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Abstract: In the modern era, images have emerged as powerful tools for concealing information, giving rise to innovative
methods like watermarking and steganography, with end-to-end steganography solutions emerging in recent
years. However, these new methods presented some issues regarding the hidden message and the decreased
quality of images. This paper investigates the efficacy of noise simulation methods and deep learning methods
to improve the resistance of steganography to printing. The research develops an end-to-end printer-proof
steganography solution, with a particular focus on the development of a noise simulation module capable
of overcoming distortions caused by the transmission of the print-scan medium. Through the development,
several approaches are employed, from combining several sources of noise present in the physical environment
during printing and capture by image sensors to the introduction of data augmentation techniques and self-
supervised learning to improve and stabilize the resistance of the network. Through rigorous experimentation,
a significant increase in the robustness of the network was obtained by adding noise combinations while
maintaining the performance of the network. Thereby, these experiments conclusively demonstrated that noise
simulation can provide a robust and efficient method to improve printer-proof steganography.

1 INTRODUCTION

Nowadays, images have emerged as potent conveyors
of information and knowledge, an interesting charac-
teristic for both researchers and industries.

Steganography is a process that hides information
within a common object. This method allows to hide
sensitive information from unauthorized access, en-
suring confidentiality as well as covering communi-
cation. With the addition of deep learning and ma-
chine learning methods, it is possible to enhance the
steganography method for a more robust and reliable
application. Examples of these methods are end-to-
end solutions, such as HiDDeN (Hsu and Wu, 1999),
SteganoGAN (Zhang et al., 2019), StegaStamp (Tan-
cik et al., 2020), and CodeFace (Shadmand et al.,
2021), where they provide a robust and secure method
for hiding messages within digital images with the
utilization of different methods, such as GANs or
other networks, that take advantage of the use of an
encoder and decoder to improve the concealed infor-
mation within images. One example of the use of this
application is exemplified in Figure 1, which uses the

Figure 1: General pipeline of an end-to-end steganography
solution with the purpose of improving the security mea-
sures of documents. Based on (Shadmand et al., 2021).

concept of steganography to increase the security of
identity documents. However, these solutions, present
some drawbacks. One of the issues is the limitation
of their robustness. These end-to-end solutions are
vulnerable to distortions that occur during the print-
ing and scanning processes, and also show limitations
when subjected to extreme compression and filtering.

To overcome the limitation of robustness, in this
paper we propose the improvement of printer-proof



Figure 2: Overall architecture of the end-to-end Steganog-
raphy solution.

steganography solutions through the realization of
noise simulations. In this paper, it is approached
an end-to-end solution that uses GAN (Goodfellow,
2017; Goodfellow et al., 2014; Ledig et al., 2017),
such as StegaStamp (Tancik et al., 2020). In this
steganography solution, GANs have the purpose of
hiding secret messages in the images while maintain-
ing the same appearance. As can be seen in Figure
2, the general architecture is composed of four com-
ponents: the encoder, decoder, noise simulation mod-
ule, and loss functions. The main goal of the encoder
is to hide messages in images. The decoder is incor-
porated into the whole architecture after applying the
noise to the images and is designed to recover the hid-
den message. The noise simulation module allows for
the simulation of the several noise sources that occur
during the printing and scanning processes to train the
network.

This research, through rigorous experimentation
and analysis, provides new insights into the behavior
and limitations of the noise simulation. Careful ad-
justments to the noise simulation module, involving
the addition of various noise levels, improved both
model performance and robustness. This approach ef-
fectively addresses noise in print-scan environments.

2 RELATED WORK

2.1 Image Steganography

Image steganography methods consist of hiding the
existence of a secret message, audio, image, or video
into a cover image, in a way that encoded, and cover
images are not distinguishable from each other. The
state-of-the-art methods that take advantage of tradi-
tional methods without the use of deep learning are
discussed in (Pevný et al., 2010). This work focuses
on deep learning-based steganography techniques.

