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Abstract—Transactive Energy Communities (TECs) are in a
crescent evolution, being one of the most promising solutions
for integrating renewable generation and managing energy
flexibility in communities. Renewable energy solutions, like
photovoltaic, are very important to the planet but bring new
problems to the grid, since they are variable, non-dispatchable
and present a strong mismatch with the demand in most
buildings. Therefore, the management of flexible resources at
the community level, namely using energy storage, is crucial
to ensure the matching between local generation and demand
in such communities. This work proposes a framework that
optimizes the energy selling prices to the community and
the use of an energy storage unit by the buildings. Such a
framework optimizes the energy transactions of a transactive
energy community composed of four buildings, and an energy
storage unit at the community level. To ensure, three different
algorithms are used: (i) fuzzy logic, (ii) reinforcement learning,
and (iii) a management system with the gurobi optimizer.
The fuzzy logic algorithm computes the energy tariff price
between a building and the community. Using such a price, the
management system will optimize the use of an energy storage
unit to minimize the total energy cost of the community. The
reinforcement learning will ensure the connection between the
management and fuzzy logic systems. The results showed that
by assembling a dynamic tariff system, using a fuzzy algorithm,
it is possible to potentiate the transactions between buildings. In
future transactive communities, with energy storage units, this
system will potentiate collaboration between buildings, which
can consequently represent economic benefits for the buildings.

Index Terms—transactive energy, energy management, fuzzy
systems, reinforcement learning, optimization.

NOMENCLATURE

�h Time step (hour)
B Buildings belonging to TEC (dimensionless)
CBD Cost associated with battery degradation (e )
C
b

E
(h) Electricity cost of building b at time step h

(e )
CEC(h) Tariff for power exported to the community at

time step h (e /kWh)
CEG(h) Tariff for power exported to the grid at time

step h (e /kWh)
CIC(h) Tariff for power imported from the commu-

nity at time step h (e /kWh)
CIG Tariff for power imported from the grid at

time step h (e /kWh)
CP Cost of contracted power (e )

H Maximum period assessed by the minimiza-
tion function (minute)

L
b+(h) Positive net electricity load in building b at

time step h (kW )
L
b�(h) Negative net electricity load in building b at

time step h (kW )
P

b,C Contracted power in building b (kW )
P

b+
BS

(h) Charging power of batteries in building b at
time step h (kW )

P
b�

BS
(h) Discharging power of batteries in building b

at time step h (kW )
P

b+
C

(h) Export power flow in the time step h between
building b and the community c (kW )

P
b�

C
(h) Import power flow in the time step h between

building b and the community c (kW )

I. INTRODUCTION

A. Motivation

Implementing a local market in a renewable energy com-
munity allows the democratization of energy transactions,
enabling electrical energy transactions between final users.
This type of community is usually called the Transactive En-
ergy Community (TEC). Since renewable energy sources are
mostly non-dispatchable, other flexibility options are needed
to ensure the matching between generation and demand.
Therefore, energy management systems aim to incentivize
users to schedule their demand according to power avail-
ability. To do it, they can use a local market, and with
dynamic tariffs, can influence the users’ behavior. TECs that
use a management system with dynamic tariffs to achieve
technical objectives can be considered [1]. In such a context,
the objective is to maximize the matching between the local
generation and local demand, not only in each building but
in the set of all buildings that form the TEC. Since the
tariffs paid by the energy injected into the grid are usually
low, ensuring that the global maximization of demand and
generation is equivalent to minimizing the energy costs for
each user. Therefore, a management system that aims to
minimize the total electricity cost of a given TEC achieves
the main proposed goal.

The tariffs are defined in order to ensure that TEC members
using their local or available surplus of the community have
lower costs in comparison to acquiring the energy from the
grid [2]. However, the hours with higher generation levels
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are the same for all members, and it is necessary to promote
the use of energy storage to ensure the needed flexibility.
The storage units can be, for example, electrical vehicles,
stationary batteries in each building, or a large-scale unit of
storage that can be used by all TEC members. Therefore, to
implement such a system, it is necessary to stimulate local
transactions to influence both energy profiles, the demand
with lower or higher prices, and the profile of the use of
the surplus energy, to maximize the matching between the
available generation and demand.

