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1 Institute of Systems and Robotics, University of Coimbra
2 University of the Sinos River Valley

3 Portuguese Mint and Official Printing Office

Abstract

Covariance matrices outperform first-order features in
many tasks, attracting considerable attention from the com-
puter vision research community. Covariance matrices en-
code second-order statistics between features, at the same
time it is robust to noise. Based on this, we propose repre-
senting images by covariance matrices and defining a loss
function that measures the distance between them through
the Riemannian distance. Motivated by the robustness and
invariance properties of the affine invariant Riemannian
metric the proposed method was validated in printer-proof
data transmission, which is a challenging task due to the
trade-off between image quality and message recovery ca-
pabilities after printing and digitization procedures. The ef-
fectiveness of this approach was systematically assessed us-
ing MS COCO and IMM Face datasets. The results demon-
strated that the proposed approach outperforms conven-
tional methods that use Euclidean distance, generating en-
coded images with better quality and achieving higher re-
covery accuracy in printed images. Additionally, a broader
application of the proposed loss was successfully tested in
image generation tasks, using generative adversarial net-
works (GANs).

1. Introduction

The security of information and documents is of consid-
erable interest to both academia and industry. Steganogra-
phy and watermarking are the most common methods for
concealing a secret message which can be text, image, or
video inside a digital medium (e.g. cover image). The
main goal of steganography is to provide secure and covert
communication, where only the sender and the intended
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receiver should know the existence of the secret message,
without raising suspicion of unauthorized parties. On the
other hand, watermarking is often used to assign ownership,
for example, to identify the author of content, or to verify
the authenticity and integrity of data. The message must be
robust to noise so that it is possible to recover the informa-
tion even after distortion, therefore watermarking prioritizes
robustness over secrecy. Although the techniques have dif-
ferent purposes, they share a similar process, encoding and
decoding secret information. The encoding algorithm needs
to generate encoded images (cover image with the secret
message) similar to the cover image with minimal distor-
tion, and the decoding algorithm must reliably recover the
secret message [3, 32].

The covariance matrix has recently emerged as a crucial
tool for data representation due to its ability to provide a
compact representation of data, encode linear correlations
between features, and be robust to noise. First introduced
as a region descriptor in [38], the covariance matrix has
been widely used in various applications, including clas-
sification, detection, and object tracking. The covariance
matrix does not lie in Euclidean space, instead, it lies in a
Riemannian manifold of the symmetric and positive defi-
nite (SPD) matrix. Consequently, a natural approach to an-
alyzing the covariance matrix involves using metrics that
capture the geometric structure of the SPD manifold. Com-
mon methods for comparing SPD matrices include Rieman-
nian metrics such as the affine invariant Riemannian metric
(AIRM) [29] and the bi-invariant log-Euclidean metric (for
a zero-curvature manifold) [2]. Besides Riemannian met-
rics, Bregman divergences, such as the Jeffrey and Stein di-
vergences, can also be employed [8].

This study proposes representing the images using co-
variance matrices and defining a loss function based on the
distance between these matrices. Affine-invariant Rieman-
nian distance is used to calculate the similarity between co-
variance matrices. Riemannian distance is selected because
it is an accurate distance measure that considers the ge-
ometry of the manifold, meaning that the distance between



two matrices depends both on the values of their elements
and on their relative positions in the manifold. Therefore,
it provides useful information for making the hidden mes-
sage less perceptible and generating encoded images more
similar to cover images. Furthermore, Riemannian distance
has important invariance properties such as invariance un-
der affine transformations (e.g. rotation, and resizing) and
inversion and it is robust to noise and transformations that
can occur in the data [9,27]. Consequently, this new loss can
make encoded images more robust to changes introduced by
the printing and digitization processes.

The main use case of the proposed loss is data transmis-
sion in printed images. The security of both electronic and
printed documents is important, however, the majority of
studies focus on digital images [6, 16, 35]. Printer-proof
data transmission is more challenging because the decoder
should be robust to the unpredictable transformation that
occurs during the printing and digitization process, such as
variations in contrast, the perspective of the acquired image,
color, and thermal noise [10]. Few works have addressed
the issues of printed images. StegaStamp [36] was the first
watermarking/steganography method that obtained encour-
aging results in printed images, and it stands out as the cur-
rent state-of-the-art (SoTA). StegaStamp uses L2 distance
as a loss function to compare stego and cover images, thus
it ignores image structures and it is vulnerable to noise. To
address these limitations, we introduce a new approach that
represents the images as covariance matrices and general-
izes the loss function to the Riemannian manifold. To the
best of our knowledge, this is the first work that investigated
the effects of the Riemannian distance in printer-proof en-
coding and decoding of data in images.

