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A B S T R A C T   

The mainstream approach to addressing the issues of insufficient historical data and high annotation costs in the 
domain of rotating machinery is to build transfer learning models based on labeled multi-source data. However, 
the practical diagnosis of failure cases often relies on data privacy, thereby limiting the widespread application of 
current multi-source domain transfer approaches for the ‘data silos’ problem of. In view of the above problem, a 
multi-source weighted source-free domain transfer approach is designed for rotating machinery fault diagnosis, 
and the designed scheme can efficiently achieve data privacy and domain transfer. Specifically, the proposed 
approach achieves knowledge transfer from the source to the target during the training process of the unlabeled 
target data without accessing the source data. This is accomplished through the utilization of a designed rein
forced information maximization strategy and improved self-training mechanism. Additionally, a weighted 
strategy is devised to automatically apply optimal values to all source domains based on their relevance to the 
target domain. The proposed framework demonstrates accuracy exceeding 96% across eight cross-domain 
diagnostic cases in two sets of rotating machinery data, with an average accuracy of 98.26%. These results 
underscore the exceptional ability of the proposed method to address cross-domain fault diagnosis in rotating 
machinery while ensuring privacy protection.   

1. Introduction 

Rotating machinery, such as bearings and gears, serves as crucial 
components in transmission systems and finds extensive applications in 
industries related to national defense security and the national economy, 
including aerospace, weaponry, and manufacturing (Li, Zhong, & Shao, 
2022; Liu, Jiang, Liu, Yang, & Sun, 2022; Wu, Jiang, & Zhu, 2023a). The 
occurrence of faults or performance degradation in rotating machinery 
can easily lead to a decline in overall equipment performance or even 
system failure. Therefore, fault diagnosis of rotating machinery has been 
a focal point of research (Dong, Zhan, & Hu, 2023; Mohajer, Daliri, & 
Mirzaei, 2022a). 

In recent years, traditional way to fault diagnosis has shifted towards 
intelligent way, and significant success has achieved in deep intelligent 
diagnosis approaches. These methods primarily leverage complex neural 
networks to extract hidden information from high-dimensional features, 
establish correlations between input data and predicted categories, and 

achieve end-to-end identification (An, Jiang, & Yang, 2022; Hou, Zhang, 
& Jiang, 2023). However, the application of intelligent diagnosis 
methods relies on two critical prerequisites: having sufficient labeled 
data and consistent data distribution (Li, Xu, Li, Yang, & Lei, 2023a). In 
actual operational conditions of rotating machinery, which are charac
terized by complexity and variability, the vibration signals of rotating 
machinery differ significantly under different conditions. This severely 
limits the practical application of intelligent diagnosis methods. 

Transfer learning brings new perspectives to the problem of fault 
diagnosis in rotating machinery under complex and variable operating 
conditions. It tackles the challenge by transferring knowledge from 
different operating condition data to address the issue of identifying 
unknown operating condition data (Mohajer, Sorouri, & Mirzaei, 2022b; 
Zhang, Wang, & Li, 2023a). Existing transfer diagnosis approaches can 
be categorized into single-source diagram and multi-source diagram, 
with the former being predominant (Zhao, Jia, & Shao, 2023a). How
ever, in practical industrial scenarios, due to the limitations of a single 
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operating condition, single-source domain transfer learning methods 
often suffer from domain mismatch, resulting in negative transfer and 
inadequate generalization capability (Chen, Liao, & Li, 2023). On the 
other hand, by leveraging data from multiple operating conditions, 
multi-source domain transfer approaches can effectively capture 
knowledge from diverse conditions, extract fault features that are easier 
to recognize, and thus hold promising application prospects (Xiao, Shao, 
& Han, 2022). 

Although transfer learning methods have achieved exciting results, 
they require accessing the source data during the training process to 
achieve the target identification. However, in practical industrial sce
narios, data often contains sensitive information belonging to enter
prises or companies, limiting the widespread application of transfer 
learning methods due to data privacy concerns. Recently, federated 
transfer learning, which combines transfer learning with federated 
learning, has garnered attention in fault diagnosis as it can achieve both 
domain transfer and privacy protection (Wang, Yan, & Yu, 2023a). 
Nevertheless, federated learning involves significant communication 
between global and local servers, leading to substantial network band
width usage and significantly reducing model training efficiency (Liu, 
Shen, & Gao, 2023). Furthermore, existing federated transfer fault 
diagnosis methods still have limitations, such as assuming a shared 
private space to align the source and target domain distributions or 
requiring prior knowledge of the source or target domain data 
distributions. 

To address these challenges, this paper proposes a novel multi-source 
weighted source-free domain transfer network (MWSDTN). A pivotal 
aspect of this study centers on data privacy, where training the target 
data does not involve accessing source domain data. The inability to 
access source domain features impedes the applicability of traditional 
domain adaptation strategies for feature alignment. Drawing inspiration 
from Ref (Liang et al., 2020), the MSWFSN employs an information 
maximization strategy to fine-tune the source model for target domain 
data classification. Recognizing that different source domains contribute 
distinctively to the identification performance of the target domain, a 
weighted strategy is introduced, iteratively optimizing the optimal 
weights for each source model. Furthermore, relying solely on the in
formation maximization strategy may fall short of ensuring precise 
recognition of target domain features. Consequently, an improved self- 
training mechanism is developed by amalgamating a self-training 
mechanism with the weighted strategy to augment the predictive out
comes of the target model for the target domain. In summary, MWSDTN 

achieves both domain transfer and privacy protection in a simple and 
efficient manner. The illustration of the multi-source source-free domain 
transfer method is presented in Fig. 1. The key contributions are 
concluded as:  

1. A sophisticated source-free domain transfer framework is designed 
for rotating machinery fault diagnosis, achieving both domain 
transfer and privacy protection.  

