance field networks,” in Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part III. Springer, 2022, pp. 576–592.

[3] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein,
“Implicit neural representations with periodic activation functions,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[4] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Im-
plicit geometric regularization for learning shapes,” arXiv preprint
arXiv:2002.10099, 2020.

[5] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans, “Reconstruction and representation
of 3d objects with radial basis functions,” in Proceedings of the 28th
annual conference on Computer graphics and interactive techniques,
2001, pp. 67–76.

[6] T. Novello, G. Schardong, L. Schirmer, V. da Silva, H. Lopes,
and L. Velho, “Exploring differential geometry in neural implicits,”
Computers & Graphics, vol. 108, pp. 49–60, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0097849322001649

[7] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the fourth Eurographics symposium on
Geometry processing, vol. 7, 2006.

[8] B. Neyshabur, “Implicit regularization in deep learning,” arXiv preprint
arXiv:1709.01953, 2017.

[9] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai,
A. Jacobson, M. McGuire, and S. Fidler, “Neural geometric level of
detail: Real-time rendering with implicit 3d shapes,” arXiv preprint
arXiv:2101.10994, 2021.

[10] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[11] Z. Fang and J. Zhan, “A physics-informed neural network framework for
pdes on 3d surfaces: Time independent problems,” IEEE Access, vol. 8,
pp. 26 328–26 335, 2019.

[12] T. Novello, G. Schardong, L. Schirmer, V. da Silva, H. Lopes, and
L. Velho, “Exploring differential geometry in neural implicits,” Com-
puters & Graphics, vol. 108, pp. 49–60, 2022.

[13] A. Lapedes and R. Farber, “Nonlinear signal processing using neural
networks: Prediction and system modelling,” IEEE international
conference on neural networks, 6 1987. [Online]. Available:
https://www.osti.gov/biblio/5470451

[14] G. Parascandolo, H. Huttunen, and T. Virtanen, “Taming the waves:
sine as activation function in deep neural networks,” 2017. [Online].
Available: https://openreview.net/forum?id=Sks3zF9eg

[15] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete
differential-geometry operators for triangulated 2-manifolds,” in Visu-
alization and mathematics III. Springer, 2003, pp. 35–57.

[16] D. Cohen-Steiner and J.-M. Morvan, “Restricted delaunay triangulations
and normal cycle,” in Proceedings of the nineteenth annual symposium
on Computational geometry, 2003, pp. 312–321.

[17] G. Taubin, “Estimating the tensor of curvature of a surface from
a polyhedral approximation,” in Proceedings of IEEE International
Conference on Computer Vision. IEEE, 1995, pp. 902–907.

269
Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 07,2024 at 05:55:05 UTC from IEEE Xplore. Restrictions apply.