Nevertheless, this proposed loss has broad applications
that can be used in many computer vision applications,
which require accurate computation of image similarity
such as image retrieval and face/object recognition. The ap-
proach was validated in two applications, printer-proof wa-
termarking, and GAN for image-generative tasks. The effi-
ciency of the proposed approach was assessed in digital im-
ages, images displayed on the computer screen, and printed
images regarding both image quality and performance when
extracting the hidden message. The results demonstrated
that it generated encoded images with better quality. The
recovery capability was evaluated in printed images of two
publicly available datasets, using three different image sizes
and two printers. The proposed method outperformed Ste-
gaStamp, the current SoTA, by achieving superior-quality
of encoded images and higher decoding accuracy in printer-
proof scenarios.

2. Related Works
Use of covariance matrices: Covariance matrices have

been successfully applied in diverse tasks, including emo-

tion recognition, object detection, texture classification,
medical image, and brain-computer interface [7, 9, 38].
These matrices have been employed for representing im-
ages, videos, and 3D point clouds, mainly in classification
and recognition tasks [14, 17]. Recently, in the realm of
deep learning, the covariance matrices have been utilized as
a representation of convolutional features and also as a part
of network architectures [7,20,40]. In [20], the author intro-
duced an end-to-end manifold deep network to non-linearly
learn SPD matrices on Riemannian manifolds. This archi-
tecture is designed to receive SPD matrices as inputs and
preserve their structure across layers.

Watermarking and Steganography work: Deep learn-
ing has presented remarkable outcomes in many fields of
computer vision, thus there is an increasing interest in us-
ing it for watermarking and steganography as well. Here,
we focus only on watermarking and steganography meth-
ods based on deep learning. For an overall review on this
subject see [5, 35]. Several studies have been successful in
hiding the secret message while maintaining image quality
and large information capacity [33, 42]. The size of secret
messages directly affects the appearance of encoded im-
ages. Many works have used convolutional neural networks
to encode and recover the secret message [12,30,37]. Other
approaches based on GANs were also proposed [34, 44].
The first end-to-end neural network method to embed a wa-
termark in a cover image was introduced in [44], which pro-
posed the HiDDeN (Hiding Data With Deep Networks) al-
gorithm. HiDDeN is composed of four main components:
an encoder, a noise layer, a decoder, and an adversarial dis-
criminator. To improve the robustness, the authors added
the noise layer between the encoder and decoder, which
distorts the encoded image by applying six different types
of transformations. The approach was evaluated on digital
images, achieving high quantitative and qualitative perfor-
mance. The study in [36] extended the validation for printed
images and developed a new method called StegaStamp.
Based on the idea of previous works that integrate noise
simulation to increase the robustness of image transforma-
tion, the authors propose a new noise simulation module
that adds many different pixel-wise and spatial image cor-
ruptions. The results showed good decoding performance in
a controlled illumination condition for the acquired printed
encoded images and good image quality. However, some
encoded images had perceptible artifacts. To overcome this
limitation, and generate more natural encoded images we
use Riemannian distance instead of L2 distance to compare
the images.

3. Riemannian Geometry principles
This section describes some basic concepts of the Rie-

mannian manifold of symmetric positive definite matrices.
Riemannian manifolds are smooth manifolds equipped with



a Riemannian metric that determines an inner product on
tangent spaces [24]. The Riemannian manifold of SPD ma-
trices is a powerful mathematical tool that provides metrics
that can be applied directly in the space of covariance ma-
trices. It has applications in many different areas like math-
ematics, physics, and engineering. In computer vision, the
Riemannian manifold of SPD matrices has been used to de-
velop efficient algorithms for image generation [15], face
recognition [45], pedestrian detection [39], and image clas-
sification [40], among others.

3.1. Mathematical notation

The following definitions and notation will be used:

• M(d) ∈ Rd×d denotes the space of d × d square ma-
trices;

• S(d) ∈ M(d) is the set of all d×d symmetric matrices
in the space of M(d);

• P (d) ∈ S(d) represents the space of all SPD matrices;

• Sd
++ is the SPD manifold, and

• GL(d) is set of real invertible d× d matrices.

3.2. Symmetric and positive definite manifold

Let v ∈ Rd be a nonzero vector, the matrix P ∈ Rd×d is
said to be SPD matrices if vTPv > 0. The SPD manifold
Sd
++ consists of a commutative Lie group formed by the

space of d× d SPD matrices [41]
Sd
++ = {P ∈ Rd×d : P = PT , vTPv > 0,∀v ∈

Rd \ {0d}}, where Rd \ {0d} denotes the Rd space without
the zero vector.

