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A B S T R A C T

Facial phenotypes are extensively studied in medical and biological research, serving as critical markers that
potentially indicate underlying genetic traits or medical conditions. With the recent advancements in big data,
algorithms, and hardware, deep facial diagnosis, which employs deep learning techniques to systematically
examine facial phenotypes and identify signs of certain diseases or medical conditions, has attracted significant
attention and research, gradually emerging as a promising tool in precision medicine. Primarily limited by the
scarcity of data for training facial diagnosis models, the accuracy of facial diagnosis for various conditions
remains low up to now. In the past decade, RGB-D cameras, measuring depth information along with standard
RGB capabilities, have proven superior in processing spatial details with more stability and accuracy. Motivated
by the facts mentioned above, in this paper, we propose a Simulated Multimodal Framework, which effectively
improves the computer-aided facial diagnosis performance of state-of-the-art models in experiments under
different conditions. The underlying principle is to leverage the simulated depth by generative models to
improve the performance of RGB image recognition. Furthermore, as a rapid and non-invasive tool for disease
screening and detection, our proposal demonstrated an average accuracy improvement of over 20% compared
to practicing physicians in the study.
1. Introduction

Facial phenotypes are a distinctive set of observable facial character-
istics or traits that can be attributed to specific genetic or environmental
factors. The study of these phenotypes offers invaluable insights into
understanding various health conditions, genetic predispositions, and
even potential future risks. Recent advancements in medical and com-
putational research have enabled a deeper analysis into the subtle
nuances of facial phenotypes, making it possible to predict or diagnose
certain conditions based solely on facial features. This method of
prediction or diagnosis based on facial attributes has been historically
referred to as facial diagnosis, and it continues to be widely practiced
in many regions even today.

The history of facial diagnosis can be traced back to the Huangdi
Neijing (Unschuld, 2003), which is one of the earliest and most impor-
tant classics of Chinese medicine. It is believed to have been written
around 2,500 years ago. According to the Huangdi Neijing, the human
face can reflect information about body organs, blood circulation,
and overall vitality. By analyzing facial features such as shape, size,
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position, and proportion, as well as skin color, texture, and wrinkles,
practitioners can assess an individual’s health condition. Up to today,
this practice remains widely used in modern medical practice, both in
China and elsewhere in the world. Contemporary research substantiates
that specific facial features can indicate certain diseases or health
conditions (Fanghänel et al., 2006; Gurovich et al., 2019; Jin et al.,
2020). However, a challenge in facial diagnosis is that it often requires
doctors to have substantial practical experience.

Even today, in numerous rural and underserved areas, limited access
to medical resources makes it difficult for people to receive timely
medical examinations, often resulting in treatment delays. Even in
metropolitan areas, challenges persist, such as high costs, long wait
times at hospitals, shortage of specialist doctors and doctor-patient
conflicts that can lead to medical disputes.

Computer-aided facial diagnosis refers to the use of computer al-
gorithms, often incorporating artificial intelligence (AI) and machine
learning techniques, to analyze facial features and identify health con-
cerns. It could allow for quick and non-invasive disease screening and
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detection. Its convenience and non-contact characteristics make it an
ideal tool for telemedicine. However, facial diagnosis is a challenging
task for computers, which is not surprising. Due to advancements in
hardware, big data, and algorithms, deep learning technology achieved
breakthrough progress after 2006, leading to significant achievements
in areas such as image recognition, speech recognition, and natural
language processing (Jiang et al., 2023; LeCun et al., 2015; Li et al.,
2023; Zhang et al., 2020). Deep facial diagnosis is to perform facial
diagnosis by using deep learning models. However, the challenges of
facial diagnosis tasks still remain, as the data for training deep learning
models in facial diagnosis are scarce. So, the research problem is how
to obtain a high accuracy in facial diagnosis with limited training data.

An RGB camera, an indispensable vision-based measuring instru-
ment (Shirmohammadi & Ferrero, 2014), operates by processing light
signals and independently capturing the red, green, and blue (RGB)
channels and then combining them to generate full-color images. How-
ever, relying solely on RGB cameras often fails to meet the demand
for precise depth perception and 3D object recognition. The RGB-D
camera not only captures the visible spectrum to generate standard
RGB color channels but also adds a depth channel to measure the
distance between the camera and objects within its field of view. Over
the past decade, it has been proven that the integration of this depth
sensing significantly enhances the robustness and accuracy of imaging,
particularly in terms of 3D modeling and spatial analysis. It is conceived
that, without requiring additional training image data, generative mod-
els can be utilized to simulate depth maps from RGB images, the
spatial information of which can improve recognition accuracy. To
further make effective use of the simulated depth maps, a Simulated
Multimodal Framework for facial diagnosis is proposed.

In this study, we have investigated the following six specific condi-
tions and a healthy control group to effectively validate our findings.
Prevalence and incidence are two important indicators used to describe
the epidemiology of diseases. Prevalence primarily focuses on the
extent to which a disease is present in a population, while Incidence
concentrates on the number of new cases that occur. Both of these
indicators play a significant role in epidemiological research and the
development of public health policies.

Prevalence is the proportion of total cases of a disease or condition
in a population at a specific time. It is calculated by dividing the
number of cases of a disease or condition in a population by the total
number of individuals in that population, as demonstrated in Eq. (1).
Prevalence provides a snapshot of how common a disease or condition
is in a population at a given time, which includes both new and existing
cases of a disease or condition.

Prevalence =
Number of existing cases of a disease

Total population (1)

Incidence refers to the number of new cases of a disease or condition
that develop in a population over a specific period of time. It is calcu-
lated by dividing the number of new cases of a disease or condition in a
population by the total number of individuals at risk in that population,
as demonstrated in Eq. (2). Incidence provides information on how
quickly a disease or condition is spreading in a population. Incidence
includes only new cases of a disease or condition that occurred during
the specific period of time and does not include existing cases.

Incidence = Number of new cases of a disease
Number of individuals at risk (2)

1.1. Acromegaly

Acromegaly is a hormone disorder caused by excessive secretion of
growth hormone by the pituitary gland in adulthood, which will lead
to abnormal hyperplasia or hypertrophy of organs. A survey shows that
the prevalence rate of acromegaly ranges from 2.8 to 13.7 per 100,000
individuals approximately, and the annual incidence rate ranges from
0.2 to 1.1 per 100,000 individuals approximately (Lavrentaki et al.,
2

2017). Acromegaly is not easily noticed by patients for a short period of
time, and is often mistaken for a phenomenon of weight gain or normal
aging. Acromegaly and related complications such as high blood pres-
sure, diabetes, and heart disease seriously affect patient health, quality
of life and longevity. Studies show that if the patients with acromegaly
do not receive treatment, the average remaining life is only about
10 years. However, if they receive treatment, their life expectancy will
be no different from that of ordinary people (Ho, 2011). Therefore,
early diagnosis and treatment are necessary. Acromegaly could cause
gradual facial changes. Symptoms of acromegaly that probably appear
on the patients’ face include a prominent lower jaw, prominent brow
bones, an enlarged nose, thickened lips, and wider spacing between
teeth, which is shown as Fig. 1(a).

