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A B S T R A C T   

Nowadays, air pollution has become one of the most serious environmental problems facing humanity and an 
inescapable obstacle limiting the sustainable development of cities and society. Although air quality sensing and 
management systems based on artificial intelligence and signal analysis are evolving as essential parts of 
intelligent cities, the mixture of local emission sources and regional transport of air pollutants still makes PM2.5 
long-term prediction challenging, especially under complex geographical and climatic conditions. In this paper, 
the complete ensemble empirical mode decomposition based multi-stream informer (CEEMD-MsI) is proposed to 
predict the hourly PM2.5 concentration, and extensive testing and comparisons are carried out in four typical 
cities in Shandong, China. Firstly, CEEMD is used for signal pre-processing to construct the intrinsic mode 
functions (IMFs) based multi-channel representations. Then MsI is specifically designed to learn both temporal 
and spatial features, and complete the PM2.5 concentration prediction. To the best of our knowledge, this is the 
first attempt to predict long-term PM2.5 concentrations using a deep learning model driven by data collected from 
monitoring stations spanning long distances and diverse terrains. Finally, test results demonstrate that CEEMD- 
MsI achieves the best PM2.5 prediction performance by comparing it with state-of-the-art methods.   

1. Introduction 

The sustainable development aims to maintain the natural systems’ 
capacity that cities and society rely on (Yu et al., 2022; Han et al., 2020). 
Adhering to sustainable development principles can ensure the preser-
vation of natural resources for future urban and social development 
while simultaneously maximizing present benefits (Teng et al., 2022). It 
seeks to strike the balance between environmental, social, and economic 
needs, promoting sustainable cities and society (Reyers et al., 2022). 
Despite the significant economic growth and urbanization experienced 
over the past few decades, there has been a corresponding increase in 

energy consumption and pollutant emissions, resulting in severe air 
pollution issues and impeding the sustainable development. Extensive 
studies (Lu et al., 2021; Forouzanfar et al., 2016; Yang et al., 2021) have 
demonstrated that atmospheric particulate matter has posed serious 
threats to both ecosystems and human health, even at relatively low 
concentrations. In particular, PM2.5, which comprises toxic and haz-
ardous airborne particles with an aerodynamic diameter < 2.5 μm, 
inevitably penetrates into the respiratory and cardiovascular systems, 
thereby increasing the probability of suffering from diabetes, cardio-
vascular disease, and lung disease (Lu et al., 2021). PM2.5 has been 
ranked as the sixth leading global risk factor for death and disability by 
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World Health Organization (WHO) (Forouzanfar et al., 2016). From 
1990 to 2019, the number of deaths from PM2.5-related illnesses has 
surged by over 90 % worldwide (Yang et al., 2021). Approximately 7 
million people die each year due to ongoing exposure to air pollution 
(Ma et al., 2019). Besides, the exacerbation of air pollution has facili-
tated the transmission of COVID-19 (Xia et al., 2019). Empirical evi-
dence (Zoran et al., 2020) has established a significant association 
between PM2.5 concentrations and the incidence and fatality rates of 
COVID-19. Currently, the annual average and 24-hour period PM2.5 
concentrations in many regions continue to exceed the levels of 10 μg/ 
m3 and 25 μg/m3 recommended by WHO, respectively (Apte et al., 
2015). In China, only less than 1 % of 500 large cities are able to meet 
the PM2.5 standard and the annual concentration reaches 59 μg/m3 

(Xiao et al., 2020). This alarming situation and trend strongly indicates 
the urgent need for sustainable solutions to mitigate the adverse effects 
of economic development and urbanization on the environment and 
society. In addition to reducing air pollutant emissions from the source, 
accurate long-term prediction of PM2.5 concentrations is one of the most 
effective ways to control and prevent environmental pollution. By uti-
lizing the predicted results of PM2.5 concentrations, targeted measures 
can be taken to provide practical guidance for environmental pollution 
control and sustainable urban planning. 

Actually, the formation principle and the dissemination process of 
PM2.5 are extremely complex due to its intricate properties, e.g., spatio- 
temporal nonlinearities (Fang et al., 2020). It is widely known that the 
formation of PM2.5 is typically attributed to a diverse range of pollutants 
and is heavily influenced by meteorological conditions and their syn-
ergistic effects (Sun et al., 2014). In certain scenarios, the impact of 
meteorological factors on PM2.5 levels surpasses that of pollutant 
emissions (Liang et al., 2016). The seasonal and diurnal fluctuations of 
PM2.5 concentrations exhibit multiple patterns, which are subject to 
uncertainties in boundary and initial conditions, physical/chemical 
processes, and emission sources (Wu et al., 2015). Furthermore, the 
PM2.5 concentrations can be influenced by the accumulation of pre-
ceding PM2.5 thickness (Seng et al., 2021). From the geographical 
perspective, the PM2.5 concentration at a specific location is influenced 
by both internal and external sources (Fang et al., 2020). Internal 
sources may comprise of direct emissions and irregular products caused 
by photochemical effects, which typically result in rapid increase of 
PM2.5 concentrations over a short period of time. By comparison, 
external sources may originate from remote areas and frequently 
generate more subtle but persistent impacts. In particular, PM2.5 can be 
easily transmitted by monsoons, leading to long-term but periodic 
pollution. Environmental factors including temperature, wind speed, 
wind direction, atmospheric pressure, and rainfall may either facilitate 
or hinder the diffusion of PM2.5 (Fang et al., 2020). In general, the ac-
curate modelling and prediction of PM2.5 concentrations across different 
regions is still an extremely challenging task due to their dynamic 
property, i.e., the prominent non-linear and non-stationary changes in 
various cities. 

At present, approaches for predicting PM2.5 concentrations are pri-
marily classified into three categories: deterministic methods, statistical 
modelling methods, and machine learning methods. The deterministic 
methods based on chemical transport modelling (CTM-DMs) attempt to 
explore potential complex relationships between geography, meteo-
rology, chemistry, and PM2.5 emissions by constructing transport and 
diffusion models of PM2.5. Typical CTM-DMs include the community 
multi-scale air quality (CMAQ) system (Cheng et al., 2021), the weather 
research and forecasting method (WRF) (Cao et al., 2018), and coupled 
WRF-chemically model (WRF-Chem) (Hong et al., 2020). However, 
CTM-DMs typically require key information about the source and gen-
eration principle of pollutants, otherwise they may lead to errors. 

Moreover, the actual parameters involved in the diffusion mechanism, 
transportation, and deposition processes of pollutant sources are un-
certain and difficult to measure, which affects the prediction perfor-
mance. The insufficient information on the pollution sources, poor 
representation of physicochemical processes, and high computational 
costs limit the implementation of CTM-DMs. Therefore, despite offering 
valuable insights into PM2.5 dispersion mechanisms and establishing the 
direct correlation between pollutant emissions and air pollution, the 
practical application of CTM-DMs remains restricted. Statistical 
modelling methods (SMMs) aim to establish the relationship between 
various types of imapct factors and PM2.5 concentrations by designing 
regression models without introducing complex physical parameters. 
SMMs mainly include autoregressive model (ARM) (Garcia et al., 2016), 
weighted linear regression (WLR) (Jiang et al., 2021), autoregressive 
integrated moving average (ARIMA) (Zhang et al., 2018), geographi-
cally weighted regression (GWR) (Zhou and Lin, 2019), hidden Markov 
models (HMMs) (Xu and Wang, 2015), and so on. Given sufficient his-
torical data observed from monitoring stations, regression models hold 
the advantages of being easier, faster, and more economical to imple-
ment than CTM-DMs. In addition, SMMs are capable of capturing po-
tential site specific correlations between PM2.5 concentrations and 
selected input variables (Xu and Wang, 2015). Nevertheless, SMMs 
driven by linear, generalized linear, or nonlinear regressions usually 
tend to oversimplify this relationship. HMMs have some inherent 
drawbacks like exorbitant training costs and sensitivity to initial con-
ditions. In addition, a lot of nonlinear modeling approaches like heu-
ristic modeling (Pozna et al., 2010), expert prior knowledge based 
modeling (Ketsarapong et al., 2012), and tensor product based model 
transformation (Hedrea et al., 2021) are gradually being applied. 
Nonlinear modelling can better capture the mapping relationship be-
tween inputs and predicted values. As methods to automatically opti-
mize internal parameters, machine learning (ML) models based on 
feature extraction are capable of capturing the evolution of big data and 
provide valuable implicit expert knowledge, such as ensemble random 
forest (ERF) (Jiang et al., 2020), support vector machine (SVM) (Xu 
et al., 2017), and neural networks (NNs) (Li et al., 2020). In contrast, ML 
methods are more intuitive and easy to understand. ML based regression 
methods have improved the accuracy in a series of applications, 
including early-stage estimation (Jeong et al., 2010) and correlation 
analysis (Precup et al., 2022). Unfortunately, the performance of these 
commonly used ML models in predicting PM2.5 concentrations is still 
unsatisfactory. RF models (Jiang et al., 2020) are prone to over-fitting 
when faced with long-period data. Since the parameters of SVR 
models (Xu et al., 2017) play a key role in the prediction accuracy, a 
large amount of computing resources are required to fine-tune them. 
Shallow neural networks (Li et al., 2020; Jin & Vai, 2015) are hard to be 
well optimized and generalized on big data. Besides, most existing ML- 
related work neglects the design of effective features and the key pre- 
processing techniques of the observation data, making it difficult to 
effectively capture the variation patterns of PM2.5 time series and 
limiting the prediction accuracy. 

