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Abstract— Face recognition has achieved outstanding perfor-
mance in the last decade with the development of deep learning
techniques.

Nowadays, the challenges in face recognition are related to
specific scenarios, for instance, the performance under diverse
image quality, the robustness for aging and edge cases of person
age (children and elders), distinguishing of related identities.

In this set of problems, recognizing children’s faces is one
of the most sensitive and important. One of the reasons for
this problem is the existing bias towards adults in existing face
datasets.

In this work, we present a benchmark dataset for children’s
face recognition, which is compiled similarly to the famous face
recognition benchmarks LFW, CALFW, CPLFW, XQLFW and
AgeDB. We also present a development dataset (separated into
train and test parts) for adapting face recognition models for
face images of children. The proposed data is balanced for
African, Asian, Caucasian, and Indian races. To the best of
our knowledge, this is the first standardized data tool set for
benchmarking and the largest collection for development for
children’s face recognition. Several face recognition experiments
are presented to demonstrate the performance of the proposed
data tool set.

I. INTRODUCTION

Due to the significant progress of deep learning techniques
in the last decade face biometrics has become one of the most
accurate biometrics modalities. However, there are still many
problems that address modern face recognition. For instance,
the most challenging ones are the efficient distinguishing of
relatives or twins, the impact of diverse image quality, and
age bias.

Here the efficient recognition of children takes an impor-
tant place. Its necessity is usually motivated by the problem
of finding missing or abducted children and combating
the children’s exploitation. The children’s involvement in
criminal activity, both as a victim and as an offender is
also a problem, where face recognition can be useful. The
recognition of newborns is important for protecting from
swapping of newborns in hospitals and maternity homes
as an alternative biometric solution to accompany currently
existing techniques based on RFID technology.

For instance, the annual reports in many countries present
a large number of missing children. United Kingdom police
forces recorded 50k missing individuals in 2020/21 years [2].
In the United States, an estimated 340k children are reported
missing in 2021 [22]. In the same year, the Government of
Canada reported an estimated 28k children missing [9].

This work has been supported by Fundação para a Ciência e a Tec-
nologia (FCT) under the project UIDB/00048/2020 and PhD grant number
2022.11941.BD.

Another motivation to study face recognition for children’s
faces is children’s exploitation. According to UNICEF in
2021 across 129 countries 4.4 million children had expe-
rienced violence (of the 2.3 million for whom disaggregated
data are available, 53 percent are girls) with health, social
work, or justice/law enforcement services. This number
increased by 80% compared to 2017. This significant growth
indeed is also related to better availability of support but
indeed it also discovers the large latent scale of this problem.

These evidences prove the importance of taking special
measures for recognizing children’s faces. Indeed the char-
acter of aging of children is different compared to adults.
The maturation of children involves the nonlinear structure
and shape changes of the skull and propositions of parts
of a face. For instance, eyes grow rapidly right after birth.
Then in several months their growth becomes more linear
and undergoes an extra growth spurt during puberty [17],
[5]. At the same time, the aging of adults has less extensive
character and is usually limited to soft tissue changes like
skin texture, hair colour, and wrinkles appearance.

In academia, a significant amount of face recognition
benchmarks for adults exist [20], [56], [12], [55], [27], [26],
[50], [31], [34]. For the children’s age group such testbeds
(usually private) were also proposed [15], [7], [6], [36].
However, the standard public tool is still not present in the
academic community.

In this work, we address the above problem and present
a novel face data toolset, which is specifically focused
on children’s face recognition. The collected source data
consists of wild children’s face images of diverse ages, thus
we choose the abbreviation YLFW (Young Labeled Faces in
the Wild) for referencing our toolset and its components. Our
toolset consists of two parts YLFW-Benchmark, and YLFW-
Dev for different aspects of face recognition research for the
children’s age group.

To address the purpose of estimating the performance
of face recognition algorithms against children’s face im-
ages, we propose a YLFW-Benchmark dataset. The dataset
consists of ∼ 10k images of ∼ 3k identities and it is
accompanied by a 1-1 verification protocol, which includes
3k match and 3k non-match pairs.

To address the purpose of the development of face recog-
nition systems, which are adapted to children’s faces we
propose the YLFW-Dev dataset which is split into YLFW-
Dev-Train (2k identities, ∼ 76k images) and YLFW-Dev-
Test ( ∼ 1k identities, ∼ 2k images) with disjoint identities.
YLFW-Dev-Test is built similarly to YLFW-Benchmark but
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includes fewer images and comparison pairs. Its purpose is
to support benchmarking in a case when YLFW-Dev-Train
is used in the training data (YLFW-Benchmark should not
be used in this case since it shares identities and images with
YLFW-Dev-Train).