Image steganography has seen significant ad-
vancements in recent years, with new techniques im-
proving the robustness and security of steganogra-
phy. These techniques are based on opposing net-

works (mainly GANs) to encode and decode infor-
mation. The most relevant methods to achieve this
approach are SteganoGAN (Zhang et al., 2019), HiD-
DeN (Hsu and Wu, 1999), StegaStamp (Tancik et al.,
2020), and CodeFace (Shadmand et al., 2021). All
the techniques mentioned add a noise simulation net-
work to improve the ability to recover images with
distortion. The HiDDeN noise simulation component
is implemented between the encoder and the decoder.
The authors propose the noise simulation for a dis-
crete cosine transform, a JPEG compression, a JPEG-
Mask, and a JPEG-Drop as distortion types for gen-
erating the noise samples. However, the noise sim-
ulation modules in SteganoGAN and HiDDeN have
a rather simple formulation, and they do not entirely
consider other noise sources introduced by physical
printing and capturing with a digital camera.

StegaStamp (Tancik et al., 2020) was the first suc-
cessful example of steganography with printed im-
ages, showing a robust decoding message under phys-
ical transmission. The noise distortions, aimed at
approaching the printing process, are composed of
Gaussian noise, transformations of color manipula-
tion by printers, such as random constant, brightness,
random affine color, and Hue shift distortions, and
lastly, JPEG compression. Nevertheless, StegaStamp
has some limitations, namely the possibility of a pat-
tern (originating from the hidden message) becoming
perceptible in large low-frequencies regions of the im-
age and the excessive noise present in the encoded
image when compared to the original image.

CodeFace (Shadmand et al., 2021) introduces a
novel deep learning printer-proof steganography ap-
proach for document security systems. This new ap-
proach was inspired in StegaStamp model and intro-
duces a new security system for encoding and decod-
ing facial images that are printed on common identity
documents. The noise simulation module is based
on StegaStamp (Tancik et al., 2020) and HiDDen
(Hsu and Wu, 1999). The resize network (that per-
forms downsampling of the input image) enables the
decoder to read a message from small face images
in the decoding process. This end-to-end solution
has introduced several new contributions in the field
of steganography, namely it improved the perceptual
quality of the encoded image and its compliance with
modern FRS and document issuing requirements.

2.2 Noise simulation

Noise simulation is a widely used method by re-
searchers to assess image processing algorithms un-
der realistic conditions in various fields of research.
It involves introducing artificial noise into digital im-



Figure 3: The encoder network is based on a U-net network
with no pooling layers.

ages or signals to simulate real-world noise effects.
This approach evaluates algorithm resilience to varied
environmental conditions in image processing, and it
is also used in deep learning for enhancing neural net-
work robustness. The state-of-the-art that leverage
traditional methods are discussed in (Misra and Wu,
2020), which explores the use of Gaussian Blur and in
(Raid et al., 2014), an approach predating deep learn-
ing that reviews JPEG compression with the use of
Discrete Cosine Transform.

3 IMPLEMENTATION DETAILS

3.1 Baseline

The work and study performed throughout the devel-
opment of the research was performed on the Ste-

Figure 4: The decoder network is composed of an STN
module followed by a CNN.