As the quintessential algorithm in machine learning, end-to-end deep 
neural networks have shown excellent performance in sequence analysis 
across multiple tasks, including wireless communication (Zheng et al., 
2021a), spectrum sensing (Zheng et al., 2023b; Zheng et al., 2021b), 
structure prediction (Zheng et al., 2022), and natural language pro-
cessing (NLP) (Jin et al., 2020). Deep learning models, such as con-
volutional neural network (CNN) (Li et al., 2020; Zhao et al., 2023a; 
Zheng et al., 2018), attention-based parallel network (APNet) (Zhu 
et al., 2021), long short-term memory (LSTM) (Gao et al., 2021; Zheng 
et al., 2020), and graph attention transformer (GAT) (Tan et al., 2022), 
can effectively extract the crucial information and establish an accurate 
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mapping between input variables and PM2.5 concentrations through the 
utilization of multi-layer nonlinear transformations. Consequently, deep 
learning approaches can substantially alleviate the requirement for 
conducting feature engineering, while exhibiting excellent performance 
in handling intricate datasets. When integrating data observed from 
numerous related sites into a matrix, the elements are associated via 
spatial correlation. CNN is suitable for extracting spatial information 
from multiple sites and predicting PM2.5 concentrations, but tends to 
ignore the temporal information. For example, Zheng et al., (2023a) 
proposed using wavelet packet transform to assist in analyzing temporal 
information, but still faced the long-term dependence problem due to 
the fact that wavelet transform balances the resolution of both time and 
frequency domains. The LSTM overcomes the long-term dependence of 
time series analysis, but its efficient optimization is still a technical 
challenge. Some hybrid models like CNN-LSTM (Li et al., 2020), CNN- 
GRU (Faraji et al., 2022), and 1D-CNN-biLSTM (Zhu et al., 2023) are 
designed to help extract spatio-temporal features however, these models 
generally possess high structural complexity and correspondingly low 
reasoning efficiency. The compression and lightweighting of the model 
is worth investigating, considering the inference efficiency in practical 
applications (Verma et al., 2022). Furthermore, the choice of inputs for 
deep neural networks is a crucial but easily overlooked problem, as 
unrelated or noisy variables may lead to unnecessary complex loss 
landscapes and corresponding poor generalization (Chinatamby & 
Jewaratnam, 2023; Zhao et al., 2023b). Although studies have shown 
the impact brought by signal representations (Zheng et al., 2023b) and 
the enhancement of deep learning model’s generalization capability by 
means of regularization techniques (Zheng et al., 2018), there is no 
targeted application for long-term prediction of PM2.5 concentrations. 

Besides, some data augmentation methods like spectrum interference 
(Zheng et al., 2021) are challenging to directly transfer for the expansion 
of PM2.5 signals. Despite recent progress in applying deep learning to 
PM2.5 concentration prediction, significant efforts still need to be made 
to take full advantage of deep learning and break through the limitations 
of existing prediction methods. 

To address the aforementioned issues, we propse a complete 
ensemble empirical mode decomposition based multi-stream informer 
(CEEMD-MsI) model to predicte the long-term PM2.5 concentration. 
Extensive testing and comparisons are carried out in four typical cities in 
Shandong, China. In the proposed method, CEEMD is first used for signal 
pre-processing to construct the multi-channel representations based on 
intrinsic mode functions (IMFs). Appropriate signal representation is 
beneficial for the convergence of the objective function and the opti-
mization of model parameters. Then a deep learning model integrating 
ProbSparse self-attention modules, i.e. MsI, is designed to learn both 
temporal and spatial features, and therefore to overcome the long-term 
dependence and to improve the generalization ability under various 
conditions. To the best of our knowledge, this is the first attempt to 
predict long-term PM2.5 concentrations using the deep learning model 
driven by data collected from observation stations that span long dis-
tances and complex terrains. 

Main contributions and advantages of this study are summarized as 
follows.  

• As an efficient technique for parallel pre-processing of time series, 
the CEEMD is successfully adopted for frequency domain analysis of 
long-term PM2.5 concentrations. It can not only solve the mode 
pairing problem in joint analysis of multivariate variables, but also 

Fig. 1. The cornerstone methods for PM2.5 concentration prediction in recent years.  
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combine the multivariate input and component decomposition 
simultaneously to overcome the nonlinearity and non-smoothness of 
signals. Besides, the introduction of random disturbances in CEEMD 
suppresses the influence of noises and improves the accuracy and 
stability of signal decomposition.  

• Instead of constructing individual models for each IMF, a single deep 
learning model, i.e. the multi-stream informer consisted by encoder 
and decoder, is specifically built to fuse PM2.5 prediction results of 
multiple IMFs in the proposed method, which can significantly 
reduce training and deployment costs, and improve the prediction 
accuracy and inference efficiency. The multi-head attention mecha-
nism enables the informer model to adapt to signals of different 
lengths and frequencies, thus effectively capturing long-term de-
pendencies in temporal sequences.  

• Comparative tests at 17 monitoring stations in Shandong under 
various evaluation metrics are conducted to prove the effectiveness 
of the proposed CEEMD-MsI. Comparisons with state-of-the-art sta-
tistical modelling methods (PDE (Wang et al., 2020), MFO-ELM (Sun 
et al., 2021), and JAYA-LSSVM (Yang et al., 2022)) and deep 
learning models (CNN-LSTM (Pak et al., 2020), 3D CNN-GRU (Faraji 
et al., 2022), and WPT-LSTM (Zheng et al., 2023a)) demonstrate that 
the proposed method achieves superior performance in predicting 
long-term PM2.5 concentrations.  

• To observe the robustness and sensitivity of CEEMD-MsI in practical 
applications, extensive ablation studies for various hyper-parameters 
are performed, including the number of averaging times and 
decomposition iterations in CEEMD, as well as initial learning rate, 
mini-batch size, weight decay, and structural complexity in MsI. 
Furthermore, the adaptability of CEEMD-MsI to data observation and 
sampling periods is also analyzed for meeting the requirements of 
realistic scenarios. Test results indicate that CEEMD-MsI can gener-
alize well under different conditions. 

The remainder of the paper is organized as follows. In Section 2, we 
briefly review the work related to traditional statistical modelling 
methods and modern deep learning models for PM2.5 concentration 
prediction. In Section 3, the proposed CEEMD-MsI method for PM2.5 
long-term prediction is introduced in detail. In Section 4, we report the 
test results and comparative analysis. Finally, our work and future 
research plans are summarized in Section 5. 

2. Related work 

Urbanization has led to the perpetual deterioration of the environ-
ment, which dramatically amplifies the necessity for proficient predic-
tion and regulation of air quality, specifically concerning PM2.5 
concentrations. To better build sustainable cities and society, re-
searchers have proposed a large number of solutions for PM2.5 concen-
tration prediction in the past few years, as illustrated in Fig. 1. Evidently, 
the progression of PM2.5 concentration prediction research is tran-
sitioning from statistical modelling approaches towards deep learning 
methods. This shift is attributable to the advancements in optimization 
algorithms and the development of specialized architectures that possess 
superior generalization ability across diverse geographies and 
conditions. 

2.1. Traditional statistical modelling methods 

Liu et al. (2019) developed a Bayesian non-parametric ensemble 
(BNE) based PM2.5 prediction model, in which the adaptive and cali-
brated ensemble learning is used to weight the prediction result of each 
candidate model. BNE provided interpretable uncertainty estimates and 
it was applied to the Boston, outperforming existing ensemble methods 
by 30 %-60 % when comparing cross-validation root mean square er-
rors. Ma et al. (Ma et al., 2020) applied the extreme gradient boosting 
(XGBoost) algorithm to air quality prediction and was able to predict 

winter heavy pollution more accurately than CTM-DMs. Utilizing of 
multi-source data including MAIAC and AOD, Lee (2019) computed the 
yearly average concentration of fine PM2.5 at a resolution of 1 km in 
California. However, the missing values in observation data and the 
insufficient temporal resolution for individual cities are waiting to be 
resolved in AOD-derived approaches. Liu et al. (2019) used meteoro-
logical pattern analysis to supplement SVM for PM2.5 class prediction. Li 
et al. (2019) proposed the time series and interactive multi-model (IMM) 
based atmospheric PM2.5 concentration prediction algorithm, achieving 
better accuracy than autoregressive (AR) model and AR-Kalman pre-
diction method. Furthermore, the partial differential equation (PDE) 
(Wang et al., 2020a) and the ordinary differential equation (ODE) 
(Wang et al., 2020b) models were designed to describe the combined 
influence of local emissions, cross-border transmission, and human 
prevention, helping improve PM2.5 prediction accuracy. Empirical and 
statistical-based schemes (Hong et al., 2020) were used to optimize the 
estimation of aerosol initial conditions in WRF-Chem and to improve 
PM2.5 prediction accuracy by integrating observation data from various 
sources. To incorporate the spatio-temporal correlation, Fu et al. (2020) 
introduced a dynamic spatial panel (DSP) approach to forecast daily 
serial PM2.5 concentrations at various grid points spanning the 
geographic expanse of mainland China. DSP leveraged aerosol, vegeta-
tion, and meteorological remote sensing data as explanatory variables. 
The singular meteorological traits of urban localities situated in regions 
with harsh cold conditions often engender a different urban energy 
configuration and building arrangement compared to other urban areas, 
resulting in distinctive features of PM2.5 pollution. Xiao et al. (2020) 
developed an urban canopy energy balance (UCEB) model for atypical 
regions by simulating the dispersion process and vertical concentration 
distribution of PM2.5 in residential areas. 