1.2. Down syndrome

Down syndrome (DS) is a genetic disorder caused by trisomy of
chromosome 21. Most patients with Down syndrome have physical
and intellectual disabilities. Proper care can improve the quality of
life for patients with Down syndrome. The estimated prevalence of
DS approximately ranges from 136.6 to 142.9 per 100,000 individ-
uals (Canfield et al., 2006; Freeman et al., 2007). According to the
World Health Organization (Rodrigues et al., 2019), the incidence of
DS approximately ranges from 90.9 to 100 per 100,000 live births
worldwide. Symptoms of Down syndrome, which may appear on the
patients’ face, include small palpebral fissures, wide-set eyes, a low
nasal bridge, low-set ears, and more, as illustrated in Fig. 1(b).

1.3. Facial nerve paralysis

Facial nerve paralysis, resulting from a dysfunction of the facial
nerve, leads to a loss of control over facial muscles for smiling, blinking,
and other facial movements on the affected side. Common causes of
facial paralysis include facial nerve infection or inflammation, head
trauma, and head or neck tumors. The prevalence of facial nerve
paralysis ranges from 11.5 to 40.2 per 100,000 individuals (Kim et al.,
2019), and the annual incidence of facial paralysis ranges from 15 to 30
per 100 000 individuals approximately (Tiemstra & Khatkhate, 2007).
Facial nerve paralysis may cause numerous complications, including
irreversible facial nerve damage, abnormal regeneration of nerve fibers,
and partial or complete blindness in eyes that cannot be closed (Coulson
et al., 2004). Symptoms of facial nerve paralysis, which likely appear on
the patients’ face, include paralysis of facial expression muscles on the
affected side, disappearance of forehead wrinkles, flattened nasolabial
folds, and drooping corners of the mouth, as illustrated in Fig. 1(c).

1.4. Leprosy

Leprosy, also referred to as Hansen’s disease, is an infectious condi-
tion caused by the bacteria Mycobacterium leprae. It primarily affects
the skin, nerves, and mucous membranes. Early detection and treat-
ment are essential, as untreated leprosy can lead to nerve damage, mus-
cle weakness, and eyesight problems. According to the World Health
Organization, the incidence of leprosy approximately ranges from 2.5
to 3.2 per 100,000 individuals, and the prevalence of leprosy approx-
imately ranges from 2.2 to 2.7 per 100,000 individuals (World Health
Organization et al., 2014, 2020). Leprosy can manifest symptoms on
a patient’s face, including hair loss, granulomas, pale areas of skin,
eye damage, and facial disfigurement, such as the loss of the nose, as

illustrated in Fig. 1(d).
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Fig. 1. Condition-specific faces in this study: (a) Acromegaly, (b) Down syndrome, (c) Facial Nerve Paralysis, (d) Leprosy, (e) Thalassemia, (f) Hyperthyroidism.
1.5. Thalassemia

Thalassemia, one of the most prevalent inherited blood conditions
globally, is a hereditary disorder caused by irregular hemoglobin pro-
duction, where hemoglobin consists of two alpha and two beta chains.
Different types of globin gene deletions or defects result in the cor-
responding inhibition of globin chain synthesis. Based on this fact,
thalassemia is primarily divided into two types: 𝛼 and 𝛽. The global
incidence of thalassemia approximately ranges from 0.74 to 39.79 per
100,000 individuals (Lee et al., 2022; Modell & Darlison, 2008), while
the prevalence of thalassemia varies from 2,500 to 15,000 per 100,000
individuals approximately (Hoffman et al., 2018).

Early diagnosis of thalassemia is crucial, as without consistent treat-
ment, it can be fatal in early childhood. Medical research (Alhaija et al.,
2002) indicates that thalassemia can lead to facial bone deformities.
Facial symptoms of thalassemia include small eye openings, epicanthal
folds, a low nasal bridge, a short nose, a smooth philtrum, a flat
midface, a thin upper lip, and an underdeveloped jaw, as illustrated
in Fig. 1(e).

1.6. Hyperthyroidism

Hyperthyroidism is a prevalent endocrine disorder resulting from
an overproduction of the thyroid hormones T3 and T4, which regulate
the body’s metabolism through various mechanisms. The incidence of
hyperthyroidism approximately ranges from 50 to 1300 per 100,000
individuals (Muñoz-Ortiz et al., 2020), and the average prevalence of
hyperthyroidism approximately ranges from 800 to 1300 per 100,000
individuals (Manifold, 2005).

If left untreated, hyperthyroidism can lead to severe complica-
tions, potentially endangering the patient’s life. Distinct facial features
associated with hyperthyroidism include shiny and protruding or star-
ing eyes, less frequent blinking, increased ocular fissure, nervousness,
consternation, fatigue, and thinning hair as illustrated in Fig. 1(f).

Fig. 2 summarizes the prevalence of the six aforementioned condi-
tion categories. Fig. 3 summarizes the incidence of the six aforemen-
tioned condition categories.

In this article, our contributions for facial diagnosis could be sum-
marized as follows:

1. We propose a Simulated Multimodal Framework designed to en-
hance the performance of computer-aided facial diagnosis of six
conditions: acromegaly, Down syndrome, facial nerve paralysis,
3

leprosy, thalassemia, and hyperthyroidism.
2. In an implementation of the Simulated Multimodal Framework,
we employ the D+GAN model for depth map generation, wavelet
soft-threshold fusion for image fusion, and introduce fine-grained
image classification to extract features. Comparative experi-
ments are carried out using two state-of-the-art models, In-
sightface and FaceNet, as baseline models. Given these tools
and methods, weighted majority voting is employed in the
final stage, where the importance of each model’s prediction is
directly influenced by its accuracy performance on the training
set.

3. Experimental results with different settings demonstrate that the
proposed Simulated Multimodal Framework can significantly en-
hance the facial diagnosis performance of advanced models with
high probability. The bilinear models, which adopt the concept
of fine-grained classification, also outperform their counterparts
without such implementation. The findings further suggest that
the estimated depth can contribute to the improvement of 2D
facial diagnosis. These findings are reproducible.

