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Abstract—This paper introduces a novel model for low-quality
pedestrian trajectory prediction, the Social Non-stationary Trans-
formers (NSTransformers), that merges the strengths of NSTrans-
formers and Spatio-Temporal graph transformer (STAR). The
model can capture social interaction cues among pedestrians
and integrate features across spatial and temporal dimensions to
enhance the precision and resilience of trajectory predictions. We
also propose an enhanced loss function that combines diversity
loss with logarithmic root mean squared error (log-RMSE) to
guarantee the reasonableness and diversity of the generated
trajectories. This design adapts well to complex pedestrian inter-
action scenarios, thereby improving the reliability and accuracy
of trajectory prediction. Furthermore, we integrate a Generative
Adversarial Network (GAN) to model the randomness inherent in
pedestrian trajectories. Compared to the conventional standard
Gaussian distribution, our GAN approach better simulates the
intricate distribution found in pedestrian trajectories, enhancing
the trajectory prediction’s diversity and robustness. Experimental
results reveal that our model outperforms several state-of-the-art
methods. This research opens the avenue for future exploration
in low-quality pedestrian trajectory prediction.

Impact Statement—Pedestrian trajectory prediction is a com-
mon technique in autonomous driving, video surveillance, etc.
Highly accurate pedestrian trajectory prediction can make the
related fields work better. However, there needs to be more
research on low-quality (bad environment) pedestrian trajectory
prediction, but the low-quality state does occur frequently in daily
life. This paper investigates this issue and proposes a new model
for pedestrian trajectory prediction in the low-quality state.
Finally, we experimentally demonstrate that the performance of
our model can be improved by more than 60% in the standard
environment and more than 40% in the low-quality environment.

Index Terms—Pedestrian trajectory prediction, NSTransform-
ers, GAN, Enhanced loss function

I. INTRODUCTION

LOW-QUALITY vision is an essential direction in com-
puter vision research [1, 2, 3, 4, 5, 6]. In addition,

similar research situations exist in other fields, such as robust
control [7, 8, 9, 10] in the control field. All these research
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studies try to realize the effect of a typical environment in
a complex environment. However, according to the literature
research [11, 12, 13], more research must be needed on pedes-
trian trajectory prediction under low-quality states. However,
pedestrian trajectories under low-quality states often need help
with prediction. Therefore, this paper conducts a study on
predicting pedestrian trajectories under a low-quality state.

The pedestrian trajectory prediction task is a task to pre-
dict the future motion trajectory of pedestrians, which is
mainly used in the fields of autonomous driving [14, 15, 16],
robot [17, 18, 19] and video surveillance [20, 21, 22]. Due to
the importance of this task, the pedestrian trajectory prediction
task has attracted many researchers to study it. Currently
pedestrian trajectory prediction is usually defined as a se-
quence generation task, i.e., given a sequence of past pedes-
trian trajectories, to generate a sequence of future pedestrian
trajectories. The complete flow of this task is shown in Figure
1.

Pedestrian trajectory prediction can currently be categorized
into two types: standard pedestrian trajectory prediction and
low-quality pedestrian trajectory prediction. There are three
types of standard pedestrian trajectory prediction methods:

(1) physics-based methods [23, 24, 25], such methods typi-
cally rely on physical rules and pedestrian dynamics models to
predict pedestrian trajectories. This approach emphasizes the
interactions between individuals and the relationship between
individuals and their environment as a basis for understanding
pedestrian behavior. While physically based approaches have
had some success in simulating pedestrian behavior in simple
scenarios, they often struggle to capture the diversity and
uncertainty of pedestrian behavior in more complex scenarios;

(2) machine learning methods [26, 27, 28], such methods
rely on feature engineering and statistical models to understand
the underlying patterns of pedestrian behavior. While these
methods perform well when dealing with datasets with well-
defined patterns, they may not be sufficient to deal with highly
complex and dynamically changing real-world scenarios;

(3) deep learning methods [29, 30, 31, 32], these methods
can capture complex dependencies in time-series data [49, 50,
51, 52], effectively handle interactions between pedestrians,
and improve prediction accuracy by learning pedestrian in-
teractions in the social space. The advantage of deep learning
methods is that they can automatically learn features from data
without manually designing a complex feature extraction pro-
cess, thus better adapting to complex and changing prediction
scenarios.

Researchers have made many successful and influential con-
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Fig. 1: Complete flow of pedestrian trajectory prediction

tributions to standard pedestrian trajectory prediction. How-
ever, standard pedestrian trajectory prediction has its limi-
tations. Although these methods work well in conventional
environments, they tend to lose their effectiveness when the en-
vironment tends to be more complex. In real-life environments,
the critical step of acquiring pedestrian trajectories is often
unavoidably affected by various interferences in the acquired
pedestrian trajectories.

To address these limitations, low-quality pedestrian trajec-
tory prediction is necessary. Therefore, this paper proposes
a new model, social Non-stationary Transformers (NSTrans-
formers), which is based on NSTransformers [33], and uses
Spatio-Temporal graph transformer (STAR) [34] as the social
interaction layer to extract the interaction between pedestrians
and then improves the original loss function by combining
variety loss with logarithmic root mean squared error (log-
RMSE) to ensure the reasonableness of the generated trajec-
tories. Finally, the generative adversarial network(GAN) [35]
is used instead of the original standard Gaussian distribution
to model the randomness in the pedestrian trajectories.

In summary, the contributions of this paper are shown as
follows:

(1) A new social NSTransformers model based on NSTrans-
formers and STAR is proposed for low-quality pedestrian tra-
jectory prediction. The model can extract the social interaction
information between pedestrians and integrate the features in
spatial and temporal dimensions to improve the accuracy and
robustness of trajectory prediction;

(2) The original loss function is improved by combining
the variety loss with the logarithmic root mean squared error
(log-RMSE) to ensure the reasonableness and diversity of the
generated trajectories. This loss function design can better
adapt to complex pedestrian interaction scenarios and improve
the accuracy and reliability of trajectory prediction;

(3) The GAN is introduced to model the randomness in
pedestrian trajectories. Compared to the original standard
Gaussian distribution, GAN can better simulate the complex
distribution in pedestrian trajectories, thus improving the di-
versity and robustness of trajectory prediction.