In recent years, numerous studies have been conducted to address 
the challenges encountered in data processing when utilizing statistical 
models. Pu and Yoo (2021) constructed a missing data interpolation 
model to improve the PM2.5 prediction accuracy of statistical models at 
different locations. In (Huang et al., 2021a; Huang et al., 2021b), the 
bilinear interpolation method was first employed to fill in the blanks of 
AOD, and then the hybrid spatio-temporal modelling framework was 
adopted to downscale the daily PM2.5 prediction within urban areas to a 
spatial resolution of 100 m. Sun & Xu (2021) attempted to filter his-
torical data through RF and grey system approximation (GSA) model, 
and introduced extreme learning machine (ELM) to cope with PM2.5 
prediction, but the Moore-Penrose generalized inverse makes ELM sus-
ceptible to overfitting problems. Xiao et al. (2021) proposed to fill in the 
missing data by analyzing spatio-temporal trends through ordinary 
kriging and generalized additive mixture (OK-GAM) model. Kumharn 
et al. (Kumharn et al., 2022) combined monthly and daily data to fill in 
the gap for non-retrieval days and applied a linear mixed effects model 
(LMEM) as the PM2.5 forecasting tool. Yang et al. (2022) introduced a 
Jaya algorithm optimized least square SVM (JAYA-LSSVM) for 
improving PM2.5 concentration prediction accuracy, adopting the com-
plete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN) and variational mode decomposition (VMD) as the prede-
cessor steps for data preprocessing. By utilizing the K-Core idea and label 
distribution, Zhang & Yan (2023) obtained the weights of meteorolog-
ical and environmental factors affecting PM2.5 concentrations in each 
piece of data, and established multiple models for ensemble prediction. 
Wong et al. (2023) proposed a mixed spatial model that incorporates 
Kriging interpolation, land use regression (LUR), ML, and ensemble 
ideas, to estimate long-term variations PM2.5 in both daytime and 
nighttime for nearly three decades, but its accuracy and reliability for 
future PM2.5 prediction is yet to be verified. 

Despite the development of statistical modelling and machine 
learning models for site-specific PM2.5 concentration prediction, the 
robustness to the ever-changing terrain and climatic conditions, as well 
as their generalizability and applicability across diverse geographic 
areas, is yet to be empirically established. The presence of excessive 
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regional differences may lead to complete failure of the original statis-
tical model. The challenge of acquiring knowledge about long-term 
dependencies inherent in time series data is a major obstacle for statis-
tical modelling methods. Typically, conventional statistical modelling 
techniques are hard to fulfill the practical demands of PM2.5 concen-
tration prediction in the context of big data-driven urban environments 
with growing complexity. 

2.2. Modern deep learning methods 

Due to excellent big data analysis and mining capabilities, a large 
number of deep learning methods have been proposed for PM2.5 con-
centration prediction. Zhao et al. (2019) proposed a LSTM-fully con-
nected (LSTM-FC) network that leverages previous air quality, 
meteorological, and weather forecast data to predict PM2.5 concentra-
tions at specific locations within the ensuing 48 h. Ma et al. (2019) 
constructed a novel framework that combines the inverse distance 
weighting (IDW) algorithm into the bi-directional LSTM (IDW-BLSTM) 
for PM2.5 prediction at different time granularity. Jin et al. (2019) 
designed a comprehensive prediction factor that decomposes the orig-
inal data into three components, i.e. trend, period, and residual, and 
then used ARIMA and two gated recurrent units (GRUs) to predict each 
component separately to improve the PM2.5 prediction accuracy. Pak 
et al. (2020) put forth a hybrid spatiotemporal CNN-LSTM model, and 
used mutual information for spatiotemporal correlation analysis, taking 
into account both the linear and nonlinear correlations between PM2.5 
and the observation parameters. In (Liu & Chen, 2020), empirical 
wavelet transform (EWT) was introduced into neural networks to filter 
abnormal information in the original PM2.5 concentration sequence and 
reduce data complexity. The utilization of the attention mechanism in 
the CNN-LSTM culminated in the development of AC-LSTM (Li et al., 
2020), which adeptly captures the relevance of temporal states at 
disparate antecedent time points in predicting forthcoming PM2.5 con-
centrations. In acknowledgement of the non-stationary characteristic of 
time series, the EMD was incorporated into GRUs (Huang et al., 2021a; 
Huang et al., 2021b) to enhance the performance of single GRU-based 
PM2.5 concentration prediction. In (Zhu et al., 2021), an attention 
based parallel network (APNet) was designed to utilize the multi-layer 
structure of CNN-LSTM to learn both short-term and long-term 

knowledge to predict PM2.5 concentrations over the next 72 h. However, 
existing PM2.5 concentration prediction models still struggle to effec-
tively capturing the complex nonlinearities of PM2.5 variation patterns, 
as it is challenging for a single LSTM or simple tandem CNN-LSTM 
models to simultaneously characterize temporal and spatial de-
pendencies in observed time series. Moreover, the inadequate optimi-
zation and inference efficiency of LSTM impedes its practical 
deployment and application. 

Yeo et al. (2021) fed the combined data from 25 adjacent observation 
stations rather than a single station into hybrid CNN-LSTM based on the 
geographical polygon group method (GPGO), improving the PM2.5 
prediction accuracy by about 10 %. By introducing adjacency matrix in 
the LSTM cell, Gao & Li (2021) proposed a graph-based LSTM (GLSTM) 
to predict the PM2.5 concentrations in Gansu, China. All the environ-
mental observation stations are considered together as one graph, 
introducing spatio-temporal information while avoiding training indi-
vidual models for each station. Nguyen et al. (2021) incorporated the 
genetic algorithm (GA) into encoder-decoder to complete the efficient 
feature extraction and outliers removal, thereby enhancing the PM2.5 
prediction accuracy. Drawing upon the assumption of spatial interac-
tion, Shi et al. (2022) presented a novel balanced social LSTM (BS- 
LSTM) model for forecasting PM2.5 concentration. This network pos-
sesses a distinct advantage in capturing trend information from neigh-
boring locations. Yu et al. (2022) combined the fast Fourier transform 
(FFT) into LSTM to eliminate the spatio-temporal heterogeneity of PM2.5 
and impact factors, and finally achieved the long-term PM2.5 prediction. 
Faraji et al. (2022) built a three-dimensional CNN by incorporating the 
GRU, i.e. 3D CNN-GRU. By learning and predicting all air quality 
monitoring stations simultaneously at varying time intervals, 3D CNN- 
GRU is able to maintain long-term memory and thus improve the 
PM2.5 prediction accuracy. To achieve accurate short-term (within 6 h) 
predictions of PM2.5 concentrations while capturing long-term (6–24 h) 
trends, Teng et al. (2022) developed a novel approach that combines 
EMD technique, sample entropy (SE) index, and bidirectional LSTM 
(BiLSTM). Tan et al. (2022) put forward a multi-data driven spatio- 
temporal PM2.5 prediction method by using reinforcement learning 
based graph attention network (RL-GAT). To address issues of long-term 
dependence and spatial distribution description in the PM2.5 prediction 
task, numerous deep learning models have incorporated specially 

Fig. 2. The overall process of CEEMD-MsI for PM2.5 concentration prediction.  
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designed spatio-temporal information extraction modules, such as 
feedforward-backpropagation neural network (FBNN) (Chinatamby & 
Jewaratnam, 2023) and 1D-CNN-biLSTM (Zhu & Xie, 2023). On the 
other hand, numerous deep learning models that incorporate signal 
preprocessing have been developed, including the wavelet-packet 
transform based LSTM (WPT-LSTM) (Zheng et al., 2023a) and spatio- 
temporal data fusion network (STF-Net) (Zhang & Gan, 2023). 

Extensive empirical studies have consistently demonstrated that the 
usage of multi-domain and multi-resolution signal analysis techniques 
for data preprocessing can enhance the cross-conditional generalization 
ability of deep learning models, particularly in the context of complex 
climate and terrain. Hence, the development of suitable preprocessing 
techniques is imperative to facilitate the reduction of structural 
complexity in deep learning models while simultaneously enhancing the 
capacity to extract robust features. In addition, it is essential to tailor 
model structures and learning strategies to unique features for PM2.5 
prediction. The applicability of model structures transferred from other 
tasks (e.g. image and video) to meteorological and environmental data 
may be limited, leading to inadequate learning of mapping from inputs 
to outputs, while the convergence position can be significantly influ-
enced by learning strategies. In practical applications, the determinants 
influencing PM2.5 are heterogeneous across different geographics. It is 
imperative to incorporate suitable analytical tools to facilitate deep 
learning models in attaining precise prediction of PM2.5 concentrations 
in accordance with realistic scenarios. 