2. An unsupervised loss is devised to automatically assign weights to 
each source model based on the difficulty of knowledge transfer from 
the source domain to the target domain, generating an accurate 
target identification model.  

3. An improved self-training mechanism is developed to enhance the 
representation learning of the target domain, further improving the 
identification performance in the target domain. 

The remainder of this work is designed as follows. The related works 
about transfer learning, source-free transfer learning and federated 
transfer learning are elaborated in Section 2. The detailed description of 
MWSDTN is illustrated in Section 3. The experimental verification is 
presented in Section 4. This work is concluded in Section 5. 

2. Related works 

2.1. Transfer fault diagnosis 

In practical scenarios, on one hand, the diverse working environ
ments result in significant variations in vibration data distribution for 
rotating machinery, making it challenging for deep learning methods to 
adapt. On the other hand, rotating machinery is typically operated in a 
healthy state, making it difficult to obtain fault data and data labels. 
Consequently, deep learning-based intelligent diagnostic methods 
struggle to address rotating machinery fault problems in real-world 
conditions. As a branch of machine learning, transfer learning over
comes the limitations of deep learning and promotes the application of 
intelligent diagnostic methods in practical scenarios. 

In recent years, transfer learning is very popular in fault diagnosis. 
Zhu et al. constructed a transfer framework based on multi-kernel 
maximum mean discrepancy (MK-MMD), and conducted massive ex
periments to testify its diagnosis performance (Zhu, Chen, & Shen, 
2019). Mao et al. distilled the relevant information of multiple failure 
modes, and conducted domain adversarial network for further diagnosis 

Fig. 1. The presentation of multi-source source-free domain transfer method.  
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(Mao, Liu, Ding, Safian, & Liang, 2021). Zhao et al. constructed the 
transfer network combined with joint maximum mean discrepancy and 
domain confusion, which shows enhanced performance in diagnosing 
rotating machinery issues (Zhao, Jiang, & Wang, 2021). Zhao et al. 
devised an alignment approach that mitigates conditional distribution 
shift by reducing inter-class center distances and applies adversarial 
strategies to alleviate marginal distribution discrepancies (Zhao, Liu, & 
Shen, 2022). Zhang et al. employed the local maximum mean difference 
to diminish inter-domain distribution dissimilarities and utilized K- 
means to excavate fault knowledge from the target domain data (Zhang, 
He, & Wang, 2022a). Zhou et al. introduced a dynamic adaptive 
migration framework based on weighted factors to dynamically align 
conditional and marginal probability distributions (Zhou, Dong, & 
Zhou, 2021). 

To further improve cross-domain diagnostic performance, scholars 
have turned their attention to multi-source domain transfer learning. 
Yang et al. partitioned the multi-source cross-domain diagnostic prob
lem into individual single-source cross-domain diagnostic problems, 
followed by weighted ensemble integration of all classifiers, culminating 
in the final fault diagnostic output (Yang, Kong, & Wang, 2021). Chen 
et al. formulated a weighted transfer model that precisely quantifies the 
importance of various source domains, validated the model’s effective
ness across numerous cross-domain fault diagnosis tasks with bearing 
and gearbox datasets (Chen, Liao, & Li, 2022a). Tian et al. aligned the 
domain data using multiple subnetworks and obtained the weighted 
coefficients of all source classifiers, ultimately outputting the weighted 
diagnostic results (Tian, Han, & Li, 2022). Cao et al. developed a two- 
stage multi-source domain transfer method based on dilated convolu
tional neural networks, demonstrating outstanding diagnostic perfor
mance in experimental validation (Cao, Meng, & Sun, 2023). Wu et al. 
employed class-conditional maximum mean discrepancy to diminish 
conditional probability distribution differences across diverse domains 
and generated integrated diagnostic results (Wu, Jiang, & Liu, 2023b). 
Tian et al. constructed a multi-source migration model applicable to 
open sets, quantifying similarities between source domains and the 
target domain, and employing adversarial strategies for fusion. More
over, the application of co-supervision strategies further enhanced 
knowledge transfer effects (Tian, Han, & Karimi, 2023). Although the 
aforementioned transfer fault diagnosis methods have achieved 
remarkable results, they require continuous access to the source data as 
training progress, disregarding the privacy protection of the data. To 
address this issue, the proposed source-free domain transfer network 
effectively and simply achieves both domain transfer and privacy 
protection. 

2.2. Federated transfer fault diagnosis 

Federated learning, which utilizes distributed model training, has 
addressed the issue of data privacy protection. Recently, the combina
tion of transfer learning algorithms and federated learning algorithms, 
known as federated transfer learning methods, have gained significant 
profile in fault diagnosis. Xia et al. proposed an advanced federated 
learning method by sharing the model information to guarantee the data 
privacy, and conducted sufficient experiments to verify (Xia, Zheng, & 
Li, 2022). Wang et al. constructed a federated transfer framework to 
detect the GIS insulation failures (Wang, Yan, & Yang, 2022a). Zhang 
et al. designed a federated transfer approach to address rotating ma
chinery fault problems, assuming prior knowledge of data distribution 
(Zhang & Li, 2022a). Zhang et al. designed a federated adversarial 
transfer network to achieve the domain transfer and privacy protection 
(Zhang & Li, 2022b). Zhao et al. combined maximum mean discrepancy 
and domain discriminator to construct the federated transfer network 
with multi-sources, and evaluated the diagnosis performance with 
multiple transfer diagnosis cases (Zhao, Hu, Shao, & Hu, 2023b). 
However, this approach constructs a global space to align the source and 
target domain distributions, raising concerns about data privacy. Chen 