gaStamp algorithm with some modifications. Com-
pared to the original model, the modified algorithm
does not use the Detector component, and some pa-
rameters and activation functions of the networks are
different. The architecture of the algorithm can be de-
scribed by the following components: an encoder, a
spatial transformer network, a decoder, and a discrim-
inator. The encoder has the main objective to embed
a message into an image while minimizing percep-
tual differences between the input and encoded im-
age. For this, the network of the encoder is based
on a U-Net style architecture (Ronneberger et al.,
2015) that receives a 400 ∗ 400 ∗ 3 pixel cover im-
age and a 100 bits secret message as input and gen-
erates an encoded residual image at the output, (see
Figure 3). The decoder has the main goal to recover
the hidden message from the encoded image. The de-
coder architecture, shown in Figure 4 is composed
of a Spatial Transformer Network (STN) (Jaderberg
et al., 2015) followed by a CNN (Convolutional Neu-
ral Network). The STN component develops robust-
ness against small perspective changes that are intro-
duced while capturing and rectifying the encoded im-
age. Lastly, the discriminator, as the name suggests,
has the objective of distinguishing between real and
fake images. The discriminator network is composed
of five convolutional layers with a kernel size of three,
where each one is followed by the ReLU activation
function with the exception of the final layer. Further-
more, with the addition of the Dual Contrasctive loss,
a final linear layer was added, since the addition of
Dual Contrastive loss, requires the use of contrastive
learning with adversarial learning.

3.2 Noise simulation module

For simplicity reasons, the following Figure 5 rep-
resents examples of different noises sources imple-
mented in the noise simulation module.

Planckian jitter Planckian Jitter (Zini et al.,
2023), represented in Figure 5b, has the aim to sim-
ulate the thermal noise that can occur in image sys-
tems, allowing the model to be more robust to illu-
mination changes. One example of the presence of
this distortion is when the color of the paper has a



(a) Original image (b) Planckian Jitter (c) Poisson noise

(d) Dark noise (e) Speckle noise (f) Misregistration noise

(g) Motion Blur (h) Posterization (i) Plasma Brightness
Figure 5: Examples of the different sources of noise integrated in the noise simulation module.

bluish or orange tone the moment a picture is taken.
To perform this modification to an image, the method
exploits Planck’s law, which describes the spectral ra-
diance of an ideal black body at a given temperature.

Poisson noise Poisson noise (Hasinoff, 2014), aka
Photon noise, is a basic form of uncertainty associated
with the measurement of light, inherent to its quan-
tized nature and the independence of photon detec-
tion, as shown in Figure 5c. Its expected magnitude
varies with signal strength and is the primary source
of image noise in light conditions. This noise arises
from the randomness of individual photon arrivals, a
signal-dependent uncertainty inherent to the signal.

Dark noise The dark noise (Hui, 2020), shown in
Figure 5d, can be defined as a random variation of the
dark current signal since it results from statistical fluc-
tuations in the number of thermally generated elec-
trons, which contributes to the uncertainty in the dark
current value at a given pixel location. The dark cur-
rent refers to the electric current that flows through a
semiconductor device, such as a CCD or CMOS sen-

sor (used in digital cameras and smartphones), even
in the absence of light.

Speckle noise Speckle noise (Arulpandy and Pri-
cilla, 2020), presented in Figure 5e, is a granular noise
texture that degrades the quality of an image as a
consequence of the interference among wavefronts in
imaging systems. The speckle effect is a result of
the interference of many waves of the same frequency
with different phases and amplitudes, with a resultant
wave whose amplitude and therefore intensity vary
randomly. Unlike other types of noise, speckle noise
causes uneven pixel distribution.

Misregistration noise The misregistration noise
(Townshend et al., 1992) simulates the noise that
arises from the misalignment of image channels, as
can be seen in Figure 5f. This type of noise can occur
for several reasons and factors in the registration pro-
cess or printing process, since perfect alignment may
not be achieved. One of the causes could be camera
movement, such as small movements and vibrations
during image capture, or variations in focal lengths



Figure 6: Self-supervised learning approach performed for
this model.

and camera settings. Another factor stems from is-
sues during the printing process.

Motion blur Motion blur (Karl, 2005; Kurimo
et al., 2009), shown in Figure 5g, is a well-known
noise and is one of the most significant reasons for
image quality to decrease. Motion blur is a common
optical effect in photographs and videos that occurs
when the positions of objects change with respect to
the camera, during the interval in time where the cam-
era shutter is open. If the objects are moving rapidly
or the shutter interval is long enough, then the objects
leave a blurred streak in the direction of motion.