To the best of our knowledge, our data toolset provides
the first public benchmark that is directed at estimating the
performance against the children’s age group faces and the
largest training dataset for the respective age group. The
important advantage of the proposed data is that it is not
collected by the list of identities of celebrities. That is why
the face recognition algorithms, which are trained on famous
academic datasets of celebrities (like CASIA-Webface[53],
VGGFace2[11], MS-Celeb-1M[18]) can be tested on YLFW
components following the correct open-set testing scenario
(when images in the training and testing parts include images
of disjoint identities). Standard benchmarks (like LFW[20],
IJB[26], [50], [31] etc.) are usually based on the images of
celebrities and can share the same identities with the training
data. That is why we also argue that YLFW-Dev-Train indeed
can be concatenated with the common academic face datasets
for training face recognition networks.

Several features of the proposed data in YLFW should be
noted. The proposed YLFW data is race-balanced in different
means. Namely, YLFW-Benchmark and YLFW-Dev-Test are
race-balanced by the number of pairs across the protocol. The
original YLFW-Dev-Train is balanced only by the number
of identities per race. That is why we also provide and
employ the YLFW-Dev-Train-Balanced, which is obtained
by additional augmentation of images of fewer represented
races in the original YLFW-Dev-Train.

The gender differences between children are weaker and
several works demonstrate that it is harder to estimate the
gender of a child compared with an adult [30], [13]. For
newborns, the gender property is usually hardly identified
by the face image. That is why we do not prioritize gender
balance in our work.

It is important to discuss the correlation of the proposed
datasets to the cross-age recognition problem. Due to the
semi-automatic nature of data collection, our data toolset has
only collateral age longitudinal property. YLFW benchmark
indeed contains pairs with the age difference, however, we
do not explicitly control this effect since the main purpose of
the dataset is to estimate the performance biased to children’s
faces. Namely, the proposed benchmark is not explicitly
focused on a cross-age recognition problem. The YLFW-
Dev set contains classes, where face images were collected
with a large age gap between the sessions (and thus with
a perceptible maturation of facial features), however, this is
also an uncontrolled effect of the data collecting process.
We do not combat this effect since it better approximates
the introduced dataset to the real application scenarios.

II. RELATED WORK

To introduce our methodology and results, we first need to
discuss recent advances in face recognition, its benchmark-
ing, and specificity when dealing with children’s faces.

A. Face Recognition

The ability to learn highly discriminative features from
unconstrained images, which is provided by deep learning
tools, facilitated the significant development of race recog-
nition technologies in the last decade.

Convolutional neural networks (CNN) have become a
standard tool for face recognition due to their high efficiency
in solving pattern recognition problems [39]. The training
approach of such deep networks can vary, but the target is
usually the same - to learn low-dimensional feature domain,
where the sample discrimination may be performed with
trivial similarity metrics.

Most commonly deep learning face recognition is ap-
proached by solving the classification task on the identity-
labeled training dataset. The required feature domain (carried
by hidden layers) can be learned during optimizing the class
probabilities of training samples. This is usually achieved by
utilizing Softmax loss and its modifications for classification
[44], [43], [45].

The performance of this technique can be significantly im-
proved by increasing intra-class compactness and maximiz-
ing inter-class discrepancy from different perspectives. For
example, by applying additional regularization for pushing
intra-class features to their center [49], or by introducing
several kinds of marginal restrictions for inter-class variance
[29], [47], [16], [42].

Modern approaches usually consider sample-specific
strategies, which allow better control of a feature domain
for achieving higher intra-class compactness and inter-class
separation. For example, sample wise supervision may be
performed by its hardness [54], [21], additional data aug-
mentation applied [41] or even by treating its deep features
in a distributional manner (by specifying sample uncertainty)
[40].

Quality-based loss function adaptations have been in-
tensively studied in recent works. Here the MagFace[33],
QualFace[46], [32] and AdaFace[25] share conceptual simi-
larities of the approaches. All these losses indeed modify the
marginal-based softmax in a sample-specific way.

Several studies in the field of face recognition have been
directed toward investigating compact face recognition mod-
els to make them more suitable for practical applications and
embed them in portable devices [3], [8].

B. Face Recognition for Children’s Age Group

The problem of bias in face recognition is diverse and
includes many factors. Age bias is one of the most natural
problems due to evident face feature changes during the
process of maturation and further aging.

The number of the pioneer works on age-invariant face
recognition were performed using the FG-NET database
[35], which is composed of a total of 1k images of 82 people
with an age range from 0 to 69 and the largest age gap
of 45 years. Cross-Age Celebrity Dataset (CACD) [12], is
a larger scale age-invariant dataset, which contains around
160k images of 2k celebrities with ages ranging from 16
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to 62. However, the representation of children across this
dataset is rather limited.