The rest of the paper is organized as follows. Section II
introduces relevant prior knowledge in pedestrian trajectory
prediction. In Section III, we present the proposed Social
NSTransformers model. Section IV analyzes the experimental
results of our proposed model and compares it with several
state-of-the-art methods. Finally, in Section V, we provide the
conclusions of our study and discuss future research directions

in low-quality pedestrian trajectory prediction.

II. PRIORI KNOWLEDGE

A. Problem setup

This paper defines the pedestrian trajectory prediction task
as a sequence-to-sequence temporal prediction task. This task
requires that given a sequence X = {x1, x2, . . . , xt}, where
xt represents the pedestrian location and velocity information
at historical moment t. The goal is to predict a future trajectory
sequence Y = {y1, y2, . . . , yt} containing pedestrians.

At each time t, this paper argues that have a set of
N pedestrians

{
pit
}N

i=1
, where pit =

(
xi
t, y

i
t

)
denotes the

position of the pedestrian in a top view map. At the same
time, this paper assumes that the pedestrian pairs

(
pit, p

j
t

)
with a distance less than d would have an undirected edge
(i, j). This leads to an interaction graph at each time step
t : Gt = (Vt, Et), where Vt =

{
pit
}N

i=1
and Et = {(i, j) | i, j

is connected at time t}. For each node, i at time t, this paper
defines the neighbor of the node set as Nb(i, t), where for
each node j ∈ Nb(i, t), et(i, j) ∈ Et.

B. Low-quality pedestrian trajectory prediction problem defi-
nition

In the real world, pedestrian trajectory prediction often
requires computer vision assistance. Pedestrian trajectories,
denoted as {(x̂t, ŷt)}Tt=1, must first be acquired from complex
environments by computer vision techniques. These observa-
tions are affected by various factors, such as environmental
noise, image processing errors, etc. The noise model can
represent as (1) and (2).

x̂t = xt + nx,t (1)

ŷt = yt + ny,t (2)

where xt, yt is the actual trajectory point, and nx,t, ny,t is
the noise term. After obtaining the pedestrian trajectory, a
model is needed to predict the pedestrian trajectory, and the
randomness of the pedestrian trajectory is more difficult to
simulate because the obtained trajectory is already disturbed
by noise. In this case, predicting the pedestrian trajectory can
be represented as (3).

P̂future = F (Ppast ,Θ, E) (3)

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3421175

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 21,2024 at 15:02:00 UTC from IEEE Xplore.  Restrictions apply. 



3

where Θ represents the pedestrian’s exposure to environmental
influences and noise interference, and E represents the pedes-
trian’s randomness. While P̂future and Ppast denote the future
trajectories to be predicted and the historical trajectories that
have been observed.

C. NSTransformers

Non-stationary Transformers is a general framework for
time series forecasting designed to address the problem of
non-smoothness and over-smoothing of time series data. The
framework contains two interdependent modules: sequence
smoothing and de-smoothing attention. The sequence smooth-
ing module unifies the critical statistics of each input sequence
through a normalization strategy. It transforms the output into
a form that recovers the statistics to improve the predictability
of the sequence. To address the over-smoothing problem,
the de-smoothing attention module recovers intrinsic non-
smoothness information by approximating the distinguishable
attention learned from the original sequence. The structure of
the NSTransformers model is schematically shown in Figure
2.

III. SOCIAL NSTRANSFORMER

In the NSTransformers model, a sequence smoothing mod-
ule is included to enhance the smoothness of the input
data, and a de-smoothing attention module to reintegrate
non-smooth information into the time-dependent modeling
within the model, thus alleviating the over-smoothing problem.
Sequence smoothing consists of two phases: window nor-
malization and denormalization. The NSTransformers model
achieves this by dynamically adjusting the number of layers
and the attention patterns of the Transformer network, based
on the local properties of the time series. Specifically, the
model incorporates a gating mechanism that controls the flow
of information between different layers of the Transformer
network, and a set of adaptive attention mechanisms that allow
the model to selectively attend to relevant temporal patterns
in the input data.

A. STAR social interaction module
In this paper, we use the encoder layer of the STAR

model [51] as the social interaction module of the social
NSTransformer. The structure of the STAR social interaction
module is shown in Figure 3.

In Figure 3, the STAR module is divided into three parts:
(1) spatial transformer, (2) temporal transformer, and (3) graph
memory.

1) Spatial transformer: The spatial transformer block ex-
tracts the spatial interaction among pedestrians. STAR model
proposes a novel transformer-based graph convolution. TG-
Conv is used for message passing on a graph. In this TGConv,
the self-attentive mechanism can be viewed as a message
passing on an undirected, fully connected graph. In the feature
extraction process, it can be represented by (4)-(6).

qi = fQ (hi) (4)

ki = fK (hi) (5)

vi = fV (hi) (6)

In (4)-(6), hi is defined as a feature. Therefore, this paper
defines the message from node j to i in the fully connected
graph as (7).

mj→i = qTi kj (7)

Combining the above definitions, the formula of the atten-
tion mechanism can be shown in (8).

Att(Q,K, V ) =
Softmax

([
mj→i

]
i,j=1:n

)
√
dk

[vi]
n
i=1 (8)

The graph convolution operation for node i is written as (9)
and (10).