B. Related Works

In the past decade, the field related to transactive energy
has become more important due to the increasing need for
flexibility options at the community level, which resulted
in a significant increment of papers about it [3]. T. Saha
et al [4] made a systemic review of energy management
systems. This work concluded that in future energy communi-
ties, advanced optimization algorithms and control strategies
can be developed to enhance energy management systems.
Management systems are, most of the time, implemented
by using demand response techniques. More recently, in [5]
an overview of the path followed in the scientific field of
demand response is presented. This work concluded that
the load shifting strategy is the most used, and black-box
models are the main implementation approach. For example,
in [6], it is implemented a scheduling strategy for controlling
home appliances, where the main goal is to minimize the
peak demand and reduce operation costs without affecting the
thermal inertia of the building. Demand Response techniques
can affect user habits or influence their comfort. In [7], it was
used the predicted mean vote index to measure the thermal
confront, and it was concluded that an energy storage system
can reduce curtailment power to prosumers by 602.98 kW.
In [8] two novel transactive control schemes are proposed for
energy communities to solve the energy scheduling problem
in a community with prosumers and providers’ groups with
energy storage units.

Strategies for the management of energy flexibility can
also be implemented for the energy community itself, by
implementing a market strategy, it is possible to influence
the buildings to move their loads according to what is
intended by the community management system [9]. In [10],
a transactive system for energy communities is proposed.
Such work evaluates three possible solutions: no market
access, wholesale market, and a collaborative combination
between wholesale and local market. Energy storage units,
such as local batteries or electric vehicles, are promising ways
to address more flexibility to non-dispatchable generation.
In this context, in [11], a stochastic model was developed
for predictive control that uses forecasted data to manage
the use of energy storage units. With the integration of new
loads, power quality issues are becoming more common. To
address such issues, [12] developed a transactive energy
framework through the implementation of a local market
system. Moura et al. in [2] proposed a transactive energy
market where the main goal is the minimization of total
costs at the community level. This market has the capability
of establishing transactions between electric vehicles and
buildings. In [13], the approach used the Gurobi optimizer

to minimize the energy bill. With pre-established tariffs, the
defined decision variables are the imported/exported power
flow and batteries’ charging/discharging power.

C. Contribution

The objective of this paper is to solve the problem of
maximizing the matching between demand and generation,
by splitting it into three phases: (i) computation of the tariffs
between TEC members and the community using a fuzzy
system; (ii) management of energy storage usage to minimize
energy costs [13]; (iii) Use a Reinforcement Learning (RL)
to improve the system iteratively. This approach optimizes
the use of energy storage units, as well as the tariffs, to
minimize electricity costs. The tariffs algorithm and the
minimization system are connected with an RL strategy to
ensure a continued and collaborative learning process to allow
both processes to converge for a good solution that can satisfy
both conditions inherent to each system. To the best of our
knowledge, this is the first framework that assembles the
computational of tariffs, in the same framework of the man-
agement system, connected through an RL algorithm. The
results showed that this framework with dynamic tariffs can
lead to lower energy costs, in comparison with a management
system where the tariffs are pre-established.

D. Paper Organization

The remainder of the paper is structured as follows. The
methodology is presented in Section II. The developed frame-
work is described in Section III, and the achieved results are
presented in Section IV. Finally, the main conclusions are
highlighted in Section V.

II. FRAMEWORK

The developed framework is designed to be used by
a transactive energy community, which has a server-client
architecture. However, the developed framework will also use
a peer-to-peer (p2p) approach. The dynamic tariff calculation
system is implemented in the server, the management system
uses a p2p scheme to connect all buildings in the community,
and both systems are supported by a third system. This third
system makes the connection between the previous two using
a Reinforcement Learning System (RLS), and the defined
architecture for it is a client-server. Figure 1 presents a
diagram of the workflow of the implemented framework.