Several works specifically focus on children’s face recog-
nition. The general trend in most of the works is also
directed at performing a longitudinal study. Many works
contributed with manually collected or web-scraped datasets
of children’s face collections. Usually, the provided datasets
remain private. The list of currently existing datasets is
presented in Table I.

In one of such works, Best-Rowden et al. proposed a NITL
(Newborns, Infants, and Toddlers Longitudinal) face image
dataset [7], which was collected by the authors during several
sessions. The database contains 314 subjects in total in the
age range of 0 to 4 years old. The dataset is race-biased
to Indian faces. The experiments of this work proved the
extreme complexity of recognizing newborns.

Another dataset Children Longitudinal Face (CLF) [15]
was developed to cover a different children’s age group for
face recognition. CLF contains 3.5 k face images of 1k
children in the age group of 2 to 18 years. Within this group,
authors observed better performance than in [7] for the age
group 0 to 4 years. Another interesting result is that girls
in the CLF dataset have higher overall genuine scores and
appear to be easier to recognize than boys.

Bahmani and Schuckers proposed the Young Face Aging
(YFA) dataset for analyzing the performance of face recogni-
tion systems over short age gaps in children [6]. The dataset
was collected in the controlled acquisition and longitudinal
time conditions and intended to be public via the BEAT
research platform [4] (but not available at the moment of
publication of this work). The authors demonstrated the pos-
itive correlation between face recognition performance decay
and the age gap between the gallery and probe images in
children, even at the short age gap of 6 months. At the same
time, the authors did not observe a significant relationship
between gender and match scores in their dataset.

In another work, Jin et al. developed a system for finding
missing children without the exposure of photos on the web
[23]. The deep face representation, which was trained on
face images of adults was fine-tuned on the LCFW dataset,
which was collected by the authors. The LCFW dataset is
collected by scraping the professional photo album website
and contains 60K images with 6K unique identities.

Ricanek et al. proposed the In-the-Wild Child Celebrity
(ITWCC) database, which is a collection of longitudinal
wild face images of celebrities [36]. It contains 304 subjects
and 1705 images. The ages of the subjects within this
dataset range from 5 months to 32 years. The authors also
reviewed several face recognition algorithms on this dataset
and showed that aging in non-adults is a challenging task for
face recognition algorithms.

Another research with an emphasis on variations in facial
expressions, pose, and illumination conditions was conducted
by Dalrymple et al.[14]. Their result Dartmouth Database of
Children’s Faces contains a set of photographs of forty male
and forty female Caucasian children between six and sixteen
years of age.

The face recognition in the domain children’s age group is
partially addressed within the works in the adjacent field of
kinship face recognition [1], [37]. These works approach the
problem from the perspective of recognizing patterns in faces
and familial relationships, which implies the collection of
datasets from family photo albums. Those works also contain
some representation of children’s face image data.

In contrast to several of the above works, we do not ex-
plicitly focus on the longitudinal study and mainly consider
the problem of age bias. From that perspective, we intend
to propose a standardized benchmark for the testing and
development of face recognition systems for children’s faces.

C. Face Recognition Benchmarks

Modern face recognition deep networks are trained on
large labeled collections of face images and the resulting
performance is usually estimated on separate datasets with
disjoint identities.

The most generic scenario for the benchmarking of face
recognition systems is 1-1 verification. The respective bench-
marks include the collection of face images with a pairing list
(protocol), where each pair is given a match/non-match (by
identity) label. In this work, we focus only on considering
1-1 verification.

The most used benchmark data toolsets are usually freely
distributed on the web. One of the first and most popular face
recognition benchmarks is Labeled Faces in the Wild (LFW),
which is a combination of 3k match and 3k non-match pairs
[20]. The data in the LFW have natural variability of wild
face image characteristics (like pose, lighting, focus, resolu-
tion, facial expression, age, gender, race, accessories, make-
up, occlusions, and background). However, LFW does not
cover all the aspects of the 1-1 face verification performance
and also includes unwanted biases (for instance, the average
age difference between the matched and non-matched pairs).

That is why several revisited variants appeared. They usu-
ally tend to enhance the hardness of correct verification (both
inter-class and intra-class), which results in a significant
performance decrease. For instance, CALFW (Cross-Age
Labeled Faces in the Wild) [56] is designed to reduce the
age difference between match and non-match pairs and test
the robustness of face recognition algorithms to face aging.

The head pose difference is emphasized in CPLFW
(Cross-Pose Labeled Faces in the Wild). This dataset follows
the LFW and provides a more realistic consideration of intra-
class head pose variation and fosters the research on cross-
pose face verification in unconstrained conditions.