Att(i) =
Softmax

([
mj→i

]
j∈Nb(i)∪{i}

)
√
dk

[vj ]
T
j∈Nb(i)∪{i} + hi

(9)

h′
i = fout(Att(i)) +Att(i) (10)

Fig. 2: The NSTransformers model structure diagram
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Fig. 3: STAR social interaction module structure diagram

2) Temporal transformer: In the temporal transformer, it is
first necessary to input pedestrian information in the form of{
hi
1

}N

i=1
,
{
hi
2

}N

i=1
,
{
hi
3

}N

i=1
, . . . ,

{
hi
n

}N

i=1
and then output a

set of
{
hi
1

}N

i=1
,
{
hi
2

}N

i=1
,
{
hi
3

}N

i=1
, . . . ,

{
hii
n

}N

i=1
with tem-

poral relations. In this process, each pedestrian is considered
an independent individual. The temporal transformer can be
calculated as (11)-(13).

Att
(
Qi,Ki, V i

)
=

Softmax
(
QiKiT

)
√
dk

V i (11)

MultiHead
(
Qi,Ki, V i

)
= fo

(
[ head j ]

k
j=1

)
(12)

headj = Att
(
Qi,Ki, V i

)
(13)

where f0 represents a fully connected layer, which includes k
heads.

3) Graph memory: While Transformer networks have
shown remarkable performance in long-horizon sequence
modeling through their self-attention mechanism, they may
face challenges when handling continuous time-series data
requiring temporal solid consistency. This is particularly im-
portant for trajectory prediction, as the positions of pedestrians
typically do not change abruptly over short periods. Therefore,
ensuring temporal consistency is a strict requirement for
accurate trajectory prediction. This paper uses a graph memory
structure to solve this problem.

First, for each moment t, suppose there are n pedestrians
in the scene, and their historical trajectory feature vectors can
be expressed as 14.

ht
1, h

t
2, . . . , h

t
n (14)

In (14), ht
i is the historical trajectory feature vector of the

ith pedestrian at moment t.
Then, for each moment t, assuming that there are m

pedestrians interacting with each other, their interaction feature
vectors can be expressed as 15.

et1, e
t
2, . . . , e

t
m (15)

In (15), etj is the feature vector of the jth interaction
at moment t. Next, we store these historical trajectory and
interaction feature vectors in Graph Memory. Specifically, we

store them in each of the n+m learnable storage slots, denoted
as:

m1,m2, . . . ,mn+m (16)

In (16), mi is the ith storage slot corresponding to the
ith pedestrian or interaction history trajectory or interaction
feature vector.

After the storage is completed, we use the graph attention
mechanism to retrieve the historical information stored in
the graph memory. Specifically, for each pedestrian i and
moment t, we use a set of weight vectors wt

i to compute a
weighted average of the historical trajectory and interaction
feature vectors associated with that pedestrian at moment t.
This weighted average is the input feature vector for pedestrian
i at moment t. The calculation formula is as follows:

ht
i =

n+m∑
j=1

αt
i,jmj (17)

In (17), αt
i,j is the attention weight of the ith pedestrian

between moment t and the jth storage slot, which is calculated
by the graph attention mechanism as follows:

αt
i,j =

exp
(
eti,j

)
∑n+m

k=1 exp
(
eti,k

) (18)

In (18), eti,j is the attentional energy of the ith pedestrian
between moment t and the jth storage slot, which the follow-
ing equation can calculate:

eti,j = aT · ReLU
(
Whh

t
i +Wmmj + b

)
(19)

In (19), Wh and Wm are learnable weight matrices, b is the
bias vector, and a is the learnable attention vector. The ReLU
denotes the modified linear unit function.

B. The improved variety loss

In the normal walking of pedestrians, there are various
possibilities of trajectories because of the influence of several
factors. In order to simulate the randomness in pedestrian tra-
jectories, it is vital to generate multiple trajectories reasonably.
This paper will start this section from this point and utilize an
improved variety loss to generate diversity trajectories.
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In traditional trajectory prediction methods, the L2 loss
function is usually used to generate trajectories for pedestrian
trajectory prediction. The L2 loss function calculates the
difference between the generated and true trajectories. the
expression of L2 loss function is shown in (20).

L2 =

n∑
i=1

(yi − f (xi))
2 (20)

In (20), yi is the true value and f (xi) is the predicted
value. The prediction result predicted by the L2 loss function
is usually the average of all possible trajectories, and the
prediction effect is shown in Figure 4.

Fig. 4: The single trajectory prediction diagram

However, this single trajectory prediction is limited in
that it does not simulate the randomness in the pedestrian
motion process. This paper introduces variety loss to solve
this problem based on the L2 loss function. The mathematical
expression of variety loss is shown in (21).

Lvariety = min
k

∥∥∥Yi − Ŷ k
i

∥∥∥
2

(21)

where k is a hyperparameter; in variety loss, the best trajectory
is selected by generating multiple trajectories, which can pre-
vent the final results from being averaged and obtain accurate
trajectory prediction results. Figure 5 shows the prediction
results after introducing variety loss.

Although variety loss can encourage neural networks to
generate diverse outputs, there are still limitations, such as
the possibility of generating irrational results and overfitting
due to the network’s excessive focus on generating various
results. Therefore, we propose an improved variety loss for
these limitations in this paper, as shown in (22).

Lvar+MSE = Lvar +

√√√√ 1

n

n∑
i=1

(log yi − log ŷi)
2 (22)

In (22), n denotes the number of samples, yi represents the
real target value for the i sample, and ŷi means the predicted
target value for the i sample. Compared to the original variety

Fig. 5: The multi-trajectory prediction diagram

loss, the variety loss after incorporating Log MSE has the
following two advantages.

1) Better focus on the authenticity of trajectories:
The original variety loss encourages the network to
generate diverse trajectories by minimizing the similarity
between trajectories. However, this approach may cause
the network to generate some trajectories that do not
match the situation. Adding Log MSE as a part of the
loss function can help the network better focus on the
authenticity of the trajectories and thus avoid generating
unreasonable trajectories.