et al. reinforced the federated averaging algorithm, and then proposed a 
federated transfer approach to identify bearings faults (Chen, Li, & 
Huang, 2022b). Kang et al. constructed the transfer ResNet with condi
tional maximum mean discrepancy, and integrated the transfer ResNet 
to federated framework. Finally, the federated transfer framework is 
applied for bearing fault diagnosis with data privacy (Kang, Yang, Sun, 
Wang, Wang, & Mikulovich, 2022). Wang et al. harnessed batch 
normalized maximum mean discrepancy to obliterate distribution dis
parities and proposed an advanced aggregation algorithm to attain a 
global model, thoroughly verifying the method’s diagnostic perfor
mance across multiple datasets (Wang, Yan, & Yu, 2023b). Lu et al. 
employed encryption algorithms to ensure data privacy within each 
domain and integrated their migration framework to address cross- 
domain fault diagnosis under the umbrella of data privacy (Lu, Gao, & 
Xu, 2022). Li et al. accomplished the transfer of source domain knowl
edge to the target domain through transfer training of model informa
tion, combined with target domain adaptation for distribution 
alignment, and its efficacy is corroborated through comparison with 
other state-of-the-art algorithms (Li, Zhang, & Li, 2023b). Wang et al. 
introduced adversarial learning strategies to align the reference distri
bution of the target domain with the source domain, facilitating 
knowledge migration within a federated framework (Wang, Huang, & 
Shi, 2022b). Despite showcasing exemplary performance in experi
ments, this approach may face limitations as actual reference distribu
tions of real-world data are often inaccessible. Although these federated 
transfer diagnosis methods aim to achieve both domain transfer and 
data privacy, some methods require prior knowledge of data distribu
tion, limiting their generalization in practical scenarios, and the privacy 
protection of certain methods remains questionable. Furthermore, the 
federated framework heavily relies on a central server, making it sus
ceptible to single point failures, and the communication costs of these 
methods are also high. 

2.3. Source-free domain transfer fault diagnosis 

The source-free transfer learning algorithm necessitates no sharing of 
source domain data; instead, it involves the application of the learned 
source model from the source domain to fine-tune the model in the 
target domain. During the fine-tuning process, the target domain re
mains oblivious to the source domain data, and the training of the source 
model remains isolated from the target domain data as well. In com
parison with conventional transfer paradigms, the source-free transfer 
approach obviates the requirement for sensitive data transmission 
throughout the entire training phase. This considerable reduction in 
data transmission curtails the risks associated with potential leaks of 
source and target domain data, thus effectively upholding data privacy. 
Furthermore, the source-free transfer learning algorithm boasts effi
ciency and low network resource costs, underscoring its promising po
tential for applications in rotating machinery fault diagnosis. Jiao et al. 
introduced a source-free domain transfer diagnosis scheme, which fixes 
the classifier and utilizes self-training mechanism and label prediction 
matrix constraints to train a target-domain-specific feature extractor 
(Jiao et al., n.d.). Zhu et al. utilized mean teacher training scheme and 
information maximization to enhance the generalization of source-free 
domain transfer diagnosis framework (Zhu, Zeng, Liu, & Adaptation, 
2022). Li et al. designed an innovative source-free convolutional neural 
network based on failure mode clustering mechanism and attention 
mechanism (Li, Yue, & Huang, 2023c). Wang et al. conducted nearest 
centroid filtering to obtain more accurate target labels, and used su
pervised learning to improve the target model performance. The 
developed source-free domain transfer approach is demonstrated by 
electro-mechanical actuator dataset (Wang, Zhang, & Miao, 2023c). Yue 
et al. adopted the information maximization mechanism and self- 
supervised paradigm to ensure that the trained source model can 
extract typical fault features from the target domain (Yue, Li, Li, & 
Adaptation, 2022). Zhang et al. developed a clustering method for 
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training a target-domain-specific diagnostic model (Zhang, Jiang, 
Zhang, & Adaptation, 2022b). Zhang et al. established a deep network 
incorporating Transformer architecture for supervised training in the 
source domain, following which the well-trained model is dispatched to 
the target domain. The integration of supervised contrastive learning 
strategies and entropy loss facilitated precise fine-tuning of the source 
model and accurate identification within the target domain (Zhang, Ren, 
& Feng, 2023b). 

Seeing that existing source-free domain transfer approaches focus 
primarily on the paradigm from single source to the target. Motivated by 
these methods, a novel multi-source weighted source-free domain 
transfer network is constructed for rotating machinery fault diagnosis. 

3. Methodology 

3.1. Problem definition 

The data measured from different conditions of rotating machinery 
equipment form individual domains, and there exist significant differ
ences in data distributions among these domains. Let Dn

S = {(xi
sn
, yi

sn
)}

Kn

i=1 
represents the nth labeled source domain, Kn denotes the corresponding 
sample quantity in the source domain, and {PSn (x, y)}

N
n=1 defines the 

probability distribution of the source domain. Let DT = {(xi
T)}

K
i=1 rep

resents the unknown target domain, K means the corresponding sample 
quantity in the target domain, and {PT(x, y)} defines the probability 
distribution of the target domain. It is assumed that the health status of 
all source and target domains is consistent, and (PSi ∕= PSj ∕= PT, i ∕= j, i,
j ∈ N). In contrast to conventional multi-source transfer learning 
methods, the proposed approach, unable to access source data DS. 
Specifically, the multi-source source-free transfer model can only access 
a series of source models θS trained based on all source domains DS =

{(xs,ys)}. Therefore, the goal is using θS and DT to obtain a trained target 
model θT that can precisely predict the corresponding labels of DT =

{(xi
T)}

K
i=1. 