The remainder of this article is structured as follows: Chapter 2 pro-
vides a review of influential relevant literature. Chapter 3 details our
proposed methodologies and their respective implementations. Chapter
4 primarily presents and summarizes the experimental results under
various conditions. Chapter 5 mainly interprets the findings within the
context of existing studies, explores their practical significance and
limitations. Finally, Chapter 6 draws conclusions and charts potential
avenues for future research.

2. Related work

In this chapter, we primarily review some classic research on
computer-aided facial diagnosis, which is summarized in Table 1.

Schneider et al. performed detection of acromegaly through face
classification based on texture and geometry similarity (Schneider
et al., 2011). Their dataset includes face images of 57 patients with
acromegaly. They claimed to have achieved an accuracy of 81.9%.

Zhao et al. proposed using ICA to identify anatomical facial land-
marks to differentiate between individuals with Down syndrome and
the healthy population (Zhao, Okada, et al., 2014). Their dataset in-
cludes 50 face images of patients with Down syndrome. They claimed
to have achieved an accuracy of 0.967 and a F1 score of 0.956.

Zhao et al. proposed identifying patients with Down syndrome by
ensembling the outputs of multiple different classifiers (Zhao, Werghi,
et al., 2014). Their dataset includes 50 face images of patients with

Down syndrome. They claimed to have achieved an accuracy of 0.967.
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Fig. 2. Prevalence of the six conditions used for the study.
Fig. 3. Incidence of the six conditions used for the study.
Kong et al. adopted a series of basic estimators, including the k-
Nearest Neighbors (KNN), Generalized Linear Model (GLM), Support
Vector Machines (SVM), Random Forests (RF), and CNN. By employing
a voting method, they combined the predictions of these models to
detect acromegaly from facial photographs (Kong et al., 2018). Their
dataset includes 641 face images of patients with acromegaly. They
claimed to have achieved a sensitivity of 96% and a specificity of 96%.

Umeda-Kameyama et al. conducted a study utilizing five deep learn-
ing models and two optimizers to differentiate between dementia and
non-dementia facial images (Umeda-Kameyama et al., 2021). Their
4

dataset includes 124 face images of patients with cognitive impairment
and 250 face images of cognitively sound participants. They reported
that the Xception AI system achieved a notable accuracy of 92.56%
along with an AUC for the ROC curve of 0.9717. Additionally, they
found a significant and negative correlation between the Face AI score
and MMSE scores (r = −0.599, p < 0.0001), indicating the potential of
face recognition as a non-invasive tool for dementia screening.

Boehringer et al. performed principal component analysis and lin-
ear discriminant analysis for a computer-based diagnosis among the
10 syndromes (Boehringer et al., 2006). Their dataset includes 147
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Table 1
Summary of classical studies on facial diagnosis.
Research Condition No. of DSF images

per category
Cls. problem Method

Schneider et al. (2011) Acromegaly 57 2D Binary Texture and geometry

Zhao, Okada, et al. (2014) Down syndrome 50 2D Binary ICA

Zhao, Werghi, et al. (2014) Down syndrome 50 2D Binary Ensemble learning

Kong et al. (2018) Acromegaly 641 2D Binary Ensemble learning

Umeda-Kameyama et al. (2021) Alzheimer’s
disease

124 2D Binary Deep learning model

Boehringer et al. (2006) 10 syndromes 15 2D Multi-class LDA

Shukla et al. (2017) 6 disorders 188 2D Multi-class DCNN

Gurovich et al. (2019) 216 syndromes 81 2D Multi-class DCNN

Jin et al. (2020) 4 conditions 70 2D Multi-class Deep transfer learning

Porras et al. (2021) 128 conditions 11 2D Multi-class Deep neural networks

Hallgrímsson et al. (2020) 396 syndromes 8 3D Multi-class Parametric methods and
machine learning

Bannister et al. (2022) 47 syndromes 100 3D Multi-class Normalizing flows
facial images with 10 syndromes, which means the average number
of disease-specific face images for each category is approximately 15.
They claimed to have achieved an accuracy of 75.7% for 10-class
classification.

Shukla et al. used deep convolutional neural network to detect
6 disorders (Shukla et al., 2017). Their dataset includes 1126 facial
images with 6 disorders, which means the average number of disease-
specific face images for each category is approximately 188. They
claimed to have achieved an accuracy of 48% for 6-class classification
and an accuracy of 98.80% for binary classification.

Gurovich et al. introduced a facial image analysis framework called
DeepGestalt, which employs computer vision and deep learning algo-
rithms to quantify similarities to hundreds of syndromes (Gurovich
et al., 2019). Their dataset includes 17106 images with 216 different
syndromes, which means the average number of disease-specific face
images for each category is approximately 79. They claimed to have
achieved 61.3∼68.7% top-1 accuracy and 89.4∼90.6% top-10 accuracy
in identifying the correct syndrome on hundreds of images.

Jin et al. proposed using deep transfer learning from face recogni-
tion to facial diagnosis, named Deep Facial Diagnosis (Jin et al., 2020).
Their dataset includes 280 images with 4 different diseases, which
means the average number of disease-specific face images for each
category is 70. They claimed to have achieved an overall top-1 accuracy
of over 90%.

Porras et al. screened children for genetic syndromes by using
deep neural networks and facial statistical shape models (Porras et al.,
2021). Their dataset includes 1,400 children images with 128 genetic
conditions, which means the average number of disease-specific face
images for each category is approximately 11. They claimed to have
achieved an accuracy of 88% for the detection of a genetic syndrome.

Compared to two-dimensional images, three-dimensional images
contain information about the spatial relationships between objects. In
light of this, some researchers have started to explore facial diagnosis
using three-dimensional facial images.

Hallgrímsson et al. conducted binary classification on 3D human
face images using both parametric methods and machine learning
techniques (Hallgrímsson et al., 2020). Their dataset includes 3327
images with 396 different syndromes, which means the average number
of disease-specific face images for each category is approximately 8.
They claimed to have achieved balanced accuracy was 73% and mean
sensitivity 49%.

Bannister et al. performed 3D facial surface modeling using deep
learning and performed 3D facial diagnosis (Bannister et al., 2022).
Their dataset includes 4700 scans with 47 different syndromes, which
means the average number of disease-specific face images for each
5

category is approximately 100. They claimed to have achieved overall
top-1 accuracy of 71%, and a mean sensitivity of 43% across all
syndrome classes.

3. Materials and methods

In this study, we introduce a Simulated Multimodal Framework
for facial diagnosis, which is illustrated in Fig. 4 and represents an
enhancement of the previous work. In the following subsections, we
introduce each module in the order of processing flow.