2) Improved prediction accuracy of the model:
By adding Log MSE, the loss function focuses more on
the accuracy of the network’s prediction and, therefore,
can help the network learn the patterns of the trajectories
better and improve the prediction accuracy of the model.
The variety loss, on the other hand, can encourage
the network to generate diverse trajectories and avoid
overfitting the model, thus further improving the model’s
generalization ability and prediction accuracy.

C. Generative adversarial networks
Standard Gaussian distributions are often used in pedestrian

trajectory prediction to model the stochastic nature of pedes-
trian trajectories, but fixed probability distributions often lead
to weak generalization of the model. When the pedestrian
trajectory is in a low-quality state, the pedestrian trajectory
at this time is often not a standard Gaussian distribution or
even a Gaussian distribution. Therefore, this paper uses the
generative adversarial network to replace the original proba-
bility distribution, using the characteristics of the generative
adversarial network to simulate the probability distribution in
different situations to achieve a more reasonable simulation
of pedestrian randomness for this purpose. The computational
formula for generating the adversarial network is shown in
(23).

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))]
(23)
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In generative adversarial networks, the role of the generator
is to generate a probability distribution that characterizes the
randomness of pedestrian trajectories. Based on the pre-trained
model, the discriminator receives this probability distribution
and determines whether the trajectory vectors are from a real
pedestrian trajectory dataset. The generator and the discrimina-
tor continuously carry out adversarial learning, the probability
distribution generated by the generator will be gradually close
to the distribution of the real pedestrian trajectory dataset, and
the discriminator will also continuously improve its judgment
ability, making the probability distribution generated by the
generator more challenging to be identified by the discrimina-
tor.

In this process, the generator continuously adjusts its pa-
rameters to make the generated probability distribution more
likely to be recognized by the discriminator as the accurate
pedestrian trajectory distribution. The discriminator is also
updated according to the probability distribution generated by
the generator, allowing it to better distinguish between the
accurate pedestrian trajectory distribution and the generator’s
generated probability distribution.

In each iteration, the probability distribution generated by
the generator is fed into a loss function, which calculates the
gap between the generated probability distribution and the
accurate pedestrian trajectory distribution, i.e., the improved
variety loss, and the generator back-propagates according to
the result of this loss function and adjusts its parameters to
make the generated probability distribution closer to the accu-
rate pedestrian trajectory distribution. This process is repeated
until the generated probability distribution is consistent with
the distribution of the real pedestrian trajectory dataset. The
structure of GAN is schematically shown in Figure 6.

Fig. 6: The structure of GAN

IV. EXPERIMENTS AND ANALYSIS

A. Experimental setup and evaluation indicators

In this paper, experiments are carried out under the hard-
ware environment of Windows 11, i7-11800H, and NVIDIA
GeForce RTX 3080, and the software environment used is
Python 3.8. Table I shows the hyperparameter settings in-
volved.

By referring to the previous work, the evaluation metrics
in this paper are Average Displacement Error (ADE) and

TABLE I: Hyperparameter settings

Index Value

Learning rate 0.0015
Epochs 300
Batch size 4
Observe time 3.2s(8 frames)
Predict time 4.8s(12 frames)
Sampling number 20

Final Displacement Error (FDE). These evaluation metrics are
shown in (24) and (25).

ADE =

∑N
n=1

∑tpre
t=tobs+1

∥∥∥Y t
n − Ŷ t

n

∥∥∥
2

N ∗ (tpre − tobs − 1)
(24)

FDE =

∑N
n=1

∥∥∥Y tpre
n − Ŷ

tpre
n

∥∥∥
2

N
(25)

In equations (24) and (25), Y t
n and Ŷ t

n denote the actual and
forecasted paths of pedestrian n at time t, respectively. Here,
N signifies the present total count of pedestrians.

B. Dataset introduction and preparation

The dataset used in this paper has three parts: (1) the
standard pedestrian trajectory dataset, (2) the self-made low-
quality pedestrian trajectory dataset, and (3) the self-made
animal dataset.

1) Standard pedestrian trajectory dataset: In the standard
pedestrian trajectory dataset, two typical pedestrian trajectory
public datasets, ETH and UCY, are mainly applied. Humans
manually label these datasets so the trajectory information
is accurate. The ETH data set is a tilted view of a busy
square taken by a still camera with a total of 450 subjects
in 5400 frames. Most of the pedestrians stayed on camera for
no more than 15 seconds, while others talked to others or
waited in place. The UCY data set takes photos of pedestrians
in public spaces from the top view, and there are rich multi-
person interaction scenes in this data set. The scenes were shot
in unrestrained environments, so there were few obstacles to
prevent pedestrians from moving. This type of dataset is shown
in Figure 7.

Fig. 7: The standard pedestrian trajectory dataset schematic

The standard pedestrian trajectory prediction dataset pro-
duction process is shown in Figure 8.
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Fig. 8: The standard pedestrian trajectory prediction dataset
production process

In Figure 8, the raw pedestrian video data is first acquired
via a surveillance camera. Next, the dataset producer performs
manual annotation. This step involves labeling the position
of each pedestrian in the video frame by frame to capture
their movement trajectories accurately. Finally, the researchers
could extract detailed trajectory information through these an-
notations, which were subsequently used to train and validate
the pedestrian trajectory prediction algorithm.

2) Low-quality pedestrian trajectory dataset: In the self-
made low-quality pedestrian trajectory dataset, the self-made
pedestrian trajectory dataset is mainly based on two pedestrian
trajectory public datasets, ETH and UCY. The ETH and UCY
datasets provide video information in addition to pedestrian
information. In this paper, the videos of the ETH and UCY
datasets are first fuzzily processed, then YOLOX+deepsort
is utilized to mark the pedestrian trajectory information, and
finally, the homemade low-quality pedestrian trajectory dataset
is obtained. This type of dataset is shown in Figure 9.

Fig. 9: The low-quality pedestrian trajectory dataset schematic

The low-quality dataset production process is shown in
Figure 10.