Some benchmarks are distributed by the institutional re-
quest with a license agreement.

AgeDB dataset [34] was collected to investigate the aging
problem in face recognition. It also provides protocols with
pairs that include images with different age gaps to test the
robustness of face recognition algorithms against aging.

IJB set of benchmarks (IJB-A [26], IJB-B [50], IJB-C
[31]) provide a large-scale test (both by the number of
images and the length of pair list) on several face recognition
tasks, challenges, and scenarios. Face images are collected
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TABLE I: Face datasets for children’s face recognition

Dataset Number of
Identities

Number of
Images

Age,
years

Acquisition
Type Availability Race

Balanced
Longi-
tudinal

FG-NET [35] 82 1002 6-18 In the Wild Public No Yes
DDCF [14] 80 3200 6-16 Controlled By Request No No
AgeDB [34] 568 16k 1 - 101 In the Wild By Request No Yes
YFA [6] 231 2293 3 - 14 Controlled To be published No Yes
ITWCC [36] 304 1705 3+ In the Wild Private No Yes
NITL [7] 314 3144 3-5 Controlled Private No Yes
CLF [15] 919 3682 2-6 Controlled Private No Yes
LCFW [23] 6k 60k 1.5-9 In the Wild Private No No
YLFW-Benchmark 3069 9810 0 - ∼ 18 In the Wild Public Yes No
YLFW-Dev-Train 2000 75k 0 - ∼ 18 In the Wild Public Yes No
YLFW-Dev-Test 1016 1887 0 - ∼ 18 In the Wild Public Yes No
YLFW-Dev-Train-B. 2000 120k 0 - ∼ 18 In the Wild Public Yes No

with wide variations in head pose, illumination, expression,
resolution, and occlusion.

III. METHODOLOGY

A. Data collecting

The raw data acquisition follows the generic pipeline of
collecting face datasets in computer vision. The face images
are web scraped by iterating the list of identity references.
In the most straightforward scenario such a list of identities
is combined with the names of celebrities [53], [11]. In our
work instead of proceeding with the collection by the list of
known celebrities, the identities references are web scraped
by a specific set of keywords, which refer to the different
age and race labels. With the help of anonymous identity
references, which are provided by the search engine, we
collect the raw and noisy identity labelled set of images. The
raw data is then filtered by hierarchical clustering to extract
the main cluster for each identity label. The collected face
images are subsequently subjected to manual verification to
ensure their correspondence to the young age group.

For achieving a race balance the data collection proceeds
with a race separation of the requests [38], [51]. We follow
Wang et al. [48] in the definition of the race list and consider
the following ones: African, Asian, Caucasian, and Indian.
In our collecting process, we also observe that available
data diversity for races decreases in the following order:
Caucasian, Asian, African, and Indian.

Indeed the real race separation is not discrete but smooth
across the globe. In our data collecting process, we observe
that for the selected list of races the most sensitive gap is
between the Asian and Indian races. This observation may be
caused by geographical closeness of Asian and Indian ethnic
groups and also pitfalls of racial categories definition [24].

B. Pairing methodology

In order to construct the 1-1 verification benchmark the
image pair list (protocol) should be defined. In our work,
we follow the semiautomatic process, where the proposed
pairs are selected randomly. However, the proposed pairs
are exposed to a human user verifier, who can accept or
reject the pair. The process is repeated until the required
number of approved pairs is achieved. All pairs indeed are

(a) (b)

Fig. 1: Examples of pairs in LFW(a) and YLFW-
Benchmark(b). Match pairs are in the green rectangle. Non-
match pairs are in the red rectangle

also manually controlled with the intention to avoid extreme
cases of bad quality, extremely easy match pairs, and rare
but possible cases of mislabeling in the result data. It is
important to note, that this pipeline is not similar to the
estimation of the human performance since the cross-label
indication is initially available to the person, who performs
the verification. The task here is only to confirm the identity
match, eliminating occasional labelling errors and image
quality outliers.

The exact selection algorithm is slightly different for
match and non-match pairs (see Fig 2). In the case of match
pairs first, the list of identities is combined. Then a single
identity is randomly picked. Then two different images are
randomly selected from this identity and exposed to the
human user. The user selects one of three options: ”accept”;
”accept and remove”; ”reject”. In the case of the ”accept”
decision, the image pair is appended to the protocol. In the
case of the ”accept and remove” decision, the respective
identity is also removed from the identity list. The ”reject”
decision results in simple skipping of the proposed pair. After
proceeding with the decision the cycle repeats.