3.1. Preprocessing

In real-world image analysis, diverse backgrounds can impede al-
gorithm performance. To ensure uniformity with training image pairs,
derived from 3D data, a process to eliminate non-facial backgrounds
is applied. Our preprocessing approach employs Otsu’s method (Otsu,
1975) to get a threshold for image binarization, the 8-connected la-
beling algorithm for facial detection, and an opening operation for
image refinement. The result is an image with the background removed,
focusing solely on facial features. The pseudo-code for removing the
background is depicted as follows:

Function RemoveBg(Img): OutImg
Input: Img
Output: OutImg
Begin
Thr ← Otsu(Img)
BinImg ← Binarize(Img, Thr)
LabImg ← Label(BinImg, 8-Conn)
FaceImg ← BlackBg(LabImg)
OutImg ← OpenOp(FaceImg)
return OutImg

End

After removing the background of the image, we carry out image
normalization to ensure that different features can be compared on the
same scale.

3.2. Depth-generating model

Generative Adversarial Networks (GANs), originally proposed by
Goodfellow et al., use random noise vectors to generate fake im-
ages through a two-component system: a generator and a discrimina-
tor (Goodfellow et al., 2014). The Conditional Generative Adversarial
Network (cGAN), developed by Mirza and Osindero, further extends

this model to generate images from random noise vectors based on
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Fig. 4. Simulated multimodal deep facial diagnosis framework.
specific conditions (Mirza & Osindero, 2014). Taking this a step fur-
ther, ACGAN, proposed by Odena, Olah, and Shlens, enhances the
discriminator part of the cGAN model to categorize the class of the
input image (Odena et al., 2017). The Pix2Pix model by Isola et al.,
a specialized version of cGAN, applies 2D images as input conditions
for image-to-image translation (Isola et al., 2017).

In our objective to efficiently simulate corresponding depth from
RGB face images, we synthesize the aforementioned network architec-
tures and advanced techniques, leading to the proposal of Depth Plus
Generative Adversarial Network (D+GAN) (Jin et al., 2022). Distinct
from prior models, the generator in D+GAN employs condition images
and their associated labels to produce synthetic images. Concurrently,
its discriminator not only verifies if the input is a genuine sample
corresponding to the conditional image but also identifies the mul-
tiple categories to which the sample belongs. Fig. 5 illustrates the
core architectures of cGAN, ACGAN, Pix2Pix, and D+GAN, succinctly
highlighting the differences in the primary structures of D+GAN and
other related GANs.

3.2.1. D+GAN
To fully leverage the attribute information of faces, we choose the

D+GAN model as an instance of the depth generation model in the
Simulated Multimodal Framework for facial diagnosis in this case.

The generator (G) of D+GAN takes as input an RGB image of
dimensions 256 × 256, paired with facial attribute labels comprising
gender, age, and race. It outputs a depth map of identical dimensions,
thereby achieving an image-to-image mapping. The discriminator (D)
assesses the depth map’s quality. In the design, the discriminator re-
ceives a depth map of dimensions 256 × 256, along with its associated
labels, and the output comprises four scalar values, each indicating
the probability associated with authenticity, age, gender, and race.
Specifically, age is categorized into three groups: under 18 years, 19–
39 years, and 40 years or elder. Gender categories are divided into
male and female, while racial categories are broadly divided into three
groups: White, Asian, and Black.

In detail, the structure of the generator adopts a U-shaped de-
sign (Ronneberger et al., 2015), composed of an encoder that extracts
6

features and a decoder that restores the original size of the image.
Skip connections are employed between the encoder and decoder for
resolving the vanishing gradient problem. The loss function for the
generator, denoted as 𝐿𝐺, encompasses four components. It is expressed
as:

𝐿𝐺 = 𝜆1𝐿𝑆,𝐺 + 𝜆2𝐿𝑅,𝐺 + 𝜆3𝐿𝐶,𝐺 + 𝜆4𝐿𝑊 ,𝐺 (3)

where

𝐿𝑆,𝐺 = −E𝑋∈𝑃𝑑𝑎𝑡(𝑋)[log𝐷1(𝐺(𝑋), 𝑋)] (4)

𝐿𝑅,𝐺 = −E𝑌∈𝑃𝑑𝑎𝑡(𝑌 ),𝑋∈𝑃𝑑𝑎𝑡(𝑋)
[

‖𝑌 − 𝐺(𝑋)‖2
]

(5)

𝐿𝐶,𝐺 =
4
∑

𝑖=2
E𝑋∈𝑃𝑑𝑎𝑡(𝑋)[log𝑃 (𝐷𝑖 = 𝑐𝑖|𝐺(𝑋))] (6)

𝐿𝑊 ,𝐺 = 1
2
‖𝑊 ‖

2 (7)

In the aforementioned equations: 𝑋 denotes the RGB facial image
intended for translation, 𝑌 denotes the real depth image serving as
the conditional image, 𝑃𝑑𝑎𝑡 represents the corresponding probability
distribution, 𝐷1 represents the primary discriminator’s output, which
determines authenticity, 𝐷𝑖 represents the 𝑖th classifier, 𝐺(𝑥) denotes
the generated image, and 𝑐𝑖 denotes the corresponding category of the
𝑖th classifier. The objective of the loss function 𝐿𝑆,𝐺 is to enable the
generator to produce samples that can deceive the discriminator. The
objective of the loss function 𝐿𝑅,𝐺 is to ensure high similarity between
the generator’s output images and the condition images. The objective
of the loss function 𝐿𝐶,𝐺 is to ensure the detail of the generated
images, allowing them to be correctly classified by the discriminator.
The objective of the loss function 𝐿𝑊 ,𝐺 which is a weight regularization
term is to avoid overfitting.

The discriminator of D+GAN consists of four sub-networks. To focus
on the local details of the generated images, these sub-networks are
implemented using a fully convolutional network. Each sub-network
takes the output from the intermediate node as input and performs
its individual classification. The first sub-network is responsible for
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Fig. 5. Related classic GAN architectures: (a) cGAN, (b) Pix2Pix, (c) ACGAN, and (d) D+GAN.
determining if the depth map is generated, essentially functioning as
a binary classifier. The remaining sub-networks are responsible for
identifying facial attributes. The loss function for the discriminator,
denoted as 𝐿𝐷, consists of two parts. It is expressed as:

𝐿𝐷 = 𝜆1𝐿𝑆,𝐷 + 𝜆2𝐿𝐶,𝐷 (8)

where
𝐿𝑆,𝐷 = E𝑋∈𝑃𝑑𝑎𝑡(𝑋),𝑌∈𝑃𝑑𝑎𝑡(𝑌 )

[

𝑙𝑜𝑔𝐷1 (𝑋, 𝑌 )
]

+E𝑋∈𝑃𝑑𝑎𝑡(𝑋)
[

𝑙𝑜𝑔(1 −𝐷1(𝐺(𝑋), 𝑋))
] (9)

𝐿𝐶,𝐷 =
4
∑

𝑖=2
E𝑋∈𝑃𝑑𝑎𝑡(𝑋)[log𝑃 (𝐷𝑖 = 𝑐𝑖|𝐺(𝑋))]

+E𝑌∈𝑃𝑑𝑎𝑡(𝑌 )[log𝑃 (𝐷𝑖 = 𝑐𝑖|𝑌 )]

(10)

The objective of the loss function 𝐿𝑆,𝐷, derived from the conventional
GAN, is to differentiate between real samples and those that are gen-
erated. The objective of the loss function 𝐿𝐶,𝐷, is to ensure the model
correctly classifies facial attributes.