3. CEEMD-MsI for PM2.5 concentration long-term prediction 

In this section, the proposed CEEMD-MsI for PM2.5 long-term pre-
diction is introduced in detail. Firstly, the meteorological and environ-
mental time series are analyzed by CEEMD at multiple scales to form 
local features at different resolutions, i.e., IMFs based multi-channel 
representation, which are then fed into MsI to optimize the objective 
function by modifying all the learnable parameters. Ultimately, the 
converged MsI model possesses the capability to predict future PM2.5 
concentrations while overcoming the problem of long-term dependence. 
Fig. 2 depicts the comprehensive procedure for conducting CEEMD 
analysis, as well as the training and testing of MsI. 

3.1. CEEMD based representation construction 

3.1.1. Signal decomposition 
Given a temporal data sequence {sm(k) }k=1,2,...,K ∈ R1×K containing 

m = 1, 2, …, M types of meteorological and environmental information 
that has been observed for K times, the noisy signals are represented as 

ŝi(k) = s(k)+ ε0wi(k), i = 1, 2, ..., I (1)  

where wi represents different realizations of white Gaussian noise 
(WGN), and the coefficient ε is introduced to determine the signal-to- 
noise ratio (SNR) at each iteration. Small coefficients ε are usually set 
for signals dominated by high-frequency components and vice versa. By 
utilizing the original EMD results, i.e. the IMF set EMD (s(k)) =

{IMFj
EMD(k)}j=1, 2, ..., J and the individual j-th IMF component 

EMDj(s(k)) = IMFj
EMD(k), EEMD can be further executed according to 

IMFj
EEMD(k) =

1
I

∑I

i=1
IMFi,j

EMD(k), j = 1, 2, ..., J (2)  

where IMFi,j
EMD is the j-th IMF of si(k) through EMD processing, and 

IMFj
EEMD(k) indicates the j-th IMF of s(k) by averaging EMD results and 

there are a total of J IMFs. Since each si(k) is decomposed independently 
from the other realizations of WGN, the initial residual can be computed 
by 

r1(k) = s(k) − IMF1
CEEMD(k) (3)  

where 

IMF1
CEEMD(k) = IMF1

EEMD(k) (4) 

Then the CEEMD results at the t-th iteration can be obtained by 
decomposing combinations of the residual and the first IMF component 
of EMD results, as given by 

IMFt+1
CEEMD(k) =

1
I
∑I

i=1
EMD1(rt(k) + εtEMDt(wi(k))), t = 1, 2, ..., T (5)  

where 

rt(k) = rt− 1(k) − IMFt
CEEMD(k), t = 2, 3, ..., T (6)  

where εt represents SNR controller at the t-th iteration. T denotes the 
total number of iterations, as well as the total number of IMFs. The 
operations from Eq. (5) to Eq. (7) are performed iteratively until the 
reconstruction residual R(k) can no longer be decomposed (i.e. the re-
sidual sequence has less than two extrema), in which R(k) is defined as 

R(k) = s(k) −
∑T

t=1
IMFt

CEEMD(k) (7) 

If we rewrite Eq. (7), the given signal s(k) can be ultimately expressed 
as 

s(k) =
∑T

t=1
IMFt

CEEMD(k) +R(k) (8) 

Fig. 3. Illustration of the whole CEEMD iterative process.  
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The CEEMD has now been completely iterated, and it is clear that the 
signal can be perfectly reconstructed without any information loss. The 
whole iterative process is shown in Fig. 3, and the pseudo code of 
CEEMD analysis is summarized in Algorithm 1.  

Signal pre-processing is helpful for machine learning models to extract 
key features reflecting the long-term variation pattern of PM2.5 con-
centration, especially CEEMD, which is adept at handling nonlinear and 
non-stationary signals through decomposition across various scales. 
CEEMD avoids the mode aliasing phenomenon encountered by the 
original EMD, improves the robustness of observed signals to noises and 
low sampling frequency, and maintains the time-varying characteristics 
of signals. The problem of retaining residual noises and being unable to 
separate components within the octave range in EEMD is also resolved 
during the iteration process of CEEMD. At each iteration of de-
compositions, CEEMD introduces the IMF component of WGN accom-
panied by gradually decreasing intensities ε, resulting in less residual 
noises in IMFs and effectively reducing the signal reconstruction error. 
Moreover, the global stopping criterion is set and checked after each 
iteration, thus resulting in efficient signal decompositions. From the 
perspective of PM2.5 concentration prediction, CEEMD reduces the 
number of low-frequency IMF components with small amplitudes, which 
have little significance for expert knowledge mining of long-term 
meteorological and environmental data with low sampling frequency. 

3.1.2. Representation construction 
After obtaining IMFs of observed meteorological and environmental 

data at various scales (i.e., frequencies), the corresponding multi- 
channel representation x based on the correlation factor is constructed 
to feed into a deep learning model for mining spatio-temporal patterns 
and completing PM2.5 concentration long-term predictions, as shown in 
Fig. 4. 

The IMF matrix is first composed by concatenating IMF components 
at each frequency and the reconstruction residual to fully characterize 

the original signal, as given by 

IMF = CEEMD(s1(k)) ⊕ CEEMD(s2(k)) ⊕ ...⊕ CEEMD(sM(k))
= [IMF1; IMF2; ...; IMFM ] ∈ R(T+1)×K×M (9)  

where 

IMFm = CEEMD(sm(k))

= [IMF1
CEEMD(k); IMF2

CEEMD(k); IMFT
CEEMD(k); ...; R(k)] ∈ R(T+1)×K

(10)  

The obtained IMF matrix covers all intrinsic mode features of selected 
PM2.5 concentrations, air indicators, and climate indicators by putting 
into different channels. The third dimension of size M reflects the M 
different types of information. Each row of IMF represents the signal 
components corresponding to a specific time scale. For different time 
scales, it is necessary to further improve expressiveness of IMF through 
matching weighted mechanism, as updated by 

IMF† = [α1 ⊗ IMF1; α2 ⊗ IMF2; ...; αM ⊗ IMFM ] ∈ R(T+1)×K×M (11)  

where ⊗ denotes the Hadamard product, and α represents the weighting 
matrix as 

αm =

⎡

⎢
⎢
⎢
⎢
⎣

αm, 1 αm, 1 ⋯ αm, 1
αm, 2 αm, 2 ⋯ αm, 2

⋮ ⋮ ⋱ ⋮
αm, T αm, T ⋯ αm, T

1 1 ⋯ 1

⎤

⎥
⎥
⎥
⎥
⎦
∈ R(T+1)×K (12)  

Correspondingly, the elements of the IMF matrix are updated to 

IMF†
m = [αm, 1IMF1

CEEMD(k); αm, 2IMF2
CEEMD(k); αm, T IMFT

CEEMD(k); ...; R(k)]

∈ R(T+1)×K

(13)  

It can be deduced that all elements of IMF are enhanced to varying 
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degrees due to αm, t > 1 while the reconstruction residual with an im-
plicit fixed weight 1 remains unchanged. 

The setting of the weighting matrix α is computed based on the Hurst 
exponent H, which not only reveals the complexity of time series, but 
also describes their long-term correlation, as given by 

αm, t = eHm, t ∈ (1, e), if Hm, t ∈ (0, 1) (14)  

where Hm,t corresponding to IMFt
CEEMD(k) can be calculated by the 

following steps: 
Step 1: Constructing the zero-mean normalized IMF sequence φ(k) by 

φt(k) = IMFt
CEEMD(k) − < IMFt

CEEMD(k) > (15)  

where <⋅> is responsible for calculating the average value of a given 
sequence. 

Step 2: Dividing the sequence φ(k) into n non-overlapping sub-
sequences with the same length L, ensuring that K = nL. Then each 
subsequence can be represented as 

ϕt
i(k) = {φt(k) : 1 + (i − 1)L⩽k⩽iL }, i = 1, 2, ..., n (16)  

The calculation can be repeated from both ends to eliminate boundary 
effects if there are redundant elements. 

Step 3: Each subsequence ϕt
i(k) is fitted using a first-order polynomial 

function g(⋅) to obtain its fitting curve gt(k). In principle, the fitting 
function g(⋅) should exhibit linearity and low-frequency, and be equiv-
alent to a high-pass filter for dealing with the time series. 