3.3. Riemannian Distance

The Riemannian distance between any two SPD matrices
P1 and P2 ∈ Sd

++ is the shortest length of all admissible
curves (geodesic) connecting them as defined by [27]

δR(P1, P2) = ∥log(P−1
1 P2)∥F =

[∑
i

log2λi

] 1
2

(1)

where log(.) denotes the matrix logarithm, ∥.∥F is the
Frobenius norm of a matrix, and λi are the real eigenval-
ues of P−1

1 P2.
The Riemannian distance δR(., .) has several invariance

properties. Here we explore its invariance under affine
transformations (e.g. translations, rotations, and scaling) by
any invertible matrix A ∈ GL(d). The affine invariance
property of the Riemannian distance guarantees that:

δR(A
TP1A,ATP2A) = δR(P1, P2). (2)

Affine invariance is an especially appealing property for
printer-proof watermarking tasks since it ensures that the

distance remains unchanged under different transformations
that can occur in printed images, such as rotations, and
scale.

4. Materials and Methods
4.1. Covariance Loss

In this study, each RGB image is represented as covari-
ance matrices, which describe the relationship between the
color channels of each pixel in the image. The covariance
matrix can provide useful information about the structure of
the image, with the diagonal values representing the vari-
ance of each color channel, and the nondiagonal values
representing the correlations. The covariance matrix de-
creases the impact of noisy samples due to the averaging
step during its computation [38]. Let us consider an image
I ∈ RW×H×C with W width, H height, and C number of
channels. The covariance matrix (Cov ∈ RC×C) is com-
puted as

Cov =
1

n

n∑
i

(Ĩi − µ)T (Ĩi − µ) (3)

where Ĩ ∈ Rn×C is the reshape of I , n = W × H , and µ
is the mean of Ĩ . To avoid singularity, a very small value is
added to each element of the matrix Cov = |Cov| + 1 ×
10−12. Given a set of k original images I

′
= {I ′

1, ..., I
′

k},
and a set of k generated images I

′′
= {I ′′

1 , ..., I
′′

k }, the SPD
matrices are obtained through their covariance matrix Cov

′

and Cov
′′

respectively. The loss function is defined as

Rloss =
1

k

k∑
i

δ2R(Cov
′

i,Cov
′′

i ) (4)

where δR(., .) is the Riemannian distance (Equation (1)).
In this work, we propose to use the Riemannian distance
to measure the similarity between images due to its invari-
ance properties and robustness to noise. Therefore, we ex-
pect that the proposed method, hereinafter referred to as
RiemStega, will lead to more similar generated and orig-
inal images, while being more robust to noise that occurs
during printing and digitalization such as color noise, mis-
alignment of image channels [10], thereby leading to im-
ages with higher quality and message recovery capability.

The complete loss function is defined as follows:

L = r ×Rloss + p× LP + w × LW +m× LM (5)

where LP is the LPIPS perceptual loss function [43], LW

is the Wasserstein loss [1], LM is the cross-entropy loss,
and r, p, w, and m are the weights for each loss function
component.



4.2. Training Dataset

Similar to the StegaStamp [36], we use the MIRFLICKR
dataset [21] for training. The MIRFLICKR dataset consists
of 25000 images including 10 topics (e.g. sky, water, peo-
ple, and animals), and many subtopics. During training the
images were rescaled to a 400 × 400 resolution and embed-
ded with randomly generated binary messages.

4.3. Testing Datasets

The effectiveness of the proposed approach is evaluated
using MS COCO [25] and IMM Face [28] datasets. The MS
COCO dataset comprises 328,000 images with 91 common
object categories such as person, train, airplane, etc. The
IMM Face dataset contains 240 images of 40 different hu-
man faces (7 females and 33 males) with neutral and happy
expressions.

4.4. Optimization

For the training process, the Riemannian ADAM opti-
mizer [4] is used, which is a generalization of ADAM op-
timizer to Riemannian manifolds. It has faster convergence
and a lower training loss value. We used a product manifold
with a learning rate of 1× 10−4.

The model being optimized follows an encoder-decoder
architecture, detailed and illustrated in Supp. Mat.

Hardware configuration We used an NVIDIA GeForce
RTX 3090 GPU, with 24 GB of memory, with an AMD
Ryzen Threadripper PRO 5965WX CPU and 256 GB of
DDR4 memory.