In the case of collecting non-match pairs, two equal lists
of identities are generated. Then from each list, a random
identity is picked. If the selected identities are not equal and
this specific combination of identities is not present in the
protocol, then for both identities a random image is then
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Get duplicated Iists
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pair proceeding
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Set required number of pairs N and
empty container for accepted pairs P

Pick Random idk from list_id1

and idt from list_id2

reject accept

accept
and

rem
ove

id

Remove idk from list_id1, idt from

list_id2 and add accepted pair to P

Add accepted pair to P

Pick Random pair of images from
idk vs idt

Size P>=N
No Yes

Finish Collecting

(b)
Fig. 2: Schematics of the pairing strategy for match pairs(a)
and non-match pairs(b)

selected to be exposed to the human user as a proposed
pair. The user selects from the same decision list as for
match-pairs, however here in the case of the ”accept and
remove” decision the selected identities are removed from
their respective lists. After proceeding with the decision the
cycle repeats.

C. YLFW-Benchmark database

Following the above pairing procedure for the full col-
lected data, we assemble the YLFW-Benchmark database. To
control the race balance this process of pairing is performed
separately for different races and their cross combinations
(for non-match pairs). Namely, the resulting protocol in-
cludes 750 match pairs for each of the selected races and 300
non-match pairs for each cross-race combination. In total, the
resulting protocol includes 3000 match and 3000 non-match
pairs, which are based on 9810 images of 3069 identities.
Several examples of the pairs are presented in Fig. 1.

D. YLFW-Dev database

The goal of the development YLFW-Dev database is to
provide separate parts for training and testing. The efficient
training of deep networks for face recognition usually re-
quires a large number of images per class (in the ideal
scenario 10-50 images per identity [10]).

That is why basing on the collected data we select iden-
tities with the largest ”samples per class” value to collect
500 identities per race. Thus the resulting YLFW-Dev-Train
dataset is then only balanced by the ”identities per race” pa-
rameter. That is we also design YLFW-Dev-Train-Balanced,
which is obtained by random additional augmentations of
images of fewer represented races in the original YLFW-
Dev-Train. The commonly used types of augmentations were

employed to obtain YLFW-Dev-Train-Balanced (horizontal
flip, brightness and contrast control, slight image rotation,
noise injection).

The remaining part (”tail”) of our collected data is used
to combine a small benchmark with identities disjoint from
the training part. The resulting YLFW-Dev-Test is then
assembled similarly to YLFW-Benchmark and includes 1887
images of 1016 identities. Similarly to YLFW-Benchmark
the resulting protocol is race balanced and contains 150
match pairs per race and 60 non-match pairs per each cross-
race combination (1200 pairs in total).

IV. EXPERIMENTS AND RESULTS

We have performed several experiments with our data
toolset. First, we evaluated several recent face recognition
models on YLFW-Benchmark. Next, we trained several face
recognition models on popular academic face recognition
datasets, and their copies concatenated with YLFW-Dev-
Train to demonstrate the benefits of such adaptation to the
recognition of children’s face images.

We report the performance by FNMR@FMR = α and
also include additional metrics such as the Equal Error Rate
(EER) of Detection Error Trade-off (DET), Area Under
Curve (AUC) of Receiver Operating Characteristic (ROC)
and Accuracy (in %).

We estimate the performance on our generated tests
YLFW-Benchmark and YLFW-Dev-Test in a combination
with several similar compact face recognition benchmarks:
LFW, CALFW, CPLFW, and ADEDB-30.

The experiments on both YLFW-Benchmark and YLFW-
Dev-Test in Section IV-A are performed indeed to compare
those two tests and demonstrate compromises, which are
made in the development of YLFW-Dev-Test, compared to
its larger companion.

At the same time in Section IV-B, the identities from
YLFW-Benchmark can match with the identities of the
training data from YLFW-Dev-Train. Thus the results on
YLFW-Benchmark are given under the disclaimer that they
indeed do not correctly define the performance in the open-
set scenario for the cases where YLFW-Dev-Train is used
during training.

A. Testing on YLFW-Benchmark

To investigate the properties of the proposed benchmarks
and demonstrate the performance of the SOTA face recogni-
tion approaches for children’s faces we stress them against
the YLFW data toolset.

We choose the following set of public deep networks:
ArcFace[16], MagFace[33], AdaFace[25], GhostFaceNet[3],
which are trained on MS1MV2 dataset [18], [16]. The
selected versions of ArcFace, AdaFace and MagFace are
based on the ResNet-50 [19] architecture. The alignment
settings of the benchmark data correspond to the training
data during our tests.