Step 4: Computing the variance of the remaining sequence after 
descending convergence of each sub-sequence as 

(Ft
i(l))

2
=

1
L

∑il

k=(i− 1)L+1

(ϕt
i(k) − g(k))2

, l = 1, 2, ..., L (17) 

Step 5: Calculating the root mean square of the overall descending 
pulsation of the times series by 

Ft2 (l) =
1
K

∑K

k=1
(φt(k) − g(k))2 (18) 

Step 6: Calculating the pulsation F(l) corresponding to different 
length L, and the scalar relationship between the pulsation F(l) and the 
box length L can be described as 

Ft(l) ∼ LHt (19)  

where the Hurst exponent Ht can be used to characterize the memory 
strength of IMFs and determine the long-term correlation of IMFs with 
respect to its past values. Therefore, a larger Ht reflects a stronger self- 
similarity. 

The weighted IMF matrix is now computed and then can be used as 
the multi-channel input (i.e. x = IMF† ∈ R(T+1)×K×M) for predicting 
PM2.5 concentrations using the observed data sequences at the previous 
K moments. Compared with feeding original IMF sequences directly into 
the deep learning model, the weighted IMFs based signal representation 
x can eliminate the disturbing factors during the data acquisition pro-
cess, and pay attention to the high-frequency fluctuations and profound 
changes hidden in the low-frequency of the data. In practical applica-
tions, the received signals are first decomposed and reconstructed by 
CEEMD, and then a deep learning model can be constructed to mine the 
implicit expert knowledge and complete the continuous prediction of 
future PM2.5 concentrations. 

3.2. MsI model 

In this part, we introduce the proposed MsI model for feature 
learning of weighted IMFs obtained from CEEMD analysis of observed 
meteorological and environmental data, and subsequent PM2.5 concen-
tration prediction. 

3.2.1. Model structure 
The specific structure of MsI is consisted of an encoder f (⋅) and a 

Fig. 4. Construction of the multi-channel representation of observed signals.  
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decoder h(⋅), as shown in Fig. 5. The encoder composed of convolution, 
embedding, and attention is designed to extract robust long-range de-
pendencies from long sequential inputs. The convolutional kernels with 
size 3 × 3 are used to mine contextual information, while the embedding 
is to supplement the positional information of each channel. During the 
forward propagation process, the i-th multi-channel representation xi is 
first re-shaped into a two-dimensional matrix Xt

en, in which each channel 
corresponds to an input stream and the convolutional kernels between 
streams are not shared. The outputs of j-th layer after 1D convolution 
and embedding are concatenated fed into the ProbSparse self-attention 
block, as given by 

Xt
j+1 = Maxpool(ELU(Conv1d([Xt

j]AB))) (20) 

where 

ELU(x) =
{

ex − 1 if x⩽0
x if x > 0 (21)  

In the above equations, Maxpool(⋅) denotes the max-pooling layer with 
stride 2, Conv1d(⋅) performs 1D convolution operations on time 
dimension with kernel size of 3 × 3, and the exponential linear units 
(ELU) function is used to complete the nonlinear transform. [⋅]AB rep-
resents the ProbSparse self-attention operation, which is defined as 

[X]AB = Softmax(
QKT

̅̅̅
d

√ )V (22)  

where d is the input dimension, K ∈ RLK×d and V ∈ RLV×d represent the 
key vector and value vector in the canonical self-attention, respectively 
(Gong et al., 2022). Q is a sparse matrix of the same size of query vector 
Q and only contains some top queries under the sparsity measurement 
SM, which can be computed by 

SM(qi,K) = ln
∑LK

j=1
e

qikT
j̅̅
d

√

−
1

LK

∑LK

j=1

qikT
j
̅̅̅
d

√ (23)  

where qi and kj are the i-th and j-th row in Q and K, respectively. The 
first term is the Log-Sum-Exp operation of qi on all the keys, and the 
second term is their arithmetic mean. After three stacked ProbeSparse 

attention blocks and 1D convolution layers, the output of the encoder is 
fed into the decoder. Actually, the ProbeSparse attention block is able to 
strike a balance between capturing long-term dependencies and low 
computational complexity. Besides, the introduction of multi-head 
attention mechanism helps the model focus on factors that are critical 
in predicting PM2.5 concentrations, while ignoring irrelevant factors that 
may have adverse effects. 

The decoder h(⋅) is composed of the stacking of one ProbeSparse 
attention block and two identical multi-head attention layers. The input 
of decoder is further split into different tokens, as given by 

Xt
de = {Xt

token,Xt
0} (24)  

where Xt
token is the start token, and Xt

0 is a placeholder for the target 
sequence. Through the similar 1D convolution with kernal size of 1 × 5, 
embedding operation, and ProbSparse self-attention blocks in the 
encoder, the outputs of the encoder and features extracted from the 
decoder are put through two multi-head attention layers together. The 
multi-head attention layer allows the model to jointly focus on the 
crucial information from various representation subspaces at different 
locations, as calculated by 

MultiHead(Q, K, V) = Concat(head1, ..., headp)WO (25)  

where 

headi = Attention(QWQ
i , KWK

i , VWV
i ) = Softmax(

QWQ
i (KWK

i )
T

̅̅̅
d

√ )VWV
i

(26)  

where the projections WQ
i , WK

i , WV
i , and WO are learnable parameter 

matrices, and a total of p = 4 parallel heads are set in the model. Finally, 
PM2.5 concentration prediction results can be obtained by a fully con-
nected layer with identity mapping. 

The initialization of the MsI structure adopts empirical settings 
transferred from other signal analysis fields. Then we observed the 
optimization results of the objective function under different module 
combinations to select the relatively optimal structure, including the 
number and size of convolutional kernels, the type of activation 

Fig. 5. Specific model structure of the proposed MsI.  
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functions, and the location of attention mechanisms. Finally, the PM2.5 
prediction performance of the optimal model structure is comprehen-
sively tested and compared. In fact, a well-designed model structure has 
little impact on PM2.5 prediction performance. 

3.2.2. Parameters optimization 
Although deep learning is a highly over-parameterized non-convex 

model that has always been challenging to optimize, finding local 
optimal solutions has been widely studied. The learnable parameters W 
in MsI can be modified by optimizing the objective function through the 
error back-propagation based mini-batch stochastic gradient descent 
(SGD) method (Lohat et al., 2023). The objective function designed to 
simultaneously measure the PM2.5 prediction accuracy and structural 
complexity of the deep learning model is defined as 

L (xi;W) = (yi − ŷi
)

2
+ γ

∑

j
‖Wj‖

2
2 (27)  

where yi and ŷi represent ground-truth and forecasted PM2.5 concen-
trations, respectively. ‖Wj‖

2
2 denotes the L2-regularization of learnable 

parameters in the j-th layer and γ is a hyper-parameter controlling reg-
ularization intensity. L2-regularization limits the structural complexity 
of the model by constraining the intensity of parameters to prevent 
overfitting. 

Before the training of MsI, all the learnable parameters W0 are 
randomly initialized to follow the standard normal distribution and de- 
correlated. During the back-propagation process, W l at the l-th training 
iteration (l = 1, 2, …, L) can be modified as 

Wl = Wl− 1 − αl
τ̂l
̅̅̅̅̅
ρ̂l

√
+ ∍

(28)  

where αl is the dynamically adjusted learning rate at l-th iteration and 
determines determine the step size of descent. ∍ is a small constant for 
numerical stability. τ̂ l and ρ̂l denote the estimators of corrected first- 
order and second-order moments respectively, which are calculated by 

τ̂ l =
τl

1 − φ1
(29)  

ρ̂l =
ρl

1 − φ2
(30)  

where 

τl = φ1τl− 1 +(1 − φ1)∇l (31)  

ρl = φ2ρl− 1 +(1 − φ2)∇
2
l (32)  

∇l =
1
ω

∑ω

i=1

∂L (xi;Wl− 1)

∂Wl− 1
(33)  

In the above equations, φ1 and φ2 represent exponential decay rates of 
first-order and second-order moments respectively and belong to the 
interval [0, 1), ω is the batch size, and ▽l denotes the batch gradient 
used to determine the descent direction of objective function at the l-th 
training iteration. The whole training process is summarized in Algo-
rithm 2. Finally, we can obtain a convergent MsI model with updated 
parameters W* by continuously iterating through the above steps on 
training samples, i.e., from Eq. (27) to Eq. (33). 

After the MsI model is fully trained, i.e. the convergent model is 
output, it can be deployed to complete the processing of test signals. 
Specifically, the newly received test signals can be fed into the MsI 
model, and the predicted PM2.5 value is output through the forward 
propagation. By comparing the predicted values with the actual PM2.5 
values using a series of metrics, the prediction performance of the model 

can be comprehensively evaluated.  

4. Test results and analysis 

In this section, we conduct comprehensive tests in Shandong Prov-
ince, China, and compare the PM2.5 concentration prediction accuracy 
and efficiency of CEEMD-MsI with state-of-the-art methods. Ablation 
studies are performed to verify the effectiveness of each module in 
CEEMD-MsI. Furthermore, the hyper-parametric sensitivity and 
robustness to changing observation conditions of CEEMD-MsI are 
observed to verify its practicality. 