Fig. 10: The low-quality pedestrian trajectory prediction
dataset production process

The four critical steps of the low-quality pedestrian trajec-
tory prediction dataset production process are illustrated in
Figure 10: Firstly, the raw video data is acquired, followed by a
unique blurring process to simulate low-quality environments,
followed by target detection, which identifies pedestrians in
the video, and finally, target tracking, which is carried out
to construct the pedestrians’ motion trajectories. The main

differences between this process and the production of a stan-
dard pedestrian trajectory prediction dataset are the additional
blurring step and the clear distinction between target detection
and tracking as separate stages, which simulate the low-quality
situations that may occur in natural environments.

The critical components in Figure 9 are fuzzification, target
detection, and target tracking. These three components are
described in more detail below.

(a) Fuzzification
In order to test the performance of the pedestrian trajectory

prediction model in the low-quality state, this paper decides
to produce its dataset of pedestrian trajectories in the low-
quality state. However, obtaining the low-quality pedestrian
trajectory prediction dataset in the natural environment is
complex. Hence, this paper chooses to prepare the low-quality
state pedestrian trajectory dataset by blurring on the ETH and
UCY datasets and then using YOLOX+deepsort to obtain the
pedestrian trajectory. The blurring in this process mainly uses
adjusting the resolution, adjusting the original resolution of
1900*1000 to 400*210.

(b) Target detection
In this paper, we utilize the YOLOX [37] algorithm for

target detection based on the convolutional neural network
target detection method. The approach uses an anchor-free
method for target detection and employs new techniques to
improve detection accuracy and speed.

YOLOX consists of a lightweight network structure called
YOLOX-Nano and two backbone networks, YOLOX-L and
YOLOX-XL. These network structures use the Cross-Stage
Partial Network (CSPNet) structure, which enhances the ex-
pressive power of the model.

Targets are detected using dense feature map sampling
instead of predefined anchor boxes. The detection uses a
YOLOXHead, which generates candidate boxes and category
probabilities. The YOLOXHead samples densely on the fea-
ture graph, generates numerous candidate boxes, and filters
out the final target boxes using category probabilities and box
confidence levels.

To improve the detector’s ability to detect objects at dif-
ferent scales, YOLOX employs the Spatial Pyramid Pooling
(SPP) structure, which pools feature maps at different scales.

Additionally, YOLOX uses DropBlock regularization to
prevent overfitting and improve the model’s generalization
ability. Overall, the YOLOX algorithm incorporates several
innovative techniques to enhance target detection performance,
particularly with its anchor-free approach and SPP structure,
making it a successful method in target detection. The algo-
rithmic structure of YOLOX is shown in Figure 13.

(c) Target tracking
The primary algorithm used for target tracking is the deep-

sort [38] algorithm, which builds upon the sort algorithm.
While sorting is simple and fast, it has a problem with
reassigning IDs when an object disappears and reappears due
to occlusion. Additionally, the sort’s matching method only
considers the distance between boxes, which can lead to some
issues.

To address these shortcomings, deepsort adds a new layer on
top of the sort to confirm new trajectories. These trajectories
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are classified into two states: Confirmed and Unconfirmed.
When a new trajectory is generated, it is labeled as Uncon-
firmed, and its target is also Unconfirmed. Only after success-
fully matching to the detected response for three consecutive
times will the target transition from Unlabeled to Unconfirmed.
Once a target is in the Confirmed state, it will be deleted after
30 consecutive mismatches with the detected response. The
entire process of the DeepSort algorithm is tracked, observed,
and improved, as shown in Figure 14.

3) Animal trajectory dataset: Since the pedestrian trajectory
dataset is complicated and exhibits extreme randomness no
matter how it is processed, in this paper, the animal dataset is
self-made to test the model’s performance in a highly random
environment. In this paper, we collected moving videos of
animals indoors through the self-built robotics platform. The
animal trajectory dataset is shown in Figure 11.

Fig. 11: The animal trajectory prediction dataset production
process

Fig. 12: The animal trajectory dataset schematic

The target detection and target tracking used in Figure 12
are also YOLOX and deepsort. Figure 12 shows the schematic
diagram of the animal’s moving trajectory.

C. Standard pedestrian trajectory prediction experimental re-
sults and discussion

In the standard pedestrian trajectory prediction experi-
ments, in this section, experiments are conducted on five sub-
datasets, ETH, HOTEL, UNIV, ZARA1, and ZARA2, from
two datasets, ETH and UCY, and the results of the experiments
are compared with numerous state-of-the-art algorithms. The
experimental results on the ETH and UCY datasets are shown
in Table II.

In Table II, the Social NSTransformers method was evalu-
ated for its performance on several public datasets and com-
pared with several existing mainstream methods. The results
show that Social NSTransformers exhibit strong performance

on some datasets (especially HOTEL) with an ADE/FDE of
0.35/0.62, indicating the method’s effectiveness in dealing with
the pedestrian trajectory prediction problem. However, com-
pared to the best-performing methods, such as TUTR, Social
NSTransformers have some performance gaps on all datasets,
especially on the ETH and UNIV datasets. This suggests that
although our method achieves satisfactory results in some
aspects, there is still room for improvement in adaptability
and prediction accuracy.

In order to verify the effect of different components in
models trained on public datasets, ablation experiments are
conducted in this section, as shown in Table III.

In our ablation experiments, we meticulously evaluated
the different components of the NSTransformers method to
understand their impact on the overall performance. The exper-
imental results show that each added component significantly
improves the model’s performance. The pure NSTransformers
method has an average ADE/FDE of 0.54/0.83 on the five
datasets. Adding the STAR social interaction module enhances
the performance to an average ADE/FDE of 0.49/0.76; intro-
ducing variety loss further reduces the average to 0.47/0.76.
combining the variety loss and the GAN enhances the per-
formance to 0.44/0.72. Ultimately, the NSTransformers model
combining the STAR social interaction module and Variety
loss performs the best, achieving an average ADE/FDE of
0.42/0.70. These results demonstrate the importance of each
component in improving the accuracy and robustness of the
model for pedestrian trajectory prediction. The final Social
NSTransformers model performed well on all datasets with
an average ADE/FDE of 0.35/0.62, demonstrating the effec-
tiveness of this combined strategy.