Posterization Image posterization has the aim of
converting an image that has a large number of tones
into an image with distinct flat areas, reducing the
tones, giving it a simplified and graphical appearance,
such as a poster or painting (see Figure 5h).

Plasma brightness Plasma Brightness noise
(Nicolaou et al., 2022) refers to a random brightness
variation that affects an image, resulting in an image
with random and visually patterns with a particular
appearance (see Figure 5i). This distortion allows to
simulate the effect of RGB spots or visible bands of
colors that resemble rainbows or gradient transitions
that comes from the limitation of colors in printers.

3.3 Self-Supervised Learning

Self-Supervised learning, a subcategory of unsuper-
vised learning, leverages unlabeled data. The key idea
is to allow the model to learn data representation with-
out manual labels (refer to the discussion in (Ericsson
et al., 2022)). For the use of this technique, it was im-
plemented in two important components of the model
architecture, which are the encoder and decoder.

The encoder network primary function is to em-
bed a secret message within an image. Given that
the encoder is composed of a U-net architecture, it is
chosen for an information restoration task by recon-
structing the original image from its transformed ver-
sion. In contrast, the decoder network is responsible
for extracting the concealed message. Thus, a self-
supervised learning approach is employed to enhance
the decoding process, utilizing a dataset containing
hidden messages. See Figure 6.

3.4 Metrics

To perform a better evaluation of the performance,
two metrics evaluate the quality of images during the
process of image generation with a hidden message.

Structural Similarity Index (SSIM) (Wang et al.,
2004; Nilsson and Akenine-Möller, 2020) evaluates
the structural information, luminance, and contrast
similarities between the reference image and the dis-
torted image. Unlike traditional methods measuring
pixel differences, SSIM aligns with human visual per-
ception, focusing on identifying structural informa-
tion and differences based on extracted information.

Peak Signal-to-Noise Ratio (PSNR) (Horé and
Ziou, 2010) evaluates the quality of an image by com-
paring its pixels to those of a reference image, and it
provides insights into the amount of noise or distor-
tion present in the image.

The decoding rate (DR) is a simple metric used
to quantify the number of encoded images that were
successfully decoded, thereby measuring the efficacy
of the hidden message retrieval process.

3.5 Datasets

Throughout the development of the research, we used
the MIRFLICKR dataset to train the StegaStamp
model. The MIRFLICKR dataset (Huiskes and Lew,
2008), which is composed of 25,000 images, is a
dataset with a wide-range of diversity, covering a va-
riety of categories including humans, animals, urban
landscapes, and more.

Furthermore, in order to apply self-supervised
learning to the model, specifically to create a task
to use in the decoder network, we use the JMiPOD
dataset (Cogranne et al., 2020). The JMiPOD dataset
is designed for steganalysis, which, in short, is the
process of detecting hidden information within digital
media. This dataset is composed of modified JPEG
images where the compression technique has been
changed to incorporate hidden data.

4 EXPERIMENTS

The overall development and testing of the study con-
ducted in this paper were performed in a digital envi-
ronment, encompassing all the stages of the steganog-
raphy process on digital devices. The images used for
encoding and decoding maintained the same dimen-
sions as those employed in the training phase, mea-
suring 400*400 pixels. However, it is worth noting
that the resolutions differed. During training and en-
coding stages, input images had resolutions varying



from 72 to 300 dpi (dots per inch). On the other hand,
the input image for the decoding process consistently
had a resolution of 96 dpi, obtained through the en-
coding process. This resolution is suitable for use in
digital and print applications.

Before analyzing the results and the influence of
each noise described in Section 3, it is presented the
baseline to provide a basis for assessing the effective-
ness and resilience of the techniques incorporated in
this study, as shown in the following Table 1.