4.1. Test datasets 

The tests are conducted using meteorological and environmental 
data observed in Shandong, China. Data from a total of 17 monitoring 
stations in four representative cities, including Jinan, Qingdao, Taian, 
and Zibo, were collected. The distribution of four cities and corre-
sponding air quality monitoring stations is shown in Fig. 6. The Shan-
dong province has an estimated land area of 155800 km2, with a length 
of 721 km from east to west and 437 km from north to south. It is 
dominated by mountains and hills, of which the western and northern 
areas are plains formed by alluvial deposits of the Yellow River, the 
central region and the southern peninsula are gently undulating hilly 
areas. The mountainous area accounts for 14.59 % of the total area of 
Shandong, thus forming a natural barrier to airflow carrying PM2.5. In 
addition, Shandong has one-fifth of the country’s coastline, so ocean 
currents and monsoons have an undeniable impact on the spread and 
accumulation of PM2.5. Actually, there are great regional differences 
among cities in Shandong, making it challenging for a single model to 
predict long-term PM2.5 concentrations under different locations and 
conditions. In this case, deep learning models aided by signal pre- 
processing have superior generalization capability compared to tradi-
tional statistical modelling methods. 

In practical applications, the main task of outdoor air quality 
monitoring stations is to detect and collect specific air pollutants, and 
upload data in real-time to cloud servers for storage and analysis. The 
observed data used in the tests involves M = 12 types of influential 
factors, of which the environmental data contains PM2.5, PM10, SO2, 
NO2, O3, and CO, and the meteorological data contains temperature 
(AT), pressure (PRES), wind direction (WD), wind speed (WS), cloudi-
ness (CL), and precipitation (PREC). Since there are a few missing values 
in the collected data, the linear interpolation within the same day is used 
to fill in the blanks. The meteorological and environmental data series 
observed over a period of time are shown in Fig. 7. The data observation 
period is the whole year of 2020, where the sampling interval is 1 h. 
Specifically, we have collected a total of 149,311 records of hourly PM2.5 
concentrations from 17 monitoring stations in Shandong, of which 60 %, 
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20 % and 20 % are divided into training set, validation set, and test set, 
respectively. The training set is used to optimize model parameters, the 
validation set is used to select appropriate model hyper-parameters, and 
the test set is used to evaluate the model performance. The Pearson 
(linear) and Kendall (nonlinear) correlations between various factors of 
the observed data are analyzed in Fig. 8. The linear correlation degree 
between different factors and PM2.5 concentrations is shown in (a), with 
historical PM10 accumulations being the most relevant while other 
factors showing joint correlation. In (b), a strong correlation is observed 

between meteorological data, especially between PRES, CL and PREC. 

4.2. Training and test settings 

The proposed CEEMD-MsI is deployed in the workstation equipped 
with a 64 bit Windows 10 operating system, consisting of Intel (R) Core 
(TM) i9-12900KS CPU, NVIDIA RTX 3090 GPU, 2 × 16 GB RAM, and 2 
TB HDD. During the tests, CEEMD based signal analysis is implemented 
in Matlab 2022a and the deep learning model MsI is trained and tested 

Fig. 6. The distribution of air quality monitoring stations in four cities in Shandong, China.  

Fig. 7. Meteorological and environmental data series observed over a period of time.  
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using Pytorch supported by Python 3.11.2. All the hyper-parameters 
involved in the CEEMD-MsI have been summarized in Table 1. The 
time series observed in the past K = 72 h are used to predict the PM2.5 
concentrations in the next 24 h. Initial noise intensity ε0 in CEEMD is set 
to 0.5 to create an average interference. The averaging number I is set to 
8 by weighing decomposition efficiency and frequency resolution. The 
number of decomposition iterations T for each type of influential factor 
is uniformly limited to 6 to ensure consistent dimensionality of the IMF 
matrix. During the training process of MsI, the learning rate α affects the 
convergence path of model loss, and is gradually reduced in a simulated 
annealing manner to accommodate the progressively finer loss land-
scapes. Batch size ω = 32 is set according to the total number of training 
samples, which determines the gradient decent direction when opti-
mizing the loss function by updating model parameters. Some other 
hyper-parameters including weight decay λ = 0.01, Dropout rate PD =

0.5, decay rates φ1 = 0.9 and φ2 = 0.999, small constant∍ = 0.00001, 
and training epochs L = 60 (about 170,000 iterations) are set empiri-
cally. During the training process, when the objective function of the 
training set no longer decreases within 5 epochs, it means that the model 
has been trained as well as possible. When the objective function of the 
validation set maintains an upward trend over a period of time, the 
model may start to tend to overfitting. 

For performance evaluation of PM2.5 concentration prediction from 
multiple perspectives, five metrics including mean absolute error 
(MAE), mean absolute percentage error (MAPE), root mean square error 
(RMSE), determination coefficient (R2), and Nash-Sutcliffe efficiency 
coefficient (NSE) are introduced as follows. 

MAE =
1

Ntest

∑Ntest

i=1
|yi − ŷi| (34)  

MAPE =
100
Ntest

∑Ntest

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (35)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ntest

∑Ntest

i=1
(yi − ŷ i)

2

√
√
√
√ (36)  

R2 =
Ntest

∑Ntest
i=1 yi ŷi −

∑Ntest
i=1 yi

∑Ntest
i=1 ŷi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ntest
∑Ntest

i=1
y2

i − (
∑Ntest

i=1
yi)

2

√

⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ntest
∑Ntest

i=1
ŷ2

i − (
∑Ntest

i=1
ŷi)

2

√ (37)  

NSE = 1 −
∑Ntest

i=1 (yi − ŷi)
2

∑Ntest
i=1 (yi − y)2 (38)  

where y represents the average value of observed PM2.5 concentrations 
of the test data. MAE and RMSE measures the average prediction error, 
and MAPE describes the degree of prediction accuracy. R2 reflects the 
fitting degree of regression lines to observed values, and NSE exposes the 
reliability of the model. It is clear from the definitions of these metrics 
that a method can be considered to perform better if it achieves lower 
MAE, MAPE, and RMSE while higher NSE and R2 than the other com-
parison methods. 

4.3. PM2.5 concentration prediction performance 

We first visualize the CEEMD results of 11 types of influential factors 
in Fig. 9. Due to the limitation of signal observation period, a total of T =
6 iterations have been able to completely decompose the signal at 
various frequencies. The main information is covered in the IMFs, while 
the bottom noise is concentrated in the reconstructed residuals. From a 
purely temporal perspective, environmental factors are more unstable 
than meteorological factors. However, after CEEMD preprocessing to 
different frequencies, the stationarity of the two types of signals grad-
ually became consistent, alleviating the mode pairing problem. In this 
case, a single deep learning model is able to extract the features of multi- 
channel signal representations consisting of IMFs at multiple fre-
quencies, and accomplish PM2.5 concentration prediction. 

Then we display the training process and optimization results in 
Fig. 10. As shown in (a), the model objective function of training set 

Fig. 8. Correlation analysis between various factors in meteorological and environmental data. (a) Pearson, (b) Kendall.  

Table 1 
Hyper-parameters setting in the CEEMD-MsI.  

Stage Hyper-parameter Value 

Analysis by CEEMD observation period K 72 
noise intensity ε0 0.5 
averaging number I 8 
decomposition iteration T 6 

Training of MsI learning rate α0 0.01 
batch size ω 32 
Dropout rate PD 0.5 
weight decay λ 0.0001 
decay rate φ1 0.9 
decay rate φ2 0.999 
small constant ∍ 0.00001 
training epochs L 60  
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tends to stabilize at about 0.25 at 40 training epochs, followed by small 
oscillations < 0.1. By comparison, the objective function of the valida-
tion set converges to approximately 0.5 and has relatively large fluctu-
ations. Since samples from different urban areas are used for machine 
learning, it is challenging for the objective function to converge stably, 
which is exactly beneficial to prevent overfitting and improve its 
generalization. The convergent model has achieved good fitting results 
on the training set, with MAE 2.6955, MAPE 4.6023, RMSE 4.2325, R2 

0.9931, and NSE 0.9910. The model also performs well on the test set 
(MAE 4.8814, MAPE 10.2775, RMSE 5.9604, R2 0.9770, and NSE 
0.9702) with acceptable generalization error (i.e. the performance gap 
between validation set and test set: MAE loss 1.4031, MAPE loss 2.1589, 
RMSE loss 0.4196, R2 loss 0.0057, and NSE loss 0.0093). 