3.2. Source model pretraining 

The proposed framework achieves domain-specific feature extrac
tion for the target domain by pretraining the source models and 
adapting them to multiple source domains, as shown in Fig. 2. All source 
models share the same structure, where θS includes a feature extractor 
φS:χ→Rf and a classifier νS:Rf →Rc, with f represents the dimension of 
the extracted features and c denotes the total number of failure modes, 
θS = φS

◦νS. 
The source model θn

S:χ→Rc is trained using the source domain DS =

{(xi
s, yi

s)}
K
i=1, optimizing the following objective: 

L cls = − Exs∈XS

∑C

c=1
zclogσc(θS(xs)) (1)  

where σc(a) = exp(ac)∑C
i=1

exp(ai)
represents a C-dimensional vector in the soft

max output, representing the one-of-K encoding, with the correct cate
gory having a value of “1″ and the other categories having a value of ”0″. 

The introduction of label smoothing strategy enhances the training 
effectiveness of the source models and improves the adaptability of the 
source and target domain distributions. The optimization objective is 
represented as: 

L
ls
cls = − Exs∈XS

∑C

c=1
zls

c logσc(θS(xs)) (2)  

where zls
c = (1 − α)zc +α/C represents the smoothed labels, and α is the 

smoothing coefficient set to 0.1. 

3.3. Multi-source domain adaptation 

This study addresses the realm of multi-source domain adaptation, 
wherein variations in the efficacy of source domains on target domain 
recognition are acknowledged. To account for these discrepancies, an 

Fig. 2. The illustration of MWSDTN. Source models are trained with all source domains, and then the source models with corresponding weights are utilized to 
construct the target model, where the target model is trained with target domain. 

Q. Gao et al.                                                                                                                                                                                                                                     



Expert Systems With Applications 237 (2024) 121585

5

approach involving the allocation of a set of weights to all source do
mains, denoted as {βn}

N
n=1, and 

∑N
n=1βn = 1. These weights encapsulate 

the probability mass functions across source domains. In instances 
where the source domain exhibits a higher propensity for easy trans
ferability to the target domain, the corresponding weight is propor
tionally augmented, and vice versa. The intricate workings of the 
reinforced information maximization and improved self-training stra
tegies, developed in conjunction with the weighted approach, are 
expounded upon as follows. 

3.3.1. Reinforced information maximization 
For transfer learning algorithms, precisely aligning the feature dis

tributions is crucial for achieving accurate classification in the unknown 
target domain. However, this study concentrates upon the cross-domain 
fault diagnosis issue under data privacy constraints and refuses to access 
source data, making it impossible to obtain the source distribution. 
Considering that if the target data is mapped to features similar to the 
source data, the classifier of the trained source model would produce 
similar outputs for the target data as it does for the source data, indi
cating that the output for the target domain data is close to one-hot 
encoding (as it accurately identifies the category, the vector should be 
close to one-hot; otherwise, the probabilities for each category would be 
similar). Therefore, by fixing the source classifier’s parameters, the 
proposed approach fine-tunes the parameters of the source feature 
extractor by maximizing the information between the intermediate 
features and the classifier’s output. Specifically, the information maxi
mization strategy is introduced to minimize the differences across do
mains, including conditional entropy and category diversity. The 
conditional entropy term is denoted as: 

L cet = − Ext∈DT

[
∑C

c=1
σc(θT(xt))logσc(θT(xt))

]

(3)  

where θT(xt) =
∑N

n=1βnθn
S(xt), βn means the weights of the source model 

θn
S, and 

∑N
n=1βn = 1. 

From Eq. (3), it can be observed that when the source model is more 
amenable to transfer, the corresponding conditional entropy value be
comes smaller, and minimizing Eq. (3) increases the weight of that 
source model. Furthermore, considering that minimizing the conditional 
entropy term alone may lead to a concentration of prediction results in a 
single category, category diversity is introduced to further enhance the 
prediction effectiveness for the target domain. 

L cdt =
∑C

c=1
qclogqc (4)  

where q = Ext∈DT [σ(θT(xt))] denotes the mean outputs of the whole target 
data. The final reinforced information maximization loss can be calcu
lated as: 

L rim = L cet +L cdt (5)  

3.3.2. Improved self-training 
Although the proposed reinforced information maximization strat

egy improves the robustness and diversity of target predictions, mis
classifications of target predict labels are still inevitable. Therefore, an 
improved self-training mechanism is proposed to enhance the target 
model’s predictions for the target domain. Specifically, the centroids of 
all categories in the target dataset are obtained as follows: 

λ(0)cn
=

∑
xt∈DT

σc(θ̂
n
S(xt))ν̂n

S(xt)
∑

xt∈DT
σc(θ̂

n
S(xt))

(6)  

where λ(t)cn 
represents the cluster centroid of category c at iteration t, 

which is generated by the nth source model. θ̂
n
S means the nth source 

model of the previous iteration, and ν̂n
S means the nth source classifier of 

the previous iteration. After obtaining the centroids for each category 
from all source models on the target dataset, they are aggregated ac
cording to the following equation to obtain the final centroids of the 
target dataset. 