RL
FLS EMS

Fig. 1: Diagram representing the workflow of the imple-
mented framework.

A Fuzzy Logic System (FLS) is implemented to calculate
the energy tariff, for a building b, purchased energy from the
community CIC based on the net demand profile of b. After
calculating the energy tariff, the building community will run
the local energy management system (EMS) to optimize the
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use of the energy storage battery unit. Finished, is activated
the RLS to infer the results back in the FLS, creating a cycle
where the main goal is to reduce the total cost of the energy
in the community.

III. METHODOLOGY

A. Energy Management System

In [13], a framework for optimizing energy storage in the
TECs is proposed. Such a work developed an algorithm,
based on tariffs, to minimize the total costs at the com-
munity level, Equation (1) presents the objective function.
Equation (1) can be described as the minimization of the sum
for all buildings B of their total energy bill. For building b, the
total energy bill for a period H is the sum of the electricity
cost, Cb

E
(h), less the multiplication between the discharging

power of the batteries, P b�

BS
(h), the time step �h, and the

cost associated with battery degradation, CBD. At this sum
is added the multiplication between the contracted power in
building b, P b,C , and their cost CP .

min
BX

b=1

 
HX

h=1

�
Cb

E
(h)�P b�

BS
(h)·�h· CBD

�
+P b,C

·CP

!
(1)

The electricity cost, Cb

E
(h), is computed by Equation (2).

P b�

c
(h) / P b+

c
(h) are the imported (or exported) power flows,

CIC(h) / CEC(h) are the tariff for power imported (or
exported) from (or to) the community, CIG(h) / CEG(h)
are the tariff for power imported (or exported) from (or to)
the grid, Lb+(h) / Lb�(h) are the positive (or negative)
net electricity load, and P b+

BS
/ P b�

BS
are the charging (or

discharging) power of the batteries.

Cb

E
(h) = �h ·

⇥
P b�

c
(h) · CIC(h) + P b+

c
(h) · CEC(h)+�

Lb+(h)� P b�

c
(h)� P b�

BS
(h)
�
· CIG(h)+�

Lb�(h)� P b+
c

(h)� P b+
BS

(h)
�
· CEG(h)

⇤
(2)

B. Fuzzy Logic System

This section presents the Fuzzy Logic System (FLS) that is
used in this work to compute the energy tariff CIC . The FLS
is composed of a knowledge-base element which is defined
by a set of IF-THEN fuzzy rules [14] that can be designed
using people’s common sense and experience. In this work,
the FLS is represented by a set of N fuzzy rules Ri (i =
1, . . . ,N ) in the form of Equation (3).

Ri : IF P̂b

nd
(h) is Ai THEN CIG(h) is bi . (3)

The developed FLS computes the tariff for power imported
from the community CIG(h) at time step h, based on the
importance of selling energy at the same time step. bi are
scalar values that represent the consequent parameter. In
the antecedent part (IF part) of the fuzzy rules, P̂b

nd
(h) is

the net demand represented by three linguist terms: A =
{yellow, orange, red} ⌘ {A

1,A2,A3
}. The linguistic terms

are characterized by fuzzy membership functions µAi(h) =
U ! [0, 1]; i = 1, . . . ,N . Two membership functions’ types
are used: right-angled trapezoidal for the linguist terms yellow

and red, and triangular for orange. Figure 2 illustrates the
defined membership functions for P̂b

nd
(h). Figure 2 beyond

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0 20 40 60 80 100 120 140 160

Fig. 2: Membership functions of P̂b

nd
(h) variable.

presenting the membership functions also has represented the
boxplot to allow analyzing the variation of the data. The
boxplot has represented the median (Q2 or 50th percentile)
representing the middle value of the dataset, the first quartile
(Q1 or 25th percentile) is the middle number between the
smallest number and Q2, analogously the third quartile
(Q3 or 75th percentile) is the median of the upper half.
Equation (4) computes the Q2 for a dataset with n values.
If n is odd (mod(, n, 2) 6= 0) Q2 it is equal to the middle
observation (obs.), the case if it is even is done an average
with both of the middle. To compute Q1 and Q3 the same
equation is used, but only the lower or the upper half of
the dataset is considered. It should be noticed that such
operations needed to be preceded by the arrangement of the
data in ascending order.