To verify the superiority of CEEMD-MsI, a series of statistical 
modelling methods (PDE (Wang et al., 2020), MFO-ELM (Sun et al., 
2021), and JAYA-LSSVM (Yang et al., 2022)) and deep learning models 
(CNN-LSTM (Pak et al., 2020), 3D CNN-GRU (Faraji et al., 2022), and 
WPT-LSTM (Zheng et al., 2023a)) are compared. During the tests, the 
test conditions and design are kept as consistent as possible, such as the 
period of the input signal and the predicted period. Some unique hyper- 
parameters in different methods refer to the original settings. The PM2.5 
concentration prediction results for four cities are reported in Table 2. 
CEEMD-MsI achieved state-of-the-art PM2.5 concentration prediction 
performance for the future 24 h in four cities, with all MAEs < 7, MAPEs 
< 15, RMSEs < 9, R2 > 0.9650, and NSEs > 0.9540. Besides, deep 
learning models demonstrate significant advantages over statistical 
modelling methods, especially in this cross-geographic big data context. 
It is worth noting that all approaches perform the worst in Qingdao city 

compared to other three cities, probably due to its special geographical 
location. In Fig. 11, we present the comparison of average PM2.5 con-
centration prediction results in four cities. It is clear that CEEMD-MsI has 
attained the lowest average MAE, MAPE, and RMSE, coupled with the 
highest average R2 and NSE. To further evaluate the PM2.5 long-term 
prediction performance, comparison results under different prediction 
time ranges are summarized in Table 3. PM2.5 concentrations are pre-
dicted for up to the future 32 h. As the predicted time range increases, 
the PM2.5 prediction performance of all methods decreases. The 
designed MsI model continues to exhibit a comparatively favorable 
performance, owing to its ability to capture the long-term dependency of 
time series data. Even predicting PM2.5 concentrations for the future 32 
h, CEEMD-MsI improved the state-of-the-art MAE, MAPE, RMSE, R2, and 
NSE by 48.12 %, 36.64 %, 43.01 %, 1.42 %, and 0.99 %, respectively. 

In Fig. 12, we visualize the PM2.5 concentration prediction perfor-
mance of various methods by presenting some of the results in a stair- 
step format. During the prediction process, both PDE and MFO-ELM 
displayed significant deviations from the observed values and demon-
strated a high level of predictive variance. In contrast, deep learning 
methods, particularly CEEMD-MsI, showed smaller deviations and pre-
diction variances. As shown in Fig. 13, about 600 points are presented in 
the form of a scatter plot to show the predictability of CEEMD-MsI and 6 
comparison methods. Visual inspection of the observed and predicted 
PM2.5 values, through the fitting of a straight line (y = x), reveals that 
CEEMD-MsI exhibits the strongest fitting capability. Notably, CEEMD- 
MsI shows a more pronounced advantage in predicting higher PM2.5 
concentrations above 200 μg/m3. 

Fig. 10. Optimization results of the objective function and PM2.5 prediction performance of CEEMD-MsI.  

Fig. 9. Signal decomposition results of CEEMD analysis. (a): original signal, (b)-(g): IMF1-IMF6, (h): construction residual.  
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4.4. Ablation studies 

To observe and verify the roles played by each module of CEEMD- 
MsI in the PM2.5 concentration prediction task, ablation studies are 
conducted in this part. The predictive performance containing accuracy 
and efficiency of MsI driven by different input forms is reported in 
Table 4. MsI driven by multi-channel representations constructed based 
on IMFs exhibits superior prediction accuracy over the original time 
series, with CEEMD showing the most significant performance 
improvement. On the other hand, although the multi-channel repre-
sentation requires longer model inference time (3.54 ms), it can still 
fully meet the requirements of practical applications at a signal sampling 
period of 1 h. In Table 5, we further observe the impact of the number of 
decomposition iterations of CEEMD, i.e. the number of IMFs, on the 
PM2.5 prediction performance of the MsI model. It can be seen that the 
increase in decomposition resolution helps to improve the PM2.5 pre-
diction performance of the model accompanied by a negligible increase 

in decomposition time and inference time. In fact, the number of 
decomposition iterations can be considered in combination with the 
data observation period and the complexity of the actual PM2.5 predic-
tion task. 

In addition to the role of CEEMD, we also judge the impact of 
different attention mechanisms, as shown in Table 6. Compared to the 
traditional multi-head attention, the adopted ProbSparse self-attention 
improves the average MAE, MAPE, RMSE, R2, and NSE by 32.43 %, 
23.53 %, 42.89 %, 1.09 %, and 0.94 %, respectively. The results indicate 
that MsI with ProbSparse self-attention is capable of extracting spatio- 
temporal features without introducing a large number of parameters. 

4.5. Hyper-parametric sensitivity 

In practical applications, the choice of hyper-parameters will affect 
the PM2.5 prediction performance of deep learning models across 
different scenarios. In this part, we first test the sensitivity of CEEMD to 

Table 2 
PM2.5 concentration prediction performance of comparison methods at different cities.  

City Method PM2.5 concentration prediction performance 
MAE MAPE RMSE R2 NSE 

Jinan PDE  24.9754  34.2025  31.2290  0.9111  0.8052 
MFO-ELM  21.2912  28.6699  26.0012  0.9240  0.8624 
JAYA-LSSVM  18.7872  25.2105  22.4086  0.9323  0.9001 
CNN-LSTM  14.9656  21.1094  18.5903  0.9457  0.9303 
3D CNN-GRU  12.9667  18.3582  15.9770  0.9572  0.9488 
WPT-LSTM  12.4337  17.6487  14.7477  0.9681  0.9541 
CEEMD-MsI  4.9505  11.2073  6.0151  0.9754  0.9620 

Qingdao PDE  25.3314  42.6425  27.1197  0.9113  0.8018 
MFO-ELM  21.8977  34.0083  23.4942  0.9182  0.8529 
JAYA-LSSVM  19.6892  33.5815  21.7792  0.9216  0.8930 
CNN-LSTM  15.2927  30.3908  16.9856  0.9398  0.9204 
3D CNN-GRU  13.4489  28.3863  16.7722  0.9410  0.9377 
WPT-LSTM  13.2356  22.7244  14.6254  0.9533  0.9438 
CEEMD-MsI  6.2207  14.5419  8.9417  0.9680  0.9547 

Taian PDE  21.8438  24.1115  22.8752  0.9204  0.8266 
MFO-ELM  17.6799  21.0126  19.0942  0.9411  0.8782 
JAYA-LSSVM  14.5372  15.3932  13.3320  0.9692  0.9212 
CNN-LSTM  10.7650  11.4737  10.1777  0.9725  0.9499 
3D CNN-GRU  8.5599  11.1668  10.2686  0.9733  0.9783 
WPT-LSTM  8.2004  10.2016  9.4199  0.9780  0.9800 
CEEMD-MsI  4.0580  7.2701  4.3361  0.9852  0.9833 

Zibo PDE  19.7317  26.4384  24.2100  0.9199  0.8251 
MFO-ELM  17.0004  23.8735  20.4351  0.9336  0.8746 
JAYA-LSSVM  12.3312  16.4445  14.7699  0.9561  0.9195 
CNN-LSTM  9.1801  12.7597  11.6879  0.9646  0.9472 
3D CNN-GRU  8.8065  12.4758  11.5577  0.9672  0.9740 
WPT-LSTM  9.0448  11.0085  10.9304  0.9698  0.9785 
CEEMD-MsI  4.3002  8.0926  4.5514  0.9794  0.9808  

Fig. 11. Average PM2.5 concentration prediction performance of various methods.  
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the averaging number I during the decomposition iteration process, and 
the results are summarized in Table 7. As the averaging number I in-
creases, CEEMD can more effectively suppress the influence of noises 
and improve the accuracy and stability of decomposition results, thus 
leading to improved performance of MsI for feature learning and PM2.5 
prediction. The MAE, MAPE, RMSE, R2, and NSE can be improved from 
5.8987, 12.1153, 8.8220, 0.9668, and 0.9588 to 4.8770, 10.2562, 
5.9479, 0.9774, and 0.9722 respectively by increasing the averaging 
number I from 4 to 10. Moreover, the additional decomposition time 
resulting from an increase in the averaging number is less than 0.1 ms, 
which can be negligible in both theoretical analysis and practical 
applications. 

Then we observe the impact of hyper-paramets setting in MsI on 
PM2.5 prediction performance, as shown in Fig. 14. It can be seen that 
the learning rate (except for a large initial value α0 = 0.01) has a minor 
impact on the final prediction performance of the proposed LSTM 
model, with the values of MAE, MAPE, RMSE, R2, and NSE varying by no 

more than 0.45, 0.85, 1.95, 0.015, and 0.015, respectively. A large 
initial learning rate setting makes the model susceptible to oscillation in 
the late iterations and fails to converge to a stable minimum position. 
Moreover, even though the test data are collected from 17 observation 
stations at different locations in Shandong, the CEEMD-MsI still exhibits 
the tolerance to batch size and weight decay, and the adaptability to 
changing model sizes. An excessive number of parameters (140 %) can 
result in the model overfitting to the training samples, while an insuf-
ficient number of parameters (60 %) may lead to incomplete description 
of spatio-temporal features. Actually, the CEEMD-MsI driven by IMFs 
based multi-channel representations tends to create a flat and wide loss 
landscape of the objective function, making it easier to converge to the 
global optimal position with better generalization capability. 

4.6. Robustness analysis 

The standards for meteorological and environmental monitoring 

Table 3 
Average PM2.5 concentration prediction performance of comparison methods at various predicted time ranges.  