λ(0)c =
∑N

n=1
βnλ(0)cn

(7) 

Inferred from the nearest cluster centroid theory, the initial pseudo- 
labels of all target samples can be calculated by: 

ŷ(0)
t = argmin

c

⃦
⃦θ̂T(xt) − λ(0)c

⃦
⃦2

2 (8) 

The centroids of each category in the target dataset and the pseudo- 
labels corresponding to target samples are updated through iterative 
training, denoted as follows: 

λ(1)cn
=

∑
xt∈DT

1
{

ŷ(0)
t = c

}
ν̂n

S(xT)

∑
xt∈DT

1
{

ŷ(0)
t = c

} (9)  

λ(1)c =
∑N

n=1
βnλ(1)cn

(10)  

ŷ(1)
t = argmin

c

⃦
⃦θ̂T(xt) − λ(1)c

⃦
⃦2

2 (11)  

where 1{⋅} is an indicator function with the parameter being 1 for true 
outputs. The cross-entropy loss function of the pseudo-labels is calcu
lated by: 

L hps = − Ext∈DT

∑C

c=1
1{ŷt = c}logσc(θT(xt)) (12) 

Algorithm 1 
Pseudo-code of MWSDTN  

Input: Pre-trained source models set 
{

θn
S
}N

n=1; Weights set to be trained {βn}
N
n=1; 

Target datasetDT = {(xi
T)}

K
i=1; Bach size B; Training epoch T. 

Output: Optimal target model θ∗T 

Initialization: Frozen classifiers 
{

νn
S
}N

n=1 and set initial weights {βn}
N
n=1. 

for t=1: T do 
1. Obtain the pseudo labels of Dt according to Eq. (6). 
2. Obtain the mean outputs of the whole target data q according to Eq. (2). 

for b=1: B do 
1. Small batches of samples are randomly selected from the target set and 

sent to all source models. 
2. The losses for each component are computed according to Eq. (3), Eq. (4), 

and Eq. (12). 
3. The total loss is computed according to Eq. (13). 
4. The parameters 

{
φn

S
}N

n=1 and {βn}
N
n=1 are updated according to Eq. (14).  

5. The values of βn are ensured to be positive according to βn = 1/(1+ e− βn ). 
6. βn is normalized according to βn = βn/

∑N
n=1βn. 

End for 
End for 
Return Optimal target model θ∗T  

3.4. Training objective 

Combining the discussion in Section 3.3, the overall objective of 
target domain training is denoted as Eq. (13), and the solving problem is 
illustrated in Eq. (14). 

L total = L rim + μL hps (13)  
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minimize L total,
{

φn
S

}N
n=1, {βn}

N
n=1

subject to βn⩾0, ∀n ∈ {1, 2,⋯,N},
∑N

n=1
βn = 1

(14) 

After satisfying the stopping condition of the iterations, the optimal 
sets 

{
φn∗

S
}N

n=1 and 
{

β∗
n
}N

n=1 are obtained, leading to a well-trained target 
model. The proposed algorithm’s flowchart is depicted in Algorithm 1. 

4. Experiments 

4.1. Dataset illustration 

Dataset 1: A specially designed bearing fault diagnosis test rig is used 
for vibration signal acquisition in this experiment, as shown in Fig. 3 
(Jia, Wang, & Zhang, 2022). The experimental setup consisted of a 
motor, rotor, bearing seat, shaft coupling, gear box and brake. Three- 
axis vibration accelerometers are installed on the bearing seat surface, 
and the vibration signals are measured at 25.6 kHz. The rolling bearing 
type is chosen as NU205EM, and 10 different health conditions are 
designed, including normal condition and three types of inner race faults 
(0.2 mm, 0.4 mm, and 0.6 mm), three types of outer race faults (0.2 mm, 
0.4 mm, and 0.6 mm), and three types of roller faults (0.2 mm, 0.4 mm, 
and 0.6 mm). The data are collected for each health condition under 
different loads of 0 N, 20 N, 40 N, and 60 N. Each health condition has 
200 samples, with each sample consisting of 1568 data points, resulting 
in a total of 2000 samples. The time-domain samples are processed using 
FFT transformation to obtain the corresponding frequency-domain 
samples. The datasets from the four operating conditions are named 
T1, T2, T3, and T4, and four sets of multi-source transfer diagnosis cases 
are established. 

Dataset 2: The Paderborn University rolling bearing public dataset is 
introduced to further validate the diagnostic performance, as shown in 
Fig. 4 (Lessmeier et al., 2016). This dataset consists of five bearing 
health conditions: healthy bearing, inner race faults (minor and severe), 
and outer race faults (minor and severe). The fault conditions are ob
tained through artificial damage (electric spark, drilling, engraving) and 
accelerated life tests. The tested bearing type is chosen as 6203. Data are 
collected on four conditions, corresponding to rotation speed, torque, 
and load of 1500 rpm/0.1 Nm/1000 N (T5), 1500 rpm/0.7 Nm/400 N 
(T6), 1500 rpm/0.7 Nm/1000 N (T7), and 900 rpm/0.7 Nm/1000 N 
(T8). Each health condition has 300 samples, with each sample con
sisting of 1568 data points, resulting in a total of 1500 samples. The 
frequency-domain samples are obtained by applying FFT transformation 
to the time-domain samples. Four sets of multi-source transfer diagnosis 
cases are established. Fig. 5. 

4.2. Detailed settings of MWSDTN 

Based on previous experience in network construction, the structural 
parameters of the proposed MWSDTN framework are designed as pre
sented in Table 1. ‘Conv’ represents a 2D convolutional layer, ‘Pool’ 

represents a max pooling layer, ‘BN’ represents a batch normalization 
layer, and ReLU represents the corresponding activation function. 1–64 
indicates that the input channel is 1, and the output channel is 64. The 
kernel size is 5x1, and the pooling size is 2x1. 