Q2 =

8
>>>><

>>>>:

✓
n+ 1

2

◆th

obs., if mod(n, 2) 6= 0;

nth

2
obs.+

⇣n
2
+ 1
⌘th

obs.

2
, if mod(n, 2) = 0;

(4)
The upper and lower limits represent the “maximum” and

the “minimum” respectively, which can be different from the
highest and smallest numbers. To compute such boundaries
the inter-quartile range IQR, Equation (5) is used. IQR is
a statistical concept that describes the spread of the dataset
using the middle 50% range. The “maximum” is equal to the
highest number and the “minimum” is equal to the smallest
number, when no outliers were identified. For example, in
list xj to identify a data point as an outlier Equation (6) is
used.

(
“maximum” = Q3 + 1.5 · IQR

“minimum” = Q1 � 1.5 · IQR
, IQR = Q3 �Q1

(5)

outliers ! x /2 [Q1 � 1.5 · IQR,Q3 + 1.5 · IQR] ; 8x 2 xj

(6)
From Figure 2, it is possible to observe the correlation

between the membership functions and the boxplot. The
function of the linguistic term yellow is correlated to the
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“minimum” boundary, Q1, and with Q1, orange term is cor-
related to Q1, Q2, and with Q3. The last linguist term, red,
is correlated with Q2, Q3, and the “maximum” boundary.

In the presented work, the FLS is obtained considering
a singleton fuzzifier, center-average defuzzifier, and product
inference engine [15]. Therefore, the output of the FLS
C⇤

IG
(h) is computed through Equation (7). Where bi will

be obtained by the return matrix of the implemented Rein-
forcement Learning System.

C⇤

IG
(h) =

P
N

i=1 µAi(h) · biP
N

i=1 µAi(h)
(7)

C. Reinforcement Learning System

This section introduces the Reinforcement Learning sys-
tem [16], and how this is used in the proposed methodology.

RL can be used to solve problems that are intended to
trigger actions depending on the environment, where the
evaluation process is done by accumulating the maximum
rewards that result from those decisions. RL can be math-
ematically represented by the problem of Markov Decision
Processes (MDP). For discrete time steps h = 1, 2, · · · , an
agent has the goal of maximizing the rewards given by a
certain environment. The objective is that the agent learns to
make better decisions. An action, At 2 A(s), is the agent
response at the environment’s state, St 2 S . At will trigger
a numerical reward, Rh+1 2 R ⇢ R, and also a transition to
a new environment state, Sh+1. MDP sequence is represented
mathematically in Equation (8).

The main system is the RLS, which is implemented by
using the Q-learning algorithm. The first layer is iterated
over a defined number of episodes E where, in each episode,
also iterates over a certain number of steps S . In short,
the algorithm for each step will select an action using the
“Exploration vs Exploitation” approach, previously explained
in III-C. Selected the given action, the agent applies it in the
environment, resulting in a new state, being this selection also
evaluated receiving a certain reward r.

S0, A0, R1, S1, A1, R2, S2, A2, · · · (8)

The agent’s goal is to collect the maximum rewards in
the defined T periods of the energy management system.
Therefore, when the management system finishes its process,
the RLS will iterate for each time step t and compute the
return Gt using Equation (9).

Gt

.
= Rt+1 + · · ·+RT (9)

In time step t, Equation (9) treats future time intervals con-
sidering them to be of equal importance, i.e., future rewards
account for as much as immediate rewards. To reinforce the
importance of maximizing immediate rewards, the parameter
� is introduced, the discount rate, 0  �  1. Therefore, the
return Gt can be reformulated to Equation (10). With this
reformulation, when � approximates the value 1, the future
rewards are being considered more strongly. On the other
hand, when approximates zero, the agent becomes more and
more “myopic”, i.e., in the scenario where � = 0 means that
the objective is to maximize the immediate reward.