Residual block. It facilitates an easier optimization of the neural net-
work (He et al., 2016). Within the residual block, the mapping is
transformed from 𝐹 (𝑥) to 𝐹 (𝑥) + 𝑥 through the utilization of skip
connections. Instead of the original UNet design, residual blocks are
employed at the junction between encoder and decoder.

Self-attention module. It allows the model to weigh and consider differ-
ent parts of the input when producing an output, rather than treating
all parts of the input equally (Zhang et al., 2019). Within the self-
attention module, the input feature X is converted into Query (Q), Key
(K), and Value (V) representations via distinct matrix multiplication
operations, with their channel sizes adjusted accordingly. The module
then computes attention weights between Q and K, applies them to V,
resulting in a new input representation that emphasizes key features.
The process can be expressed as:

𝑄 = 𝑊𝑄𝑋 (11)

𝐾 = 𝑊𝐾𝑋 (12)

𝑉 = 𝑊𝑉𝑋 (13)

Attention(𝑄,𝐾, 𝑉 ) = Softmax(𝑄𝐾𝑇 )𝑉 (14)

In the design of both the generator and discriminator, following certain
higher-level convolutional layers, a self-attention module is incorpo-
rated.
7

Table 2
List of technologies involved.

D+GAN Technology Number

Generator
Deconvolution 4
Residual Block 10
Self-attention module 10

Discriminator

PatchGAN 4
Spectral Normalization 10
Self-attention module 2
Global Average Pooling 4

Table 3
Parameter setting.

Parameter Value

Input Image Size 256 × 256
Batch Size 4
Epochs 20
Optimizer Adadelta (Zeiler, 2012)
Learning Rate 0.2
Learning Rate Half Life (Batches) 5000

Spectral normalization. It is aimed at controlling the Lipschitz constant
of network layers in order to stabilize model training and enhance
generalization performance (Miyato et al., 2018). Specifically, given a
weight matrix W, the spectrally normalized version of W is computed
as follows:

�̂� = 𝑊
𝜎(𝑊 )

(15)

where 𝜎(𝑊 ) denotes the maximum singular value of the given W, and
�̂� is the normalized weight matrix. It is used in the discriminator in
our design.

Table 2 shows the applied technologies list in D+GAN. Table 3
shows the parameters for training. Fig. 6 shows a typical loss curve for
successful training of the generator, which converges before 16 epochs.

3.2.2. Dataset
In this study, colored images and their corresponding depth maps

from the Bosphorus (Savran et al., 2008) and CASIA 3D Face Database
(CASIA, 2004) are used to train the GAN, amounting to 9290 pairs in
total. While, Binghamton University 3D Facial Expression (BU-3DFE)
Database (Yin et al., 2006) was excluded from the training process.
The Bosphorus 3D Face Database was captured using the Inspeck Mega
Capturor II 3D, featuring sensor resolutions of 0.3 mm (x and 𝑦 axes)
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Fig. 6. Generator training loss curve in the experiment.
and 0.4 mm (z axis), along with color resolution of 1600 × 1200 pixels.
The CASIA 3D Face Database was captured using the Minolta Vivid
910, featuring accuracies of ±0.22mm in the X axis, ±0.16mm in the
Y axis, and ±0.1mm in the Z axis to the Z reference plane, along
with color data resolution of 640 × 480 pixels. The BU-3DFE database
was captured using the 3DMD digitizer, featuring texture images of
approximately 1300 by 900 pixels and model resolutions ranging from
20,000 to 35,000 polygons, dependent on the size of the subject’s face.

Figs. 7, 8, and 9 illustrate some example RGB images along with
their corresponding depth maps, which serve as the ground truth and
are transformed from the aforementioned datasets. Furthermore, the
simulated pseudo-depth samples and the local Structural Similarity
Index Measure (SSIM) Map (Wang et al., 2004) comparing the pseudo-
depth to the ground truth are also included in the aforementioned
figures. The Structural Similarity Index Measure (SSIM) evaluates the
perceptual quality of images and videos by considering changes in
structure, luminance, and contrast, aiming to emulate the human visual
system’s sensitivity to these variations in image attributes. Within the
local SSIM map, which pixel value ranges from 0 to 1, areas with higher
SSIM values are highlighted in red, representing regions consistent with
the reference image. In contrast, areas with lower SSIM values are
marked in blue, indicating discrepancies from the reference image.

3.3. Image fusion

We propose a wavelet soft-thresholding-based approach for image
fusion, which exhibits robustness against noise. The procedure is as
follows:

First, each image that is to be fused undergoes a multilevel two-
dimensional wavelet decomposition. The input for this process is the
image matrix and the wavelet function to be used. In this instance,
a 4-level decomposition is performed using the Symlets 4 wavelet
function. The outputs are a wavelet decomposition vector and a book-
keeping matrix, which contains the number of coefficients by level and
orientation.

Second, we determine a threshold value using the formula ’thr ∼
sqrt(2 * log(n))’, where n signifies the number of input image pixels
(Donoho, 1995). With this threshold, we distinguish between soft or
hard thresholding and whether the approximation coefficients should
be thresholded or not for different purposes.

Lastly, we perform two-dimensional coefficient soft thresholding.
This process takes as input the type of coefficients, the wavelet de-
composition vector, the bookkeeping matrix, the detail levels to be
8

thresholded, and the thresholds derived in the second step. The process
determines whether soft or hard thresholding is applied.

The final result of these steps is an image that effectively combines
the features of the original images, leading to a more comprehensive
representation of the image characteristics.