The results for these networks are presented in Fig. 3
and Table II. We observe the imperfectness of the SOTA
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Fig. 3: ROC curves of different public face recognition models trained on MS1MV2 (AdaFace, ArcFace, MagFace,
GhostFaceNet). a) - (LFW, CALFW, CPLFW), b) - (AGEDB-30, YLFW-Benchmark, YLFW-Dev-Test) and c) - (race
separated parts of YLFW-Benchmark, where Afr. - African, As. - Asian, Cau. - Caucasian, Ind. - Indian).

TABLE II: Performance metrics for LFW, CALFW, CPLFW, AGEDB-30, YLFW-Benchmark and YLFW-Dev-Test of
different public face recognition models trained on MS1MV2 (AdaFace, ArcFace, MagFace, GhostFaceNet).

Train
Dataset

FNMR@FMR = α, EER, AUC of ROC and Accuracy (in %)
LFW CALFW CPLFW

α=10−1 α=10−2 EER AUC Accuracy α=10−1 α=10−2 EER AUC Accuracy α=10−1 α=10−2 EER AUC Accuracy
AdaFace 0.0020 0.0023 0.0026 0.9988 99.83 0.0590 0.0746 0.0633 0.9725 95.75 0.0989 0.1676 0.0989 0.9515 91.85
ArcFace 0.0013 0.0023 0.0030 0.9990 99.83 0.0566 0.0756 0.0616 0.9722 95.80 0.1029 0.1780 0.1029 0.9478 91.73
MagFace 0.0020 0.0023 0.0026 0.9992 99.80 0.0596 0.0759 0.0639 0.9724 95.80 0.1066 0.1713 0.1049 0.9460 91.40

GhostFaceNet 0.0016 0.0036 0.0036 0.9989 99.76 0.0620 0.0813 0.0659 0.9702 95.46 0.1343 0.2119 0.1246 0.9367 89.81
AGEDB-30 YLFW-Benchmark YLFW-Dev-Test

AdaFace 0.0196 0.0320 0.0256 0.9906 97.89 0.0093 0.0506 0.0276 0.9955 97.41 0.0150 0.0333 0.0266 0.9948 97.83
ArcFace 0.0176 0.0290 0.0250 0.9903 98.08 0.0126 0.0726 0.0300 0.9945 97.13 0.0166 0.0733 0.0333 0.9929 96.75
MagFace 0.0190 0.0320 0.0246 0.9906 98.01 0.0103 0.0659 0.0276 0.9956 97.28 0.0183 0.0416 0.0316 0.9950 97.33

GhostFaceNet 0.0220 0.0356 0.0280 0.9910 97.78 0.0156 0.0906 0.0380 0.9927 96.30 0.0200 0.0766 0.0433 0.9931 96.08
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Fig. 4: ROC curves of ResNet-50 trained on various baseline datasets: a - CASIA-Webface[53], b - VF2 - VGGFace2[11],
c - MS1M - MS1MV2[16], [18]. Dashed lines correspond to the networks trained on the baseline + YLFW-Dev-Train data.
Networks are tested on LFW, CALFW, CPLFW, AGEDB-30, YLFW-Benchmark and YLFW-Dev-Test benchmarks
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TABLE III: Performance metrics for LFW, CALFW, CPLFW, AGEDB-30, YLFW-Benchmark and YLFW-Dev-Test of
ResNet-50 network trained on various configurations training datasets (CW - CASIA-Webface [53], VF2 - VGGFace2[11],
MS1M - MS1MV2[16], [18] , YDTR - YLFW-Dev-Train-Balanced).

Train
Dataset

FNMR@FMR = α, EER, AUC of ROC
LFW CALFW CPLFW

α=10−1 α=10−2 EER AUC Accuracy α=10−1 α=10−2 EER AUC Accuracy α=10−1 α=10−2 EER AUC Accuracy
CW 0.0520 0.2314 0.0721 0.9798 92.83 0.4981 0.7902 0.2753 0.8010 72.65 0.6970 0.9283 0.3721 0.6835 63.23

CW+YDTR 0.0573 0.2351 0.0763 0.9802 92.76 0.4671 0.7993 0.2710 0.8075 73.55 0.6712 0.9131 0.3593 0.6975 64.91
VF2 0.0056 0.0316 0.0193 0.9975 98.10 0.2756 0.5740 0.1896 0.8893 81.58 0.3976 0.7969 0.2376 0.8440 77.13

VF2+YDTR 0.0060 0.0416 0.0216 0.9971 97.83 0.2670 0.5770 0.1889 0.8886 81.91 0.3853 0.7370 0.2339 0.8449 76.85
MS1M 0.0016 0.0036 0.0046 0.9994 99.60 0.0689 0.1256 0.0763 0.9668 93.65 0.2380 0.4880 0.1946 0.8479 83.35