D. Low-quality pedestrian trajectory prediction experimental
results and discussion

In the self-made low-quality pedestrian trajectory prediction
dataset experiment, this paper compares social NSTransform-
ers with other state-of-the-art algorithms, and the experimental
results are shown in Table IV.

As seen from Table IV, we conducted experiments against a
self-made low-quality pedestrian trajectory dataset to evaluate
the performance of the Social NSTransformers method against
other methods in the low-quality case. From the experimental
results, Social NSTransformers show a significant advantage
on all tested datasets, with an average ADE/FDE of 0.61/1.59.
This is a significant improvement over the traditional methods,
indicating that our method is more efficient in dealing with the
trajectory prediction problem in the low-quality case. Social
NSTransformers obtain the lowest error rate on almost all
datasets compared to other methods. This result emphasizes
the robustness and efficiency of our method, especially when
dealing with pedestrian trajectories in low-quality environ-
ments. Meanwhile, to verify each module’s effectiveness, this
paper conducts ablation experiments on models trained on low-
quality datasets.

As shown in Table V, a series of ablation experiments were
conducted for low-quality datasets to evaluate the impact of
different components on the performance of the NSTransform-
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Fig. 13: YOLOX algorithm structure diagram

Fig. 14: Flowchart of deepsort algorithm

TABLE II: The experimental results of public dataset

Method (ADE/FDE) ETH HOTEL UNIV ZARA1 ZARA2 Average

Vanilla LSTM[39] 1.09/2.41 0.86/1.91 0.61/1.31 0.41/0.88 0.52/1.11 0.70/1.52
Social LSTM[39] 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.71/1.53
SGAN[40] 0.87/1.62 0.67/1.37 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.12
Sophie[41] 0.7/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
GAT[42] 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07
Social BiGAT[42] 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00
Social STGCNN[43] 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
RSGB[44] 0.8/1.53 0.33/0.64 0.59/1.25 0.40/0.86 0.30/0.65 0.48/0.99
RTN[45] 0.69/1.24 0.43/0.87 0.53/1.17 0.28/0.61 0.28/0.59 0.44/0.90
STAR[34] 0.36/0.65 0.17/0.36 0.26/0.55 0.22/0.46 0.31/0.62 0.26/0.53
E-SR-LSTM[46] 0.44/0.79 0.19/0.31 0.32/0.64 0.27/0.54 0.50/1.05 0.34/0.67
TUTR[47] 0.40/0.61 0.11/0.18 0.23/0.42 0.18/0.34 0.13/0.25 0.21/0.36
STAGP[48] 0.65/1.21 0.41/0.73 0.38/0.68 0.28/0.46 0.25/0.44 0.40/0.70
Social NSTransformers 0.40/0.71 0.29/0.47 0.39/0.73 0.34/0.62 0.31/0.57 0.35/0.62
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TABLE III: Results of ablation experiments on public datasets

Method (ADE/FDE) ETH HOTEL UNIV ZARA1 ZARA2 Average

NSTransformers 0.61/0.99 0.53/0.75 0.57/0.91 0.53/0.78 0.45/0.71 0.54/0.83
NSTransformers+STAR social interaction module 0.52/0.91 0.45/0.68 0.50/0.85 0.48/0.72 0.39/0.66 0.49/0.76
NSTransformers+Variety loss 0.53/0.90 0.43/0.65 0.52/0.84 0.47/0.72 0.40/0.67 0.47/0.76
NSTransformers+Variety loss+GAN 0.50/0.86 0.41/0.61 0.48/0.81 0.43/0.70 0.38/0.64 0.44/0.72
NSTransformers+STAR social interaction module+Variety loss 0.48/0.81 0.37/0.58 0.47/0.79 0.41/0.69 0.35/0.63 0.42/0.70
Social NSTransformers 0.40/0.71 0.29/0.47 0.39/0.73 0.34/0.62 0.31/0.57 0.35/0.62

TABLE IV: The experimental results of self-made low-quality pedestrain trajectory dataset

Method (ADE/FDE) ETH HOTEL UNIV ZARA1 ZARA2 Average

Vanilla LSTM[39] 2.53/4.67 1.69/3.87 1.29/2.78 1.07/2.21 1.01/2.06 1.52/3.12
Social LSTM[39] 2.41/4.47 1.62/3.62 1.19/2.56 1.01/2.04 0.92/1.92 1.43/2.92
SGAN[40] 2.21/3.56 1.24/3.25 1.09/2.31 0.87/1.67 0.81/1.53 1.24/2.46
Sophie[41] 2.09/3.21 1.17/3.04 0.99/2.13 0.73/1.43 0.72/1.42 1.14/2.24
GAT[42] 1.89/3.07 1.08/2.93 0.85/1.99 0.65/1.33 0.64/1.31 1.00/2.12
Social BiGAT[42] 1.89/3.07 0.97/2.71 0.80/2.04 0.61/1.33 0.62/1.29 0.98/2.01
Social STGCNN[43] 1.53/2.76 0.82/2.41 0.62/1.81 0.49/1.14 0.45/1.05 0.72/1.83
RSGB[44] 2.13/3.29 1.28/3.11 1.04/2.17 0.81/1.51 0.79/1.49 1.21/2.31
RTN[45] 1.57/2.81 0.84/2.41 0.63/1.79 0.57/1.21 0.49/1.11 0.82/1.87
STAR[34] 1.33/2.67 0.79/2.21 0.59/1.63 0.51/1.15 0.45/1.08 0.73/1.75
E-SR-LSTM[46] 1.43/2.79 0.85/2.36 0.67/1.78 0.65/1.31 0.67/1.49 0.85/1.95
TUTR[47] 1.01/2.23 0.55/1.78 0.49/1.42 0.35/0.88 0.29/0.80 0.54/1.42
STAGP[48] 1.37/2.69 0.79/2.41 0.63/1.65 0.59/1.26 0.53/1.24 0.78/1.85
Social NSTransformers 1.12/2.43 0.65/1.99 0.51/1.48 0.40/1.06 0.38/0.97 0.61/1.59