The pseudo-code for the wavelet soft-thresholding image fusion is
depicted as follows:

Function WST Fusion2D(Img1, Img2): FusedImage
Input: Img1, Img2
Output: FusedImage
Begin
// Perform wavelet 2D decomposition
C1, S1 ← WaveletDecomposition(Img1)
C2, S2 ← WaveletDecomposition(Img2)
// Compute threshold
thr ← sigma * sqrt(2 * log(numel(Img)))
// Perform soft-thresholding
C1 ← SoftThreshold(C1, thr1)
C2 ← SoftThreshold(C2, thr2)
// Combine coefficients
Cf ← CombineCoefficients(C1, C2)
// Wavelet reconstruction
FusedImage ← WaveletReconstruction(Cf)
return FusedImage

End

3.4. Feature extractor

For feature extraction and classification, we initially fine-tune the
pre-trained models of FaceNet (Schroff et al., 2015) and InsightFace
(Deng et al., 2019). FaceNet in the study contains triplet loss func-
tion alongside the Inception-ResNet architecture. The Inception-ResNet
combines the Inception model’s capacity for capturing multi-scale im-
age features with ResNet’s residual learning framework to efficiently
handle deep networks. This integration enables FaceNet to generate
highly discriminative embeddings for faces, ensuring close proximity
of embeddings from the same individual and distinct separation for
those from different individuals. InsightFace in the study contains the
ArcFace loss function alongside the IResNet network architecture. The
ArcFace loss optimizes the angular distance within the feature space,
significantly enhancing the accuracy and robustness of face recognition.

Meanwhile, the IResNet architecture offers an efficient pathway for
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Fig. 7. Image samples and their related results from BU-3DFE Database.

Fig. 8. Image samples and their related results from CASIA 3D Face Database.
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Fig. 9. Image samples and their related results from Bosphorus 3D Face Database.
information flow within deep learning models, supporting large-scale
face recognition tasks.

FaceNet models are pre-trained with the CASIA-WebFace and VGG-
Face2 datasets. For simplicity, FaceNet (CASIA-Webface) is denoted as
A1, while FaceNet (VGG-Face2) is represented as B1 in the Figs. 13,
14, 15 . Meanwhile, The employed InsightFace model includes two
structures: InsightFace: IResNet34 and InsightFace: IResNet100, both
pre-trained with the MS1MV2 dataset. For simplicity, InsightFace: IRes-
Net34 is denoted as C1, while InsightFace: IResNet100 is represented
as D1.

Fine-grained classification is applicable to classification tasks char-
acterized by substantial intra-class differences and minor inter-class
differences. Inspired by the concept of fine-grained classification, we in-
troduce a bilinear operation (Lin et al., 2015) into both InsightFace and
FaceNet processing models, as illustrated in Fig. 10. The mathematical
process can be represented by following equations:

𝐵𝑖 (𝑙, 𝐼, 𝑢, 𝑣) = 𝑢𝑇 (𝑙, 𝐼)𝑣(𝑙, 𝐼) (16)

where 𝐵𝑖 represents the bilinear feature combination, 𝑙 denotes loca-
tion, 𝐼 is the input image, and 𝑢 and 𝑣 are two feature functions.

𝜓 (𝐼) =
∑

𝑙
𝐵𝑖(𝑙, 𝐼, 𝑢, 𝑣) (17)

where 𝜓 represents the feature map for the entire image.

𝑥 = 𝑣𝑒𝑐(𝜓(𝐼)) (18)

𝑦 = 𝑠𝑖𝑔𝑛(𝑥)
√

|𝑥| (19)

𝑧 =
𝑦

‖𝑦‖2
(20)

where 𝑧 represents the final fused feature utilized for classification. The
bilinear forms of models A1, B1, C1, D1 are represented as A2, B2, C2,
D2, respectively.
10
3.5. Disease-specific faces 2 database

The Disease-specific Faces 2 (DSF2) database (Jin, 2023), which
was released on IEEE DataPort, includes six condition-specific faces and
health controls. Six conditions are acromegaly, facial nerve paralysis,
Down syndrome, leprosy, thalassemia and hyperthyroidism, which is
aforementioned in Chapter 1. The DSF2 dataset used in the experiment
consists of condition-specific face images with diagnostic results, which
were sourced from medical websites, forums, professional medical
publications, and healthcare institutions. These results were further
reviewed by qualified doctors to create labels for supervised learning
of the model. Moreover, there is currently no evidence to suggest that
the patient depicted in the photograph was suffering from two or more
of the six diseases at the time the photograph was taken.

Informed consent has been obtained from the individuals in the
dataset, except for those who are deceased, public figures, and others
whose images have been publicly released in the media. To protect pa-
tient privacy, it is essential to de-identify condition-specific face image
data. This entails removing all information that could potentially be
used to identify an individual, such as names, birthdates, and medical
record numbers. Furthermore, in order to protect patient privacy, the
direct publication of any images from the dataset in any media or
publications is not permitted.

The number of faces of each class is 85. There are a total of 595
images in the dataset. The proportions of age, gender, and ethnicity
within the dataset are approximately represented in Fig. 11.

4. Experiments

In this implementation, we utilize the D+GAN to generate pseudo-
depth maps, and apply two different strategies for conducting the
wavelet soft-thresholding image fusion aforementioned on these pseudo-
depth maps.

Strategy 1 employs the mean of wavelet coefficients from two
images for both the low-frequency and high-frequency components. Ap-
plying this strategy yields Pseudo RGB-D_1 images. Strategy 2 involves
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Fig. 10. Bilinear model for fine-grained facial diagnosis.
Fig. 11. The proportions of age, gender, and race of DSF2 dataset.
applying the wavelet coefficients with larger absolute values from the
two images for the high-frequency components, and utilizing the mean
of the wavelet coefficients from both images for the low-frequency
components. Applying this strategy yields Pseudo RGB-D_2 images.

In the implementation, we have four modes of images which are
RGB images, Pseudo RGB-D_1 images, Pseudo RGB-D_2 images and
pseudo-depth images to perform training and predicting respectively.
Four modes of image examples are displayed in Fig. 12.

In our study, we primarily focus on two advanced frameworks in
the field of face recognition: InsightFace and FaceNet. By training
with a low learning rate, we adapt the pre-trained model through the
adoption of adaptive average pooling and a custom fully connected
layer. Features are then processed via a bilinear transformation to
extract rich representations, culminating in the classification of images
into predefined categories using a series of dense layers. This method
effectively combines deep learning and bilinear techniques, delivering
superior performance in fine-grained classification tasks.

For comparison, all models were trained for 150 epochs at a low
learning rate, achieving convergence of their loss functions. The final
prediction results are obtained by weighted majority voting of the
predictions from each model. The prediction weights assigned are
positively correlated with the accuracy of the models on the training
set.
11
Accuracy (ACC), represented as Eq. (21), is a performance metric
in the context of binary classification problems that measures the
proportion of true results (both true positives and true negatives) in
the total dataset in the context of binary classification problem. It
reflects the overall effectiveness of a model in correctly identifying
both classes of an outcome, making it a straightforward indicator of
a model’s predictive precision and reliability.