MS1M+YDTR 0.0010 0.0040 0.0050 0.9996 99.60 0.0763 0.1480 0.0816 0.9634 93.01 0.2053 0.4683 0.1636 0.9094 84.73
AGEDB-30 YLFW-Benchmark YLFW-Dev-Test

CW 0.5611 0.8962 0.2820 0.7911 71.95 0.3722 0.7683 0.2231 0.8590 78.18 0.2931 0.5682 0.1781 0.8971 83.00
CW+YDTR 0.5071 0.8642 0.2591 0.8189 74.23 0.0433 0.2221 0.0651 0.9832 93.58 0.0600 0.2261 0.0812 0.9779 92.16

VF2 0.2830 0.7173 0.1736 0.9072 82.80 0.2136 0.6040 0.1506 0.9256 85.10 0.1883 0.4300 0.1383 0.9431 86.58
VF2+YDTR 0.2700 0.6996 0.1783 0.9060 82.51 0.0779 0.3286 0.0879 0.9698 91.31 0.0633 0.2866 0.0799 0.9741 92.66

MS1M 0.0386 0.1706 0.0600 0.9826 94.30 0.0629 0.2900 0.0819 0.9736 91.90 0.0383 0.2533 0.0699 0.9793 93.66
MS1M+YDTR 0.0373 0.1680 0.0606 0.9841 94.23 0.0070 0.0420 0.0243 0.9973 97.61 0.0083 0.0533 0.0300 0.9955 97.41

methods to the proposed in this work benchmarks. YLFW-
Benchmark indeed challenges the SOTA methods on par
with CALFW and CPLFW. YLFW-Dev-Test has a similar
hardness to YLFW-Benchmark at high FMRs (∼> 10−2)
and imposes easier challenges at lower FMRs.

According to Fig. 3c, we also observe a significant racial
bias in the performance curves. However, we believe that this
is related to the negative effect of a difference in the data
diversity per race in the original data for YLFW-Benchmark
(see Section III-A). Namely, the lower data diversity of a
particular race subset indeed leads to the higher similarity of
the images in the match pairs.

Low values of FNMR for CALFW and CPLFW are hardly
achieved since these benchmarks explicitly decrease the
similarity in match pairs by the intrusion of age and pose
gap (at the same time this intrusion does not increase the
similarity in non-match pairs). The YLFW-Benchmark curve
is more similar to LFW and does not contain the above intra-
class feature. In our benchmark FNMR start increasing at
lower FMR, which means that different children’s identities
are harder to discriminate. In a general perspective, this
conforms to the intuition that children are more similar
between each other rather than adults.

B. Experiments on YLFW-Dev

The YLFW-Dev can support the development of face
recognition algorithms for children’s faces by providing the
data for both training and testing. Since the collected images
do not belong to celebrities, we argue that our data can
be concatenated to popular academic face datasets with low
risks of introducing label conflicts.

We perform a set of experiments to demonstrate the
efficiency of such a proposal. We train a set of deep CNNs
of several data configurations. As a backbone network, we
use ResNet-50 [19], which is followed by pooling, dropout,
and a dense feature layer with 512 nodes (features). Input
images (RGB 3-channel) are aligned as in [16] and resized
to 112×112 resolution. The MTCNN detector [52] for used
for detecting face and landmarks.

As a training driver, we employ ArcFace, which allows
us to learn highly discriminative feature embedding and
is robust due to its simple implementation. ArcFace is a
marginal modification of the Softmax loss, which is usually
formulated as follows:

LSoftmax =
1

N

∑
i

− log(
efyi∑C
j efyj

). (1)

Here the C is the number of classes (identities), N is a
batch size, yi is the numerical index of the class of the i−th
sample, and fyj

is the yj − th element of the logits vector
f in the last layer.

The feature layer is usually normalized by L2 constraining
the feature embeddings on a hypersphere in Rd space. Then
fyj can be represented as: fyj = wT

j xi = cos(θj). ArcFace
is then obtained by adding an angular marginal penalization
parameter m to the positive logit:

LArcFace =
1

N

∑
i

− log(
es cos(θyi+m)

es cos(θyi+m) +
∑

j ̸=yi
es cos θj

)

(2)
In our experiments in this Section, we use the ArcFace

and maintain its margin m = 0.5, and the scaling constant
s = 30.

We train the ResNet-50 on three datasets: CASIA-
Webface[53], VGGFace2[11], MS1MV2[18], [16] and then
repeat the training after concatenating them with YLFW-
Dev-Train-Balanced. We set the following hyperparameters:
SGD optimizer with linear learning rate scheduling from
0.01 to 0.00001; momentum 0.9; 15 ep. for VGGFace2 and
MS1MV2 and 30 ep. for CASIA-Webface; batch size 256.