Both the source model pre-training and target domain adaptation 
stages employed the mini-batch SGD algorithm, with a momentum of 
0.9 and weight decay of 0.001. In the source model training stage, the 
learning rate is set to 0.01, the number of epochs is set to 20, and the 
batch size is set to 32. In the target domain adaptation stage, the cor
responding parameters are set as 0.001, 20 and 64. For all experiments, 
parameter μ is fixed at 0.3. 

4.3. Comparison methods 

In this study, several advanced transfer learning approaches are 
introduced to compare with MWSDTN, including conventional transfer 
approaches, source-free domain transfer approaches, and federated 
transfer approach. In this study, the classic transfer learning methods 
MAD and DATN, widely applied in the fault diagnosis domain and 
commonly used as benchmarks for assessing algorithmic diagnostic 
performance, are selected as comparative approaches. Additionally, 
Source hypothesis transfer (SHOT), a prominent source-free domain 
transfer method, has been thoroughly validated in the detection out
comes across three target detection datasets within multiple transfer 
learning methodologies, which validates its performance. Furthermore, 
SHOT’s knowledge transfer concept has informed the design of 
MWSDTN; hence, SHOT is chosen for comparison. Source-free adapta
tion diagnosis (SFAD), having established itself as a verified source-free 
domain transfer approach within the fault diagnosis domain, is intro
duced to more comprehensively illustrate MWSDTN’s diagnostic capa
bilities. Given the research focus on multi-source cross-domain fault 
diagnosis with a concern for data privacy, and since federated learning 
algorithms are designed to address data privacy, the well-performing 
Federated Knowledge Alignment (FedKA) is chosen as a comparative 
measure to evaluate the strengths and weaknesses of the proposed 
MWSDTN framework. As for conditional weighting transfer Wasserstein 
auto-encoder (CWTWAE)it is a multi-source cross-domain fault diag
nosis method adept at precise cross-domain fault diagnosis while 
assigning weights to source domains based on their similarity to the 
target domain. Consequently, CWTWAE is selected to assess MWSDTN’s 
cross-domain diagnostic performance. The parameters for each method 
are as follows. 

MAD: MK-MMD is popular in transfer learning to transfer knowledge 
from source to target by aligning their marginal probability distribution. 
Therefore, a transfer diagnostic model based on the network in Table 1 is 
constructed, where MK-MMD is added at the FC1 layer. For parameter 
optimization, the SGD algorithm is employed with a learning rate set at 
0.001, and the number of iterations is fixed at 200. The coefficient is 2/
(1+ exp(- 10× p)) − 1, while p progressively transitioned from 0 to 1. 

DATN: Adversarial strategies are commonly used in transfer learning 
to distill domain-invariant feature representations across domains. 
Therefore, a domain adversarial transfer network (DATN) is built by 

Fig. 3. Photo of experimental equipment.  
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combining the network in Table 1 with a domain discriminator which is 
constructed by fully connected layers. For parameter optimization, the 
SGD algorithm is employed with a learning rate set at 0.001, and the 
number of iterations is fixed at 200. The coefficient is 2/(1+ exp(- 10×

p)) − 1, while p progressively transitioned from 0 to 1. 
SHOT: SHOT is a representative source-free domain transfer method 

that is introduced in this study for comparison (Liang et al., 2020). To 
achieve fair comparison, the network structure of SHOT is also set 

according to Table 1. Both the pre-training phase of the source model 
and the target domain adaptation phase were executed using the mini- 
batch SGD algorithm. The momentum is set to 0.9, while weight 
decay is configured at 0.001. Throughout the source model training and 
the target domain adaptation stages, the learning rate is established at 
0.001, with an epoch iteration count of 15 and a batch size of 64. Across 
all experiments, μ = 0.3. 

SFAD: To thoroughly validate the diagnostic performance of 
MWSDTN, SFAD, an advanced source-free domain transfer framework 
in fault diagnosis, is adopted to compare with the proposed method (Jiao 
et al., n.d). Similarly, to ensure fairness in the experiments, the network 
structure of SFAD is also set according to Table 1. The parameter opti
mization is conducted via the mini-batch SGD algorithm, with a mo
mentum of 0.9 and weight decay of 0.0005. The initial value of the 
learning rate η0 is 0.01, subsequently updated according to η =

η0/(1 + 10 × λ)0.75, where λ incrementally transitioned from 0 to 1. The 
batch size is set at 32, with iteration counts of 10 and 100 for the two 
respective stages. 

FedKA: FedKA as a federated transfer approach, can ensure data 
privacy when solving multi-source transfer problems (Sun, Chong, & 
Ochiai, 2023). Therefore, FedKA is used as a benchmark to compare 
with our proposed method MWSDTN. For parameter optimization, the 
Adam algorithm is employed with a learning rate set at0.0003, and the 

Fig. 4. The rolling bearing experimental platform.  

Fig. 5. The diagnosis results of all approaches.  

Table 1 
The structural parameters of MWSDTN.  