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · ·+ �T�1Rt+T (10)

Before taking the decision to perform a given action in
a given state, the agent needs to know the quality of the
decision. To ensure it, an agent follows a policy ⇡(a|s) to
compute the probability, at time t, of choosing to do the
action a under state s. Following a certain policy ⇡, the agent
uses the value function to know the quality of an action or a
specific state for him. To evaluate the quality of a state, the
state-value function is used, v⇡(s), mathematically defined
by Equation (11), which computes, at time t, the expected
return if it starts with the state s. Analogously, to evaluate
the quality of an action, the action-value function is used,
qs,a, also known as Q-function, mathematically defined by
Equation (12), which computes, at time t, how good is to
choose action a in state s. In other words, the Q-function
is the expected reward that is possible to be achieved under
policy ⇡ when choosing action a in state s. The result of the
Q-function is called Q-value, where Q means the Quality
of taking a given action in a given state.

v⇡(s) = E (Gt|St = s) (11)

q⇡(s, a) = E (Gt|St = s,At = a) (12)

An agent can follow different policies, and the RL’s
algorithms’ main goal is to find the most promising policy.
This most promising policy needs to ensure that in all states
the expected return is greater or equal than any other possible
policy, and is defined as optimal policy. Therefore, the opti-
mal policy can be mathematically defined by Equation (13),
where ⇡ is considered better than ⇡0 if and only if the
expected return of state-value function v⇡(s) is greater or
equal to v⇡0(s).

⇡ � ⇡0
, v⇡(s) � v⇡0(s)8s 2 S (13)

Just as there are optimal policies, there are optimal value
functions associated. Equation (14) is the definition of the op-

timal state-value function, v⇤(s), computed as the maximum
expected return achievable by any policy ⇡ starting from state
s at time t. Analogously, the optimal action-value, q⇤(s, a),
the function computes the maximum expected return for the
sate-action pair (s, a), and is defined by Equation (15).

v⇤(s) = max
⇡

v⇡(s) (14)

q⇤(s) =max
⇡

q⇡(s, a) (15)

s.t. q⇤(s, a) = E
h
Rt+1 + �max

a0
q⇤(s

0, a0)
i

(16)

Bellman Optimality Equation, Equation (16), is the Q-
function of the state-action pair (s, a) at time t following the
optimal policy thereafter. Therefore, the Q-value is equal to
the received reward, Rt+1, plus the highest possible projected
discounted return from any potential future state-action pair
(s0, a0).
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To solve the optimal policy, one of the techniques is Q-

learning, in which the objective is to learn the optimal Q-
values for each state-action pair. By using Equation (17c)
and since the objective is to minimize the tariffs CIC , the
objective is the minimization of the collected rewards. With
this approach Eqs.(15) and (16) need to be changed, selecting
the maximum argument instead of selecting the minimum
argument. The reward is now computed using Equation (17c),
which measures the percentage of the cost of buying at the
community cost relative to the energy cost of buying at the
grid. Equation (17a) and Equation (17b) computed the cost
of the imported energy at the community level, considering
the community tariff and the grid tariff, respectively.

Cb

C
=

HX

h

1

B
P

b�

C
(h) · CIC(h) (17a)

Cb

G
=

HX

h

1

B
P

b�

C
(h) · CIG(h) (17b)

r =
Cb

C

Cb

G

(17c)

IV. EXPERIMENTS AND RESULTS

To test the implemented framework, a dataset of a Univer-
sity Campus at the University of Coimbra was used. The
buildings have an annual average consumption of around
500MWh/year, and they have installed a PV system that can
meet 50% of the demand.