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(21)

where TP means True Positives, TN means True Negatives, FP means
False Positives, and FN means False Negatives. In practical applications,
the formula for calculating multi-class accuracy can be simplified to:

𝐴𝐶𝐶 =
∑𝐶
𝑖=1 𝑇𝑃𝑖
𝑁

(22)

where 𝑇𝑃𝑖 denotes the number of true positives for class 𝑖, 𝐶 represents
the total number of classes, and 𝑁 is the total number of samples.

For evaluation, in addition to accuracy being of significance for
facial diagnosis, Matthews Correlation Coefficient is selected as an
alternative indicator. The Matthews Correlation Coefficient (MCC)
(Matthews, 1975) is a widely used metric for evaluating the per-
formance of classification models, including multi-class classification
tasks. It takes into account the confusion matrix to provide a compre-
hensive assessment of classification accuracy. The MCC ranges from −1
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to 1, with −1 indicating a completely incorrect classification, 1 indicat-
ing a perfect classification, and 0 signifying a random classification. For
binary classification, the MCC is calculated using the formula:

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(23)

where TP means True Positives, TN means True Negatives, FP means
alse Positives, and FN means False Negatives. For multiclass classifi-
ation problems, the MCC can be calculated by treating each class as
inary (i.e., class i versus the rest) and averaging the MCCs for each
inary problem.

For a more comprehensive assessment, three different cases are
erformed. Case 1 uses 45 images per category for a total of 315 images
or training, and 40 images per category for a total of 280 images for
esting. Case 2 uses 50 images per category for a total of 350 images
or training, and 35 images per category for a total of 245 images for
esting. Case 3 uses 55 images per category for a total of 385 images
or training, and 30 images per category for a total of 210 images for
esting.

The experimental results for the three cases are listed in Table 4,
ables 5 and 6. Fig. 13, Figs. 14 and 15 provide a clear visualization
f the changes between the RGB mode and the Simulated Multimodal
SM) mode across models A1-D2. The red line, representing the SM
ode, is generally positioned above the blue line that denotes the RGB
ode. From the tables, it is observed that for the SM mode enhancing

he RGB mode, out of the 24 experiments conducted, only one case did
ot show any improvement, which resulted in an effectiveness rate of
5.83%. In these 24 experiments, the ACC improved by an average of
pproximately 6.22%, while the MCC improved by an average of about
.67%.

From the tables, it is observed that in terms of the improvement ef-
ect of the SM mode and the bilinear structure model on the RGB mode
nd non-bilinear structure models, only one out of 12 experiments
howed no improvement, leading to an effectiveness rate of 91.67%.
oreover, in these 12 experiments, the ACC improved by an average of

pproximately 19.97%, and the MCC improved by an average of about
5.50%.

In the three experimental cases (see Fig. 16), the best-performing
odels demonstrate relatively high accuracy in identifying Down

yndrome-specific and leprosy-specific faces, with comparatively few
isclassifications. Facial paralysis-specific faces and those from the
ealthy control group are consistently subject to higher misclassifica-
ion rates across models, likely due to significant feature expression
imilarities between these two categories. A commonality across the
est-performing models is to confuse thalassemia-specific faces with
hose of the healthy control group, highlighting the challenges in
ifferentiating between these two categories.

. Discussion

In the field of facial diagnosis, the amount of data used in various
tudies varies greatly. In most cases, no more than 100 facial images are
vailable for each disease category. Many studies do not clearly specify
he number of images used for training and testing. Furthermore,
he majority of the datasets are private and not publicly accessible.
or binary classification tasks, the models reported in the literature
enerally perform well. However, for multi-classification tasks, there is
substantial discrepancy in the publicly reported recognition results,
ith accuracy rates ranging from 48% to 93%. Due to these factors,

here are doubts surrounding the findings of many research studies, yet
t is not possible to verify them. In recent years, some researchers have
egun to utilize 3D DSF data in the hope of achieving more accurate
esults. The author believes that given the current scenario, even 2D
SF data is scarce, let alone the 3D DSF data, making it unsuitable for
12

idespread application. o
In the field of facial diagnosis, due to the scarcity of training data,
e first proposed and applied transfer learning from facial recognition

asks and achieved good results (Jin et al., 2020). Facial recognition
s a relatively mature research field, and many models have reached
ecognition accuracies of over 99% in various datasets, leaving limited
oom for improvement. Inspired by depth estimation (Jin et al., 2021),
e utilized pseudo-depth to enhance facial recognition performance
ith a limited number of training images. In the expanded facial
iagnosis task dataset, the recognition task is more difficult, and using
nly pseudo-depth does not guarantee improved results in every ex-
eriment. Similarly, studies have found that estimated depth does not
lways yield performance improvements in object detection (Cetinkaya
t al., 2022). Therefore, we introduced the concept of fine-grained
lassification and employed a bilinear model structure. In combination
ith pseudo-depth, facial diagnosis performance is improved in most

ases. However, the improvement still has a certain degree of prob-
bility. Based on this, we proposed the Simulated Multimodal Deep
acial Diagnosis, using processing models with the same structure for
ecognition comparison, to increase the likelihood of improvement. The
mprovement reflects the feature complementarity of simulated differ-
nt modality features within the Simulated Multimodal Framework.
he whole research results are reproducible.

.1. Computational complexity

In comparison to the RGB computer-aided facial diagnosis, in the
ramework presented in this paper, the generation of synthetic facial
epth images using D+GAN requires an additional computational de-
and of approximately 21.6G MACs during the forward propagation

f the neural network. The computational complexity for both wavelet
ransform and inverse wavelet transform is generally 𝑂(𝑁𝑙𝑜𝑔(𝑁)),
here 𝑁 represents the length of the input data. Thus, in the implemen-

ation described, the wavelet soft-thresholding image fusion algorithm
equires an additional approximately 1.57M MACs. The computational
omplexity of bilinear pooling is typically 𝑂(𝑁2). Thus, when com-
aring with ordinary face processing models, the use of a bilinear
odel for fine-grained classification requires an additional 131K MACs

pproximately. In summary, an additional approaching 100G of MACs
s typically entirely feasible on modern computing systems and deep
earning inference hardware, especially for offline processing or com-
utations conducted in data centers. Disease screening and detection do
ot necessitate real-time processing. Nevertheless, for developers, it is
rucial to balance the benefits of increased accuracy with the associated
omputational costs to ensure efficient and practical deployment across
arious platforms.

.2. AI vs. human doctors

To compare the accuracy of facial diagnosis between artificial intel-
igence and human doctors, we engaged 15 practicing physicians from
ublic hospitals in China to perform the prediction on the DSF2 dataset.
hese practicing physicians achieved an average accuracy of 59.1% on
his dataset, which is at least 5% and 15% lower than the best models
n RGB and SM modes, respectively. Moreover, the evaluation time
aken by the physicians was invariably much longer than that of the
I models.