Module Layer Parameter information Output 
dimension 

Feature 
extractor 

Input / 1 × 28 × 28 
Conv1 1–64, 5 × 1, BN, ReLU 64 × 24 × 24 
Pool1 2 × 1 64 × 12 × 12 
Conv2 64–50, 5 × 1, BN, Dropout, 

ReLU 
50 × 8 × 8 

Pool2 2 × 1 50 × 4 × 4  

Classifier FC0 / 800 
FC1 ReLU 150 
Output Softmax C  
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number of iterations is fixed at 100. The coefficient is λ = 2/1+

exp(− 5q) − 1, while q progressively transitioned from 0 to 1. 
CWTWAE: CWTWAE as a multi-source domain transfer method has 

demonstrated excellent diagnostic performance in three rolling bearing 
datasets (Zhao et al., 2023). Hence, CWTWAE is used for comparison 
with MWSDTN. For parameter optimization, the SGD algorithm is 
employed with a learning rate set at 0.005, and the number of iterations 
is fixed at 600. The coefficient is 2/(1+ exp(- 10× p)) − 1, while p 
progressively transitioned from 0 to 1. More parameters can be seen in 
Ref (Zhao et al., 2023a). 

4.4. Comparison results 

All methods are validated on eight multi-source cross-domain fault 
diagnosis cases, Dataset 1 and Dataset 2. To accurately reflect the 
diagnostic performance and robustness of all methods, the average value 
and standard deviation of ten runs are adopted as the final diagnostic 
results, as shown in Table 2. Furthermore, all methods are implemented 
using the PyTorch framework and accelerated using a NVIDIA GPU, 
running on the Windows system. The computational efficiency of each 
method is evaluated by calculating their average running times on the 
eight multi-source transfer diagnosis cases. “MT4″ represents the trans
fer diagnosis task from source domains T1, T2, and T3 to the target 
domain T4, where the diagnostic results of single-source transfer 
learning methods are the best result of three single-source cross-domain 
diagnosis tasks: ”T1 → T4,“ ”T2 → T4,“ and ”T3 → T4.“ ”PP“ indicates 
whether the method has privacy protection capability. 

From Table 2, it can be observed that DAN, DATN, and CWTWAE 
neglect data privacy, while SHOT, SFAD, FedKA, and MWSDTN ensure 
data privacy. DAN, DATN, SHOT, and SFAD are single-source domain 
fault diagnosis methods, while FedKA, CWTWAE, and MWSDTN are 
multi-source domain fault diagnosis methods. The average accuracies of 
DAN, DATN, SHOT, and SFAD are 95.52%, 96.09%, 94.03%, and 
95.47%, respectively. This means that DATN has the best diagnostic 
performance, DAN and SFAD have similar diagnostic performance, and 
SHOT has the lowest diagnostic performance. These single-source 
transfer learning methods show significant variations in diagnostic ac
curacy across different cross-domain diagnosis tasks. For instance, DAN 
achieves an average diagnostic accuracy of 97.16% on MT4 but only 
93.36% on MT5. DATN achieves an average diagnostic accuracy of 
97.84% on MT2 but only 94.95% on MT6. SHOT achieves an average 
diagnostic accuracy of 95.88% on MT6 but only 90.90% on MT5. SFAD 
achieves an average diagnostic accuracy of 97.17% on MT3 but only 
92.00% on MT8. The maximum and minimum diagnostic accuracy dif
ferences for DAN, DATN, SHOT, and SFAD are 3.80%, 2.89%, 4.98%, 
and 5.17%, respectively. Moreover, these single-source transfer learning 
methods exhibit poor robustness. The average accuracies of FedKA, 
CWTWAE, and MWSDTN are 98.39%, 99.58%, and 98.26%, respec
tively. The comparison results indicate that CWTWAE has the best 
diagnostic performance, followed by FedKA, and the diagnostic perfor
mance of the proposed framework, MWSDTN, is slightly lower than that 

of FedKA. Compared to single-source transfer learning methods, multi- 
source transfer learning methods show smaller variations in diagnostic 
accuracy across different cross-domain tasks and better robustness. 
Regarding the runtime analysis of all methods, source-free transfer 
learning methods have longer runtimes compared to conventional 
transfer approaches. The runtime of multi-source transfer approach is 
shorter than the time required to run single-source transfer learning 
methods three times. Due to the complex communication settings, 
FedKA has a much longer runtime than other methods. 

In conclusion, based on the comprehensive comparison of various 
advanced transfer learning methods, the diagnostic performance of 
MWSDTN has been thoroughly validated. The conclusions drawn from 
this study are as follows: (1) Under the premise of data privacy, source- 
free transfer learning methods often achieve inferior recognition results 
compared to advanced conventional transfer learning methods during 
the distribution adaptation phase, as they are unable to access the source 
domain data. (2) Compared to single-source transfer pattern, multi- 
source transfer pattern undoubtedly has brighter prospects, achieving 
higher diagnostic accuracy, faster training speed, and stronger diag
nostic robustness. (3) Although the diagnostic accuracy of MWSDTN is 
1.32% lower than that of CWTWAE, the value of a slight performance 
improvement is much lower than the value of maintaining data privacy. 
(4) The diagnostic accuracy of MWSDTN is only 0.13% lower than that 
of the advanced federated transfer learning method, FedKA, but the 
runtime is significantly shorter, indicating that the source-free domain 
transfer approach undoubtedly has a brighter application prospect 
compared to the federated transfer approach. In summary, the diag
nostic performance of the proposed method has been fully demonstrated 
by comparing it with various advanced transfer learning methods. 

4.5. Ablation study 

In this section, ablation studies are conducted to assess the impor
tance of the conditional entropy strategy, category diversity strategy, 
and improved self-training mechanism in the proposed MWSDTN 
framework. Specifically, the following comparative methods were 
employed: (1) using only the conditional entropy strategy (MDTN-CE), 
(2) using the reinforced information maximization strategy (MDTN- 
RIM), and (3) using only the improved self-training strategy (MDTN- 
IST). The average results of ten runs for each method were taken as the 
final results, as shown in Table 3 and Fig. 6. Fig. 7. 