Table 1: Decoding rate for the baseline result

Test Epochs Decoding rate
Base 140,000 70.3%

The results obtained during the evaluation of each
individual noise were satisfactory as present in Table
2. From this set of results, it is possible to observe that
the nature and influence of each individual noise bring
a modest to a higher increase in model performance
as well as robustness, showing an increase of 4pp to
14pp in the decoding rate metric. By looking at the
values of the SSIM and PSNR metrics, it becomes
feasible to evaluate the overall quality of the images
generated by these models relative to the base model.
The overall values of SSIM are below 0,70, which in-
dicates noticeable differences between images. How-
ever, certain values surpass this threshold, meaning
images with good quality and fewer deviations from
the images produced by the base model. Regarding
the PSNR values, two observations may arise. Values
in the range of [50,60] indicate images with accept-
able quality, suggesting a presence of degradation in
image aspects. Conversely, values above 60 are in-
dicative of images with good quality. If the values
obtained were below 50, it would suggest a signifi-
cant presence of degradation in the images.

From the previous results, it is possible to observe
what noises increase the robustness of the model;
however, it is not knowledgeable how the model will
behave in the presence of several noises, demanding
for a long process to investigate the right influence of
each noise on an image and its position on the noise
module. Table 3 presents the results of three different
groups of noise combinations. Group 1 is composed
of Posterization, Planckian Jitter, and Poisson noise,
in this particular order. Group 2 is formed by Poster-
ization, Planckian Jitter, Misregistration and Poisson
noise. Group 3 consists of Posterization, Planckian
Jitter, Misregistration and Poisson noise and Motion
Blur. With the increase in the number of noises that
are incorporated into the model, the performance of
the model decreases, justified by the decoding rate
metric. Thus, it is possible to conclude that the in-

Table 2: Metrics of each individual noise.

Noise

Posterization Planckian Jitter Poisson
DR 75.1% 78.7% 79.9%

∆Base ↑ 4.8 pp ↑ 8.4 pp ↑ 9.6 pp
SSIM 0.71 0.72 0.68
PNSR 52.0 52.3 51.6

Dark Plasma Brightness Motion Blur

DR 77.1% 74.8% 78.7%
∆Base ↑ 6.8 pp ↑ 4.5 pp ↑ 8.4 pp
SSIM 0.69 0.68 0.70
PNSR 63.7 63.5 64.1

Speckle Misregistration

DR 80.0% 84.6%
∆Base ↑ 9.7 pp ↑ 14.3 pp
SSIM 0.69 0.69
PNSR 63.9 51.8

crease in different noise sources is accompanied by
a reduction in the model overall performance and
decoding rate, indicating that the model can decode
messages with simpler noises, while struggling to de-
code the hidden message with more complex and so-
phisticated combinations of noise. Nevertheless, with
larger noise combinations, the model attains height-
ened robustness, stemming from its exposure to di-
verse noise sources during training.

Table 3: Metrics of the set of noise combinations.

Group Epochs DR ∆Base SSIM PSNR

1
140,000 81.4% ↑ 11.1 pp 0.71 64.4
180,000 78.3% ↑ 8.0 pp 0.69 51.7
140,000 83.6% ↑ 12.3 pp 0.69 57.9

2 180,000 81.3 % ↑ 11.0 pp 0.69 63.9

3 160,000 79.1% ↑ 8.8 pp 0.71 51.8
180,000 74.6% ↑ 4.3 pp 0.70 51.9

To overcome the limitation mentioned, data aug-
mentation techniques was used, to enhance the per-
formance while maintaining robustness. The dataset
was increased to its double in the first approach. By
looking at Table 4, the increase in the decoding rate
was modest, increasing approximately 2pp.

Table 4: Results from data augmentation with double size,
performed with the best results of the noise groups.