TABLE V: Results of ablation experiments on low-quality datasets

Method (ADE/FDE) ETH HOTEL UNIV ZARA1 ZARA2 Average

NSTransformers 1.43/2.72 0.98/2.27 0.81/2.01 0.70/1.33 0.69/1.34 0.92/1.93
NSTransformers+STAR social interaction module 1.29/2.61 0.81/2.21 0.75/1.93 0.57/1.26 0.57/1.27 0.80/1.86
NSTransformers+Variety loss 1.23/2.50 0.75/2.14 0.69/1.85 0.53/1.22 0.52/1.16 0.74/1.77
NSTransformers+Variety loss+GAN 1.21/2.48 0.74/2.11 0.66/1.81 0.51/1.19 0.49/1.12 0.72/1.74
NSTransformers+STAR social interaction module+Variety loss 1.17/2.49 0.68/2.06 0.57/1.56 0.48/1.18 0.44/1.06 0.67/1.67
Social NSTransformers 1.12/2.43 0.65/1.99 0.51/1.48 0.40/1.06 0.38/0.97 0.61/1.59

ers approach. The average ADE/FDE of the base NSTrans-
formers model across datasets is 0.92/1.93. By introducing
the STAR social interaction module, the average ADE/FDE
improves to 0.80/1.86, which shows the social interaction mod-
ule’s importance in improving the model’s performance. With
the addition of variety loss, the model performance is further
improved, with the average ADE/FDE decreasing to 0.74/1.77.
Combining variety loss and GAN, the model performance
reaches 0.72/1.74. Ultimately, the NSTransformers model,
with the addition of the STAR social interaction module and
variety loss, performs the best, with the average ADE/FDE
decreasing to 0.67/FDE. FDE is further reduced to 0.67/1.67.
Finally, the total Social NSTransformers approach achieves the
best performance on all datasets, with an average ADE/FDE of
0.61/1.59. This series of ablation experiments demonstrates the
effectiveness of our proposed Social NSTransformers approach
in dealing with low-quality pedestrian trajectory prediction and
reveals each component’s contribution to the overall perfor-
mance improvement, demonstrating the significant advantages
of the model in terms of accuracy and robustness.

E. Self-made animals trajectory prediction experimental re-
sults and discussion

Experiments were conducted on a self-made animal dataset.
The paper wanted to simulate a strongly stochastic process

TABLE VI: The experimental results of self-made animals
trajectory dataset

Method (ADE/FDE) Animals dataset

Vanilla LSTM[39] 7.82/15.47
Social LSTM[39] 7.91/15.38
SGAN[40] 7.13/12.15
Sophie[41] 6.52/11.81
GAT[42] 6.33/10.74
Social BiGAT[42] 6.31/10.68
Social STGCNN[43] 6.17/11.36
RSGB[44] 6.74/11.34
RTN[45] 6.29/10.58
STAR[34] 5.89/10.07
E-SR-LSTM[46] 6.05/10.21
TUTR[47] 4.93/9.11
STAGP[48] 6.23/10.97
Social NSTransformers 5.31/9.49

through the randomness of animal movement, and the final
results of the experiments and comparisons are shown in Table
VI.

As shown in Table VI, we conducted extensive experiments
on the self-made animal trajectory dataset to evaluate the per-
formance of the Social NSTransformers method against other
algorithms. The results show that the Social NSTransformers
approach significantly outperforms most other comparative
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TABLE VII: Rsults of ablation experiments of self-made
animals trajectory dataset

Method (ADE/FDE) Animals dataset

NSTransformers 5.72/9.81
NSTransformers+STAR 5.57/9.74
NSTransformers+Variety loss 5.53/9.68
NSTransformers+Variety loss+GAN 5.49/9.64
NSTransformers+STAR+Variety loss 5.43/9.57
Social NSTransformers 5.31/9.49

algorithms in the animal trajectory prediction task, with an
average ADE/FDE of 5.31/9.49 on the animal dataset. This
result underscores the effectiveness of Social NSTransformers
in dealing with environments with a high degree of dynamism,
uncertainty, and sophistication.

As shown in Table VII, we employed ablation experiments
in order to dissect the specific contribution of each component
of the Social NSTransformers model to its overall perfor-
mance. The starting point is the basic NSTransformers model,
which presents an average ADE/FDE of 5.72/9.81 on this
dataset. With the integration of the STAR social interaction
module, we observe a significant increase in performance, with
the average ADE/FDE decreasing to 5.57/9.74. Further adding
the variety of loss components, the model’s performance
continues to increase, dropping to 5.53/9.68. When the model
incorporates variety loss and GAN, its performance is further
enhanced, reaching an average ADE/FDE of 5.49/9.64. With
the addition of the STAR social interaction module and variety
loss, NSTransformers exhibit their best performance, reaching
5.43/9.57. The final version of Social NSTransformers shows
its best performance, with a score of 5.43/9.57. The final
version of Social NSTransformers performed the best of
all configurations tested, achieving an average ADE/FDE of
5.31/9.49. This series of well-designed ablation experiments
revealed the critical role of each component in improving
trajectory prediction accuracy.

From all the above experimental results, the method pro-
posed in this paper focuses more on trajectory prediction in
the low-quality state. It thus performs weaker than other state-
of-the-art models in standard pedestrian trajectory prediction
tasks.