To study the performance of the developed framework
Figure 3 presents the net demand achieved by Building 4
during one week. The red line refers to the scenario where
an Energy Storage Unit (ESU) is managed at the community
level and the blue line represents the net demand without
the ESU. When the net demand is positive, it means that
the demand is higher than the self-generation in Building
4, and as opposed to when it is negative, it means that the
building consumption is lower than what is generated locally.
Therefore, when the blue line is negative and the red line is
zero it means that the generation surplus was stored in the
ESU. Additionally, when the red line is zero, but the blue
line is positive, it means that energy was bought from the
ESU. Figure 3 shows that for several periods, it is possible
to guarantee the needed energy by using the ESU of the
community, avoiding buying energy from the grid, which is
more expensive, leaving higher energy costs.

The FLS computes the energy tariff based on one specific
building, and in this scenario of study, the selected building
was Building 1. Figure 4 presents the net demand achieved by
Building 1 for one week. Since the red line (a scenario where
EMS manages an ESU) and the blue line (system without
ESU) are almost similar, in comparison with Building 4, the
periods where the ESU is used are lower. Building 1 net
demand is used by the dynamic tariff system to compute the
CIC where, consequently, the |CIC | = |CEC | so if CIC it is
smaller the CEC becomes more appealing. Due to this reason,
Building 4 has more advantages in buying energy from the
ESU in some moments, and Building 1 has no advantage in
selling it because the price is too low. For example, in the last
part of Figure 4, there exists a surplus of generation triggering

h :m

Without ESU
With ESU

150

50

50

0

150

100

100

kW

Fig. 3: Net energy demand of one week at Building 4.

the dynamic tariff system to infer a lower price to sell the
energy. Thus, that period is a good period to buy energy
from the community through the ESU. By observing Figure 3,
in the same period, it is possible to observe the expected
behavior. However, in that instant when the price was lower
in Building 1, by observing Figure 4, it can be noticed that
red values are lower than the blue line. Therefore, some of
that energy is being purchased by the ESU. Existing this way
is a trade-off between all community members collaborating
to achieve a lower final community energy cost.

h:m

150

150

100

50

0

50

100

kW

Without ESU
With ESU

Fig. 4: Net energy demand of one week at Building 1.

Figure 5 emphasizes the impact of the FLS in the frame-
work. This figure represents the Power flow between build-
ings and the community ESU. Where it is possible to observe
that Building 1 is selling its surplus of energy and Building
4 is purchasing at the ESU. Such an approach creates a win-
win environment, where Building 1 is winning because CIC

is higher than CIG, and Building 4 is buying at a minimum
price, saving money.

The dynamic tariff system, compared with pre-defined
tariffs, was able to reduce 14%, on average, the price of
the tariff for the power exported to the community. Figure 6
represents one day of Building 1, where it is possible to
infer the behavior of the dynamic tariff system. For example,
at 11:30 a.m., the tariff increases because the net demand
also increases. In other periods of the day, when the net
demand decreases it is possible to decrease the tariff, with
this approach is possible to incentivize other users to buy at
that period.
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(a) Building 1.

(b) Building 4.

Fig. 5: Power flow between buildings and the community
energy storage unit.

Fig. 6: Tariffs of power exported to the community, and net-
demand of Building 1.

V. CONCLUSIONS

This work implemented a framework for transactive energy
communities to achieve lower electricity costs by adding
extra optimized parameters at the management system de-
veloped in [13]. To ensure it, a fuzzy logic system was
implemented to infer the values of the tariff for power
imported from the community, being this a variable that is not
optimized in the original framework. A Q-learning algorithm
was implemented to connect both systems creating a close
loop, where all the systems are improving to achieve the
final objective. The results showed that by optimizing the
energy tariff coupled with the energy management system, it
is possible to enhance the transactions between buildings.
This is possible because the buildings make use of an

ESU, and their availability to sell or buy energy, taking
advantage of the variations of the tariff, being the energy costs
reduced by an average of 14%. Therefore, with this system
of collaboration, it is possible to increase the effectiveness of
energy transactions between community members.