Group DR ∆Base SSIM PSNR

1 83.0 % ↑ 12.7 pp 0.73 52.4

2 82.3 % ↑ 12.0 pp 0.69 51.9

3 81.7 % ↑ 11.4 pp 0.70 52.0



Thus, a subsequent expansion of the dataset was
performed, intended to increase the number of sam-
ples to 100,000 and 200,000. From the obtained re-
sults presented in Table 5 it was noticed that there was
an insignificant increase in the decoding rate for the
dataset with 100,000 samples. On the other hand, the
other dataset shows a decrease in the metric. This oc-
currence points to an instance of overfitting brought
on by an inadequately diversified dataset.

Table 5: Result of data augmentation with a total size of
100.00 and 200.000 samples using Group 1.

Dataset DR ∆Base SSIM PSNR

100,000 83.7 % ↑ 13.4 pp 0.71 52.1

200,000 80.0 % ↑ 9.7 pp 0.73 52.4

Hence, it is possible to conclude that, using con-
ventional methods, the overall performance of the
model and decoding rate yield a small growth. To
overcome this impasse, another data augmentation
technique was implemented. For this, it was used
neural style transfer (Gatys et al., 2015). In short, it
generates a new image by extracting the content and
style of different images from a pre-trained deep neu-
ral network. This method allows to mitigate the prob-
lem of a dataset with insufficient diversity. Nonethe-
less, when testing this technique, it was noticed that it
was not suitable for the task at hand since the quality
displayed by the created images was of lower qual-
ity or exhibited structures that were unsuitable for the
problem of this research, as shown in Figure 7.

Figure 7: Image created with the use of the method of neural
style transfer. Original image is the same used in Fig. 5.

In this way, in an effort to improve the model per-
formance, self-supervised learning was introduced. It
is important to note that the implementation of SSL
is in its initial stages of development. Looking at Ta-
ble 6, it is possible to affirm that the use of SSL for

the encoder yields satisfactory results since, in an ini-
tial approach, it was obtained with a value close to its
counterpart. Besides the fact that the value obtained
for the metric is lower, the reason for this result is the
suboptimal selection of parameters for the use of SSL.

Table 6: Result of SSL with pre-training the encoder, using
the noise combination of Group 1 (Original result present in
Table 3, with decoding rate of value 83.6%).

Decoding rate ∆Base SSIM PSNR

82.7 % ↑ 12.4 pp 0.71 58.3

On the other hand, some hurdles were encoun-
tered during the implementation of SSL on the de-
coder, stemming from two main reasons. The first
reason comes from the used dataset. While the dataset
consisted of images with hidden messages, the size
of each hidden message varied. The second reason
may be caused by the inadequate performance of the
message retrieval process. In assessing the model
performance and accuracy, it becomes essential to
have prior knowledge of the hidden message. Con-
sequently, adopting a method for retrieval message
could lead to incorrect interpretation of the retrieved
message, thereby jeopardizing the training process.
This aspect represents one of the future areas intended
for further development and evaluation.

5 CONCLUSIONS

In this paper, a path is presented to improve the
robustness of printer-proof steganography solutions.
Within the approach presented, we have not only
enhanced the noise simulation module but also im-
proved the model performance in the face of in-
creasing robustness against diverse real-word noise
sources. Furthermore, through the implementation
of data augmentation techniques and deep learning
methods, such as SSL, the model performance has im-
proved while maintaining its robustness. The achieve-
ments presented offer an effective path for several ap-
plications in the real world, such as the security mea-
sures of documents.

During the development of this study, promising
grow paths emerge, notably with SSL. In comparison
with the state-of-the-art approaches, the use of SSL
is a novel approach. In this paper, this technique is
in its initial stages, demonstrating a potential path for
development. This work is one of many approaches
to improve printer-proof steganography, and there are
many open challenges and opportunities for future re-
search in this field.
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Pevný, T., Filler, T., and Bas, P. (2010). Using high-
dimensional image models to perform highly unde-
tectable steganography. In Böhme, R., Fong, P. W. L.,
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