Known from Table 3 that the average accuracy rates of MDTN-CE, 
MDTN-RIM, MDTN-IST, and MWSDTN across eight cross-domain fault 
diagnosis tasks are 95.77%, 97.05%, 97.34%, and 98.26%, respectively. 
The comparative results indicate that MWSDTN exhibits the best diag
nostic performance, followed by MDTN-IST, MDTN-RIM, and MDTN-CE. 
Furthermore, MWSDTN demonstrates significantly better robustness 
compared to the other three methods. The experimental results 
demonstrate that applying the reinforced information maximization 
strategy and the improved self-training mechanism can maximize the 
diagnostic performance of the source-free domain transfer model. 

Table 2 
The detailed diagnosis results of all experiments.   

DAN DATN SHOT SFAD FedKA CWTWAE MWSDTN 

PP × × √ √ √ × √ 
MS × × × × √ √ √ 
MT1 95.40±0.62 96.24±0.75 93.59±0.58 96.83±0.39 99.05±0.26 99.84±0.16 98.71±0.30 
MT2 96.72±0.79 97.84±0.61 95.22±0.73 96.06±0.51 98.68±0.30 100.00±0.00 98.79±0.24 
MT3 96.55±0.60 95.93±0.58 95.40±0.77 97.17±0.20 98.40±0.29 99.89±0.09 97.95±0.45 
MT4 97.16±0.47 97.28±0.80 94.12±0.90 95.70±0.56 99.21±0.26 99.70±0.13 99.33±0.14 
MT5 93.36±0.71 96.19±0.69 90.90±1.22 94.09±0.62 98.08±0.49 100.00±0.00 98.40±0.43 
MT6 95.64±0.85 94.05±0.82 95.88±0.61 96.33±0.49 97.35±0.22 99.78±0.15 96.68±0.30 
MT7 94.29±0.66 94.96±1.08 93.15±0.52 95.54±0.33 98.18±0.24 98.51±0.15 97.62±0.28 
MT8 95.01±1.14 96.20±0.73 93.98±0.84 92.00±0.62 98.19±0.37 98.93±0.18 98.57±0.36 
Avg 95.52 96.09 94.03 95.47 98.39 99.58 98.26 
Time(s) 145*3 189*3 459*3 482*3 2006 764 861  
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Additionally, the improvement in the performance of the source-free 
domain transfer model solely using the improved self-training mecha
nism is superior to that of the reinforced information maximization 
strategy. 

5. Conclusion 

This study presents a novel multi-source weighted source-free 
domain transfer method for fault diagnosis of rotating machinery. The 
proposed scheme effectively addresses challenges related to data privacy 
and domain transfer caused by limited labeled historical data. Specif
ically, our method eliminates the need for accessing source data during 
the training process of the unlabeled target domain. Instead, it employs a 
reinforced information maximization strategy and an improved self- 
training mechanism to facilitate knowledge transfer from the source to 

Table 3 
Composition strategy ablation diagnosis results.   

MDTN-CE MDTN-RIM MDTN-IST MWSDTN 

MT1 95.70±0.63 96.94±0.27 97.35±0.40 98.71±0.30 
MT2 96.17±0.50 97.50±0.34 96.84±0.54 98.79±0.24 
MT3 94.46±0.72 96.09±0.45 96.52±0.31 97.95±0.45 
MT4 98.65±0.32 98.35±0.21 99.26±0.16 99.33±0.14 
MT5 96.35±0.57 97.14±0.47 97.70±0.38 98.40±0.43 
MT6 94.89±0.44 95.18±0.30 96.02±0.55 96.68±0.30 
MT7 94.24±0.81 97.49±0.53 96.88±0.33 97.62±0.28 
MT8 95.67±0.61 97.68±0.48 98.11±0.27 98.57±0.36 
Avg 95.77 97.05 97.34 98.26  

Fig. 6. The comparison results of all methods.  

Fig. 7. Variation of test results for all methods in MT1.  
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the target. Moreover, a weighted strategy is introduced, automatically 
applying optimal values to all source domains based on their relevance 
to the target domain. Extensive experiments are conducted to evaluate 
the diagnostic performance of MWSDTN framework, comparing it with 
various advanced transfer learning methods. The results demonstrate 
the effectiveness and competitiveness of MWSDTN. 

In the source-free domain transfer scenario, the quality of the initial 
source model becomes crucial due to the unavailability of source data. 
Additionally, real-world data, with its complex composition, presents 
even greater challenges for domain adaptation. To address these issues, 
future research endeavors will primarily center on exploring advanced 
strategies for enhancing the source model. This includes the application 
of cutting-edge strategies such as Nuclear-Norm Maximization to 
amplify the discriminative and diverse facets of target model pre
dictions. The development of more robust self-training strategies, such 
as employing soft-label techniques to refine the accuracy of pseudo- 
labels in target domain data, is also a key focus. The amalgamation of 
continual learning algorithms will enable the source model to progres
sively adapt to novel information from the target domain over time, thus 
augmenting the model’s generalization capacity. Furthermore, it is 
important to note that this study confines its attention solely to fault 
diagnosis in the context of cross-operational conditions, with uniform 
fault patterns across domains, which presents inherent limitations. In 
the future, efforts will be directed toward expanding the diagnostic 
scenarios of source-free transfer models, encompassing contexts such as 
cross-domain diagnosis between distinct devices and scenarios involving 
disparate fault patterns across domains. 
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