In future work, it is intended to implement the dynamic
tariff system for all tariffs and adapt it to all buildings’ net
demand. Additionally, the objective is to develop a complete
study of the economic advantages that the implemented
approach can bring to future transactive energy communities.

ACKNOWLEDGMENT

This research was supported by the Portuguese
Foundation for Science and Technology (FCT) through
the projects UIDB/00285/2020, LA/P/0112/2020, UTAP-
EXPL/CA/0065/2021 and UIDP/00048/2020.

REFERENCES

[1] N. Mendes, P. Moura, J. Mendes, R. Salles, and J. Mohammadi,
“Federated learning enabled prediction of energy consumption in
transactive energy communities,” in 2022 IEEE PES Innovative Smart

Grid Technologies Conference Europe (ISGT-Europe), 2022, pp. 1–5.
[2] P. Moura, U. Sriram, and J. Mohammadi, “Sharing mobile and sta-

tionary energy storage resources in transactive energy communities,”
in 2021 IEEE Madrid PowerTech, 2021, pp. 1–6.

[3] S. D. Rodrigues and V. J. Garcia, “Transactive energy in microgrid
communities: A systematic review,” Renewable and Sustainable Energy

Reviews, vol. 171, p. 112999, 2023.
[4] T. Saha, A. Haque, M. A. Halim, and M. M. Hossain, “A review on

energy management of community microgrid with the use of adaptable
renewable energy sources,” International Journal of Robotics and

Control Systems, vol. 3, no. 4, pp. 824–838, 2023.
[5] R. Jurjevic and T. Zakula, “Demand response in buildings: A com-

prehensive overview of current trends, approaches, and strategies,”
Buildings, vol. 13, no. 10, 2023.

[6] A. Tiwari, S. Bera, and N. M. Pindoriya, “Optimized scheduling
of ensemble home energy resources for effective utilization under
demand response program,” in 2023 IEEE PES Innovative Smart Grid

Technologies - Asia (ISGT Asia), 2023, pp. 1–5.
[7] H. Ghasemnejad, M. Rashidinejad, A. Abdollahi, and S. Dorahaki,

“Energy management in citizen energy communities: A flexibility-
constrained robust optimization approach considering prosumers com-
fort,” Applied Energy, vol. 356, p. 122456, 2024.

[8] N. Mignoni, P. Scarabaggio, R. Carli, and M. Dotoli, “Control frame-
works for transactive energy storage services in energy communities,”
Control Engineering Practice, vol. 130, p. 105364, 2023.

[9] G. Aghajani, H. Shayanfar, and H. Shayeghi, “Demand side manage-
ment in a smart micro-grid in the presence of renewable generation
and demand response,” Energy, vol. 126, pp. 622–637, 2017.

[10] F. Lezama, J. Soares, P. Hernandez-Leal, M. Kaisers, T. Pinto, and
Z. Vale, “Local energy markets: Paving the path toward fully transac-
tive energy systems,” IEEE Transactions on Power Systems, vol. 34,
no. 5, pp. 4081–4088, 2019.

[11] F. Conte, F. D’Antoni, G. Natrella, and M. Merone, “A new hybrid
ai optimal management method for renewable energy communities,”
Energy and AI, vol. 10, p. 100197, 2022.

[12] J. Lei, Z. Liu, L. Ma, and L. Wang, “A transactive energy framework
for multi-energy management of smart communities,” in 2019 IEEE

Sustainable Power and Energy Conference (iSPEC), 2019, pp. 2176–
2181.
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design: An application to a cstr plant,” in 2017 IEEE 15th International

Conference on Industrial Informatics (INDIN), 2017, pp. 218–225.
[16] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction,

second edition ed., ser. Adaptive computation and machine learning
series. Cambridge, Massachusetts: The MIT Press, 2018.

2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON) - Special Session 202024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON) - Special Session 20

1065
Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on August 13,2024 at 11:15:46 UTC from IEEE Xplore.  Restrictions apply. 