Time range Method Average PM2.5 concentration prediction performance of four cities 
MAE MAPE RMSE R2 NSE 

Future 
12 h 

PDE  15.5043  22.4895  17.3506  0.9210  0.8270 
MFO-ELM  13.5409  19.3405  15.0369  0.9501  0.8843 
JAYA-LSSVM  7.0015  13.7481  10.0518  0.9652  0.9304 
CNN-LSTM  4.4276  9.9681  6.8921  0.9805  0.9619 
3D CNN-GRU  4.2105  9.3136  6.0415  0.9878  0.9806 
WPT-LSTM  3.6260  8.3398  4.8921  0.9912  0.9836 
CEEMD-MsI  3.0271  7.2853  3.7843  0.9937  0.9914 

Future 
18 h 

PDE  20.0379  28.6780  25.2847  0.9196  0.8218 
MFO-ELM  17.5229  24.0472  21.4830  0.9461  0.8712 
JAYA-LSSVM  12.9265  19.6784  15.9020  0.9588  0.9171 
CNN-LSTM  9.4350  14.1474  12.7851  0.9663  0.9446 
3D CNN-GRU  9.1266  13.8816  12.3390  0.9697  0.9622 
WPT-LSTM  9.3811  13.2950  12.8956  0.9736  0.9661 
CEEMD-MsI  4.3244  9.4054  5.1787  0.9907  0.9799 

Future 
24 h 

PDE  24.2180  33.6345  30.6933  0.9151  0.8074 
MFO-ELM  20.0643  27.7107  25.4194  0.9274  0.8679 
JAYA-LSSVM  17.1944  24.1427  21.7458  0.9437  0.9033 
CNN-LSTM  14.2089  20.2795  17.9599  0.9580  0.9341 
3D CNN-GRU  12.2978  17.7348  15.5404  0.9659  0.9506 
WPT-LSTM  11.1398  16.1607  14.0739  0.9701  0.9595 
CEEMD-MsI  4.8814  10.2775  5.9604  0.9770  0.9702 

Future 
32 h 

PDE  26.8645  39.1704  35.9038  0.9009  0.7946 
MFO-ELM  24.8307  31.0301  29.1432  0.9150  0.8469 
JAYA-LSSVM  23.1335  30.7763  27.0474  0.9234  0.8841 
CNN-LSTM  20.9694  26.4755  24.5298  0.9316  0.9124 
3D CNN-GRU  17.7059  24.0366  21.7087  0.9437  0.9325 
WPT-LSTM  15.8449  20.5619  17.9036  0.9442  0.9409 
CEEMD-MsI  8.2207  13.0288  10.2024  0.9576  0.9512  

Fig. 12. Observed PM2.5 concentrations and prediction results of various methods.  
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stations have not been established in the construction of modern sus-
tainable cities. The monitoring stations at different locations usually 
have complex settings for the observation period and sampling period of 
the data, which places demanding requirements on PM2.5 concentration 
prediction methods. Therefore, we test the robustness of CEEMD-MsI to 
various observation and sampling conditions, as shown in Fig. 15. The 
observation period from 48 h to 96 h has little effect on the predictive 

performance of CEEMD-MsI, and the MAE, MAPE, RMSE, R2, and NSE 
are changed from 5.5483, 11.8620, 8.4554, 0.9647, and 0.9549 to 
4.7226, 10.0137,5.4103, 0.98544, and 0.9735, respectively. The pre-
dictive performance of the losses is far from the level that would influ-
ence the governance policy. Therefore, the observation period can be 
reduced to alleviate the amount of information without losing signifi-
cant PM2.5 prediction performance, thus reducing the structural 
complexity of the model and increasing its inference speed. 

By comparison, the manually set sampling periods from 1 h to 8 h 
exhibit a more pronounced impact on the CEEMD-MsI. After the data is 
sampled at 8 h intervals and used for model training, the PM2.5 pre-
diction performance of CEEMD-MsI has decreased to the MAE 22.2959, 
AMPE 29.7994, RMSE 25.5469, R2 0.9217, and NSE 0.8658. Although 
the higher sampling period avoids the generation of bigger data, a 
higher sampling period results in lower temporal correlations between 
sampling points, posing greater challenges to the ability of capturing 
long-term dependencies. It is noteworthy that the majority of moni-
toring stations currently have the sampling period of less than 1 h, and 
the demand for the prediction time range is no more than 48 h in 

Fig. 13. Scatter plot of predicted and observed PM2.5 concentrations of various methods.  

Table 4 
Comparison of average PM2.5 prediction performance of MsI driven by different data representations.  

Representation PM2.5 prediction performance Inference speed (ms) 
MAE MAPE RMSE R2 NSE Decomposition (T = 6) MsI 

original time series  12.4528  17.4776  15.2798  0.9571  0.9504 – 0.89 
IMFs by EMD  7.6636  12.9107  10.1755  0.9680  0.9625 0.04 3.54 
IMFs by EEMD  7.1419  12.5391  9.6842  0.9704  0.9633 0.47 
IMFs by CEEMD  4.8814  10.2775  5.9604  0.9770  0.9702 0.59  

Table 5 
Comparison of average PM2.5 prediction performance of CEEMD-MsI with different decomposition iterations.  

The number of IMFs PM2.5 prediction performance Inference speed (ms) 
MAE MAPE RMSE R2 NSE CEEMD MsI 

T = 2  6.6177  12.4119  9.8810  0.9662  0.9580  0.17  1.24 
T = 3  5.9574  12.0550  8.7804  0.9680  0.9602  0.22  1.35 
T = 4  5.2461  10.9804  7.6775  0.9712  0.9624  0.31  1.76 
T = 5  4.9648  10.3805  6.2217  0.9755  0.9679  0.44  2.30 
T = 6  4.8814  10.2775  5.9604  0.9770  0.9702  0.59  3.54  

Table 6 
Comparison of average PM2.5 prediction performance of CEEMD-MsI with 
different attention mechanism.  

Attention 
mechanism 

PM2.5 prediction performance MsI 
inference 
speed (ms) 

MAE MAPE RMSE R2 NSE 

Multi-head 
attention  

7.2239  13.4403  10.4372  0.9665  0.9612  3.02 

ProbSparse 
self- 
attention  

4.8814  10.2775  5.9604  0.9770  0.9702  3.54  

Table 7 
Comparison of average PM2.5 prediction performance of CEEMD-MsI with different averaging number.  

Averaging number PM2.5 prediction performance Inference speed (ms) 
MAE MAPE RMSE R2 NSE CEEMD MsI 

I = 4  5.8987  12.1153  8.8220  0.9668  0.9588  0.50 3.54 
I = 6  5.1158  10.9940  7.4566  0.9702  0.9639  0.54 
I = 8  4.8814  10.2775  5.9604  0.9770  0.9702  0.59 
I = 10  4.8770  10.2562  5.9479  0.9774  0.9722  0.62  
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practice, which can be fully met by CEEMD-MsI. 

5. Conclusion 

Ascertaining the precise forecast of PM2.5 concentrations has 
garnered substantial interest from researchers across the globe in recent 
years, owing to the proven deleterious impact of PM2.5 on human health 
and the sustainable development of cities and society. However, most of 
the existing studies focus on the selection of suitable prediction 
methods, while neglecting signal preprocessing and targeted model 
construction, resulting in unsatisfactory accuracy and efficiency. To 
solve this problem, we propose a MsI model driven by CEEMD based 
multi-channel representations to predict the PM2.5 long-term concen-
trations and test its effectiveness using the meteorological and envi-
ronmental data from 17 monitoring stations in Shandong, China. 
CEEMD can not only solve the mode pairing problem in joint analysis of 
multivariate variables, but also combine the multivariate input and 
component decomposition simultaneously to overcome the nonlinearity 

and non-smoothness of signals. Besides, the introduction of random 
disturbances in CEEMD suppresses the influence of noises and improves 
the accuracy and stability of signal decomposition. The MsI consisted by 
encoder and decoder is specifically built to fuse PM2.5 prediction results 
of multiple IMFs, which can significantly reduce training and deploy-
ment costs, and improve the prediction accuracy and inference effi-
ciency. The multi-head attention mechanism enables the informer 
model to adapt to signals of different lengths and frequencies, thus 
effectively capturing long-term dependencies in temporal sequences. To 
the best of our knowledge, this is the first attempt to predict long-term 
PM2.5 concentrations using the deep learning model driven by data 
collected from various monitoring stations that span long distances and 
complex terrains. Through comprehensive comparisons, the effective-
ness and superiority of CEEMD-MsI are proved in this study. Compared 
with state-of-the-art statistical modelling methods and deep learning 
models, the proposed CEEMD has achieved the superior PM2.5 predic-
tion performance with the lowest MAE, MAPE, RMSE and the highest R2 

and NSE in four typical cities. Moreover, the feasibility of deploying 

Fig. 14. Average PM2.5 concentration prediction performance of CEEMD-MsI with a series of hyper-parameter settings.  

Fig. 15. Average PM2.5 concentration prediction performance of CEEMD-MsI under different signal acquisition conditions.  
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CEEMD-MsI in realistic scenarios is analyzed by observing the robust-
ness to hyper-parameters and changing conditions. Test results indicate 
that CEEMD-MsI can generalize well under different conditions. 

At present, the intricacy and variability of terrain, climate, and 
environment continue to pose significant challenges to all kinds of PM2.5 
concentration prediction methodologies. In the forthcoming research, 
we plan to establish the federated learning based joint multi-city 
framework to enhance the long-term PM2.5 concentration prediction 
accuracy of a single model. 
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