The results in Fig. 4 and Table III demonstrate the evident
improvement in the performance in cases of augmenting the
original training data with YLFW-Dev-Train-Balanced. The
most significant advance is observed for YLFW-Benchmark
and YLFW-Dev-Test as expected. YLFW-Dev-Test better
indicate the performance for the training datasets augmented
with YLFW-Dev-Train-Balanced since it contains the data
with completely disjoint identities from the training dataset
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in all configurations. As expected the beneficial effect of con-
catenating with YLFW-Dev-Test decreases with the increase
of the number of classes in the original dataset, thus the most
effective usage will require proper weighting of the classes
from the YLFW-Dev-Train-Balanced.

C. Age Distribution of YLFW

To better understand the collected data, we performed
age analysis by manually associating each identity in the
dataset with an age label. However, it is rather complicated
to accurately annotate the age of a child’s face by its images
without access to biographical data; therefore, we restrict
the range of possible labels to several age groups that can
be identified by a human: newborn (0-3 months), infant (3-
12 months), toddler (1-5 years), juvenile (5-13 years), and
teenager (13-18 years).

The resulting age distribution demonstrates a predomi-
nance of the toddler age group across all components of our
dataset.
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Fig. 5: Age distribution of YLFW dataset components.
YLFW-Benchmark - (a), YLFW-Dev-Train - (b), YLFW-
Dev-Test - (c)

D. Human Performance on YLFW-Benchmark

YLFW-Benchmark protocol was exposed for human per-
formance evaluation. This experiment was performed by five
student-volunteers, who manually verified each pair in the
benchmark. We estimate the average accuracy across all
participants as a measure of human performance evaluation.
The results are presented in a form of confusion matrices
(see Table IV (a, c, e)). We compare this result with the
performance of the 1-1 verification by ArcFace features
(same model as in Section III.C) (see Table IV (b, d, f)). The
binarized verification scores are generated for the threshold,
which corresponds to the point of equal error rate.

For both matchers (human and deep network) the aligned
images are exposed to equalize the conditions and remove
the impact of image context for human.

To better demonstrate the details of verification perfor-
mance we also separate the confusion matrices for race
matched pairs (Table IV (c,d)) and race non matched pairs
(Table IV (e,f)).

TABLE IV: Confusion matrices for matching by human (left
column - a, c, e) and ArcFace 1-1 verification (right column
- b, d, f) on YLFW-Benchmark. a and b - full set (6000
pairs); c and d - subset of race matched pairs (4200); e
and f - subset of race non-matched pairs (1800). (GT P. -
ground truth positive, GT N. - ground truth negative, Pred.
P. - predicted positive, Pred. N.- predicted negative).

GT P. GT N.
Pred. P 0.820 0.076
Pred. N 0.180 0.924

GT P. GT N.
Pred. P 0.97 0.0296
Pred. N 0.03 0.9704

(a) (b)
GT P. GT N.

Pred. P 0.820 0.143
Pred. N 0.180 0.857

GT P. GT N.
Pred. P 0.97 0.065
Pred. N 0.03 0.934

(c) (d)
GT P. GT N.

Pred. P 0 0.031
Pred. N 0 0.969

GT P. GT N.
Pred. P 0 0.0055
Pred. N 0 0.9945

(e) (f)

Our results demonstrate the extreme hardness for humans
to discriminate the unfamiliar children faces. In comparison
to recent tests, which demonstrate excellent human perfor-
mance on face verification [28] several notes should be given.
First, we demonstrate face images in the aligned form to the
human matcher, which reduce the ability to make decisions
with the use of context. Second, children faces in our dataset
does not belong to celebrities and were not known by the
volunteer that took part in the experiment.

The deep network significantly outperform human in chil-
dren face image verification task on our dataset.

The results of the verification by human in ”match-race”
scenario demonstrate that distinguishing between the identi-
ties of various children is more challenging then matching
the face images of the same children individual (both by
human and deep network).

V. CONCLUSION
In this work, we present a novel face data toolset, which

is specifically focused on children’s face recognition. Our
toolset consists of two parts YLFW-Benchmark, and YLFW-
Dev for different aspects of face recognition research for
the young age group. To the best of our knowledge, this
data proposes the first public standardized benchmark of
children’s faces in the wild and the largest training dataset of
children’s faces. The performed experiments demonstrate the
imperfectness of modern deep face recognition approaches to
children’s faces. Also, we show that the use of the presented
data can facilitate accurate face recognition in the young age
group. We hope that the results of this work will stimulate
and boost the research in the area of face recognition.

In future work, we aim to perform the analysis of our data
on the gender aspect, develop protocols for 1-N identification
and also cover the elder age group with a similar analysis.
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