F. Data visualization results and analysis

In the following analysis of the visualization results, the red
line represents the predicted value, the blue line represents
the actual value, and the arrows represent the direction of
pedestrian travel.

As can be seen from the experimental results in Figure 15,
we show a comparison of the performance of four different
pedestrian trajectory prediction models in the same scenario.
Red lines indicate the prediction results of each model. In con-
trast, blue lines mark the actual trajectories of the pedestrians,
and the arrows indicate the direction in which the pedestrians
are traveling. From the figure, it can be observed that Social-
LSTM can accurately predict the trajectories of pedestrians in
most cases. However, the prediction deviates from the actual
trajectories at certain corners.Social-GAN demonstrates good

adaptation to changes in pedestrian dynamics, but there is a
certain degree of break in the continuity of the trajectories.
Social-STGCNN handles the scenarios of walking in a straight
line and performs well but needs to improve when predicting
complex social interactions. Our method performs superi-
orly in all test scenarios, mainly when predicting complex
pedestrian interactions in crowded scenarios. Despite slight
trajectory bias in some extreme cases, overall, our model
significantly improves trajectory prediction accuracy, social
behavior understanding, and adaptation to future paths. These
results indicate that our approach is statistically valid when
dealing with the pedestrian trajectory prediction problem and
highly reliable in practical applications.

V. CONCLUSION

In this paper, we proposed a new Social NSTransform-
ers model for low-quality pedestrian trajectory prediction.
The model integrates social interaction information between
pedestrians in spatial and temporal dimensions to improve
the accuracy and robustness of trajectory prediction. We also
enhanced the original loss function by combining diversity loss
with log-RMSE to ensure the reasonableness and diversity of
generated trajectories. Lastly, we introduced GAN to model
the randomness in pedestrian trajectories, leading to better
diversity and robustness in trajectory prediction. Experimental
results show that our proposed model outperforms several
state-of-the-art methods regarding prediction accuracy and
diversity. Our findings demonstrate the effectiveness of the
proposed model for low-quality pedestrian trajectory predic-
tion in complex scenarios.

We aim to advance pedestrian trajectory prediction in fu-
ture work by focusing on several key areas: We plan to
integrate detailed environmental contexts, such as road ge-
ometry and weather conditions, to enhance model sensitivity
to external factors. Incorporating multi-modal data sources,
including video and LiDAR, could significantly enrich model
inputs, leading to more accurate predictions. We also aspire
to optimize our model for real-time processing applications,
which are crucial for autonomous vehicles and intelligent
infrastructure, aiming for rapid yet accurate trajectory pre-
dictions. Further exploration into human behavior modeling
will allow a deeper understanding of pedestrian intentions and
social interactions, potentially improving prediction accuracy
in complex social scenarios. To broaden its utility and impact,
we will investigate the model’s applicability across various
domains, such as robotics and crowd management. These
directions promise to refine our model’s performance and
extend its relevance to practical applications in real-world
scenarios.
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Fig. 15: Visualization of comparative experimental results
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Nuno Gonçalves (Member, IEEE) received the
Ph.D. degree in Computer Vision from the Univer-
sity of Coimbra, Portugal, in 2008. Since 2008, he
has been a Tenured Assistant Professor with the De-
partment of Electrical and Computers Engineering,
Faculty of Sciences and Technology, University of
Coimbra. He is currently a Senior Researcher with
the Institute of Systems and Robotics, University
of Coimbra, where he researches since 2000. He
has been coordinating several projects centered on
the technology transfer to the industry. In 2018, he

joined the Portuguese Mint and Official Printing Office as an Innovation
Manager.

His main Research topics and projects coordination areas include several
lines, such as biometrics, facial recognition, morphing attack detection, presen-
tation attack detection, graphical security, security coding, steganography, and
robotics. He has been working in the design and introduction of new products
as result of the innovation projects. He is the author of several papers and
communications in high-impact journals and international conferences and six
patents, pending and already Granted by EUIPO and USPTO. His scientific
career has been mainly developed in the fields of computer vision, visual
information security, biometrics, computer graphics, autonomous driving and
robotics.

Bo Jin (Member, IEEE) was born in Mainland
China. He received both his B.Sc. and M.Sc. degrees
from the Department of Electrical and Computer En-
gineering, University of Macau, Macau SAR, China.
He earned his Ph.D. degree from the Department of
Electrical and Computer Engineering, University of
Coimbra - Alta and Sofia, Coimbra, Portugal. Over
the years, Bo Jin conducted his doctoral research
and was conducting his postdoctoral research with
the Visual Information Security Team at the Institute
of Systems and Robotics, University of Coimbra,

Portugal. To date, he serves as a Postdoctoral Fellow.
He published the research results related to Deep Facial Diagnosis, which

was awarded a national invention patent by the People’s Republic of China
(PRC). He has a broad spectrum of research interests, with a particular focus
on computers, genetics, and robotics.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3421175

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 21,2024 at 15:02:00 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Priori knowledge
	Problem setup
	Low-quality pedestrian trajectory prediction problem definition
	NSTransformers

	Social NSTransformer
	STAR social interaction module
	Spatial transformer
	Temporal transformer
	Graph memory

	The improved variety loss
	Generative adversarial networks

	Experiments and analysis
	Experimental setup and evaluation indicators
	Dataset introduction and preparation
	Standard pedestrian trajectory dataset
	Low-quality pedestrian trajectory dataset
	Animal trajectory dataset

	Standard pedestrian trajectory prediction experimental results and discussion
	Low-quality pedestrian trajectory prediction experimental results and discussion
	Self-made animals trajectory prediction experimental results and discussion
	Data visualization results and analysis

	Conclusion
	Biographies
	Zihan Jiang
	Yiqun Ma
	Bingyu Shi
	Xin Lu
	Jian Xing
	Nuno Gonçalves
	Bo Jin