. Conclusion

Deep facial diagnosis enables rapid, non-invasive disease screening
nd detection, which could benefit human beings and reduce the
urden on the health system. In this paper, in order to leverage the
stimated depth features more effectively, we propose the Simulated
ultimodal Deep Facial Diagnosis. Based on facial depth estimation,

ur improvement introduces both early and late fusion strategies for

ptimized training and prediction, and by employing weighted majority
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Fig. 12. Simulated multimodal image samples in DSF2 dataset.

Fig. 13. Case 1 difference area diagram (Left: ACC, Right: MCC).

Fig. 14. Case 2 difference area diagram (Left: ACC, Right: MCC).
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Table 4
Comparison results of models in Case 1.
Train-test split ratio Model Evaluation metrics Mode

RGB SM

315:280

FaceNet (CASIA-Webface) ACC (%) 41.07 ± 0.002 41.43 ± 0.002
MCC 0.352 ± 0.0004 0.355 ± 0.0003

Bilinear FaceNet (CASIA-Webface) ACC (%) 40.71 ± 0.005 45.36 ± 0.003
MCC 0.323 ± 0.0005 0.374 ± 0.0001

FaceNet (VGG-Face2) ACC (%) 38.21 ± 0.005 39.64 ± 0.003
MCC 0.322 ± 0.0005 0.332 ± 0.0001

Bilinear FaceNet (VGG-Face2) ACC (%) 45.36 ± 0.003 46.79 ± 0.005
MCC 0.373 ± 0.0004 0.392 ± 0.0001

InsightFace: IResNet34
(MS1MV2)

ACC (%) 55.71 ± 0.005 56.07 ± 0.002
MCC 0.497 ± 0.0005 0.500 ± 0.0002

Bilinear InsightFace: IResNet34
(MS1MV2)

ACC (%) 59.64 ± 0.003 65.71 ± 0.005
MCC 0.532 ± 0.0001 0.601 ± 0.0005

InsightFace: IResNet100
(MS1MV2)

ACC (%) 55.71 ± 0.005 60.00 ± 0.000
MCC 0.492 ± 0.0003 0.543 ± 0.0002

Bilinear InsightFace: IResNet100
(MS1MV2)

ACC (%) 71.07 ± 0.002 72.14 ± 0.003
MCC 0.667 ± 0.0005 0.678 ± 0.0001
Table 5
Comparison results of models in Case 2.
Train-test split ratio Model Evaluation metrics Mode

RGB SM

350:245

FaceNet (CASIA-Webface) ACC (%) 40.00 ± 0.000 46.11 ± 0.003
MCC 0.309 ± 0.0001 0.379 ± 0.0001

Bilinear FaceNet (CASIA-Webface) ACC (%) 52.65 ± 0.004 53.88 ± 0.003
MCC 0.466 ± 0.0001 0.479 ± 0.0002

FaceNet (VGG-Face2) ACC (%) 40.82 ± 0.004 45.71 ± 0.005
MCC 0.331 ± 0.0004 0.387 ± 0.0004

Bilinear FaceNet (VGG-Face2) ACC (%) 31.43 ± 0.002 33.47 ± 0.001
MCC 0.218 ± 0.0002 0.241 ± 0.0004

InsightFace: IResNet34
(MS1MV2)

ACC (%) 50.61 ± 0.003 52.24 ± 0.005
MCC 0.438 ± 0.0002 0.461 ± 0.0003

Bilinear InsightFace: IResNet34
(MS1MV2)

ACC (%) 61.22 ± 0.005 67.76 ± 0.005
MCC 0.550 ± 0.0001 0.627 ± 0.0005

InsightFace: IResNet100
(MS1MV2)

ACC (%) 62.86 ± 0.003 62.04 ± 0.001
MCC 0.578 ± 0.0005 0.569 ± 0.0004

Bilinear InsightFace: IResNet100
(MS1MV2)

ACC (%) 71.84 ± 0.004 74.29 ± 0.005
MCC 0.675 ± 0.0003 0.701 ± 0.0001
Table 6
Comparison results of models in Case 3.
Train-test split ratio Model Evaluation metrics Mode

RGB SM

385:210

FaceNet (CASIA-Webface) ACC (%) 37.62 ± 0.001 43.81 ± 0.001
MCC 0.298 ± 0.0005 0.372 ± 0.0003

Bilinear FaceNet (CASIA-Webface) ACC (%) 51.90 ± 0.001 58.57 ± 0.002
MCC 0.459 ± 0.0004 0.525 ± 0.0005

FaceNet (VGG-Face2) ACC (%) 38.57 ± 0.002 41.90 ± 0.001
MCC 0.292 ± 0.0004 0.334 ± 0.0001

Bilinear FaceNet (VGG-Face2) ACC (%) 41.90 ± 0.005 46.19 ± 0.001
MCC 0.331 ± 0.0001 0.385 ± 0.0005

InsightFace: IResNet34
(MS1MV2)

ACC (%) 58.10 ± 0.001 59.52 ± 0.003
MCC 0.517 ± 0.0003 0.533 ± 0.0005

Bilinear InsightFace: IResNet34
(MS1MV2)

ACC (%) 60.95 ± 0.003 64.76 ± 0.002
MCC 0.546 ± 0.0004 0.591 ± 0.0005

InsightFace: IResNet100
(MS1MV2)

ACC (%) 71.90 ± 0.005 72.38 ± 0.001
MCC 0.675 ± 0.0004 0.681 ± 0.0002

Bilinear InsightFace: IResNet100
(MS1MV2)

ACC (%) 74.29 ± 0.005 74.76 ± 0.002
MCC 0.702 ± 0.0003 0.706 ± 0.0001
14
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Fig. 15. Case 3 difference area diagram (Left: ACC, Right: MCC).
Fig. 16. Confusion Matrix Examples for Case Studies.
voting, we ultimately achieve promising results. Under this framework,
we have retrained advanced pre-trained face recognition models using
bilinear operations to adapt them for facial diagnosis tasks, a critical
advantage in a context where training data is typically limited. Ex-
perimental results show that this approach significantly improves the
performance of RGB facial diagnosis with a high probability.

In future work, we plan to collect more real-world data for training
and testing facial diagnosis models and prepare the necessary software
and hardware for practical applications in society. While the primary
focus of this work was computer-aided facial diagnosis, we see potential
for the Simulated Multimodal Framework in other fields, including
autonomous driving and target tracking. Our future work will involve
cross-disciplinary collaboration to explore these potential applications.
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