4.5. Evaluation Metrics

Image quality is usually determined based on a set of
factors, such as contrast, resolution, noise, level of resulting
artifacts, and distortion degree. Herein, the quality of en-
coded images was assessed using the following image qual-
ity metrics: peak signal noise ratio (PSNR), learned per-
ceptual similarity metric (LPIPS), and structural similarity
index (SSIM). GAN results are also assessed by Fréchet In-
ception Distance (FID) [18]. The higher value of PSNR and
SSIM means better encoded image quality, and for LPIPS
and FID, the opposite is true (lower is better). The tech-
niques were also evaluated regarding the capacity to recover
hidden messages. The performance was assessed by the ac-
curacy computed as a ratio between the number of decoded
images and the number of total images.

5. Experimental results for watermarking task
The feasibility of the proposed method and its impact on

both image quality and accuracy of extracting the hidden
messages is evaluated in two datasets and validated in a set

of experiments including digital images, images captured
on the computer screen, and printed images.

5.1. Image quality measures

The quality of the encoded images is assessed through
human visual perception and image quality assessment met-
rics.

5.1.1 Factors influencing image quality

The encoded image is generated by adding a residual com-
ponent (the gray images in Figure 1) to the cover image.
The quality of encoded images is directly affected by both
the length of the hidden message and the amount of the
residual component added to the cover image. We com-
pared the quality of encoded images using message lengths
of 50, 100, 150, and 200 bits. The results presented at the
top of Figure 1 and Table 1 reveal that the quality of the im-
ages is degraded with the increase in message length. In this
study, we chose a message length of 100 bits since it has
been demonstrated that it offers a good trade-off between
image quality and information transfer.

The assessment of how the amount of added residual in-
fluences the quality of the encoded image was performed
by varying the percentages of residual added to the cover
image in 100%, 80%, 60%, and 40%. Similarly, the re-
sults illustrated at the bottom of Figure 1 showed a de-
crease in image quality with an increase in the fraction of
residual. Having encoded images with very high quality is
pointless if the messages cannot be recovered. Therefore,
we analyzed what is the minimum percentage of residual
required to achieve 100% decoding accuracy in three sce-
narios: 1) digital images, randomly selecting 500 images
from the MS COCO dataset, and then encoding and de-
coding the message always in the digital realm; 2) images
captured from a screen (monitor HP Inc. 27” with a reso-
lution of 1440 × 900), 20 images were randomly selected
and encoded, then each image was displayed on a computer
screen and 10 photos were captured from each image (to-
taling 200 samples for each residual level) and decoded; 3)
printed images, encoding the same 20 images, and printed
on A4 paper sheets with size 10cm × 10cm. Then 10 photos
were captured from each printed image and decoded. Table
2 shows that the message recovery performance is affected
by the transmission means. To achieve 100% accuracy in
digital, screen, and printed images we need 60%, 80%, and
100% of the residual respectively. When using the 60% of
the residual, there is a substantial drop in performance for
printed images, showing that a direct comparison between
the results obtained using digital images and printed images
is not straightforward.



Cover image 50 bits 100 bits 150 bits 200 bits

Cover image 40% of Residual 80% of Residual 100% of Residual

Percentage of Residual

Message Length

60% of Residual

Figure 1. Samples of encoded images obtained using: Top) different message lengths using full residual (100%) and, Bottom) different
percentage of residual added to the cover image using a message length of 100 bits. Residual is the gray image in the bottom left corner.

Table 1. Image quality of 500 images randomly selected from
MS COCO dataset using models trained with different message
lengths.

Message
length (bits)

50 100 150 200

SSIM ↑ 0.965 0.949 0.917 0.901
PNSR ↑ 32.413 30.031 27.058 24.732
LPIPS ↓ 0.018 0.024 0.034 0.041

Table 2. Decoding performance for digital images, images cap-
tured from a computer screen and printed image using RiemStega
method (Ours).

Percentage of
residual

40% 60% 80% 100%

Digital images 64.2 100.0 100.0 100.0
Screen Images 36.5 97.5 100.0 100.0
Printed images 0.0 67.0 99.0 100.0

5.1.2 Image quality assessment metrics

We compare the proposed algorithm (RiemStega) with the
following state-of-the-art methods: StegaStamp [36], SSL
[16], and RoSteALS [6]. We also tested the ARWGAN
[19], CIN [26], and PIMoG [13] methods, however, with
images resized bigger than 128 × 128, the result is unfo-
cused and not comparable. For this reason, the results are
not included here. Considering that SSL and RoSteALS

were validated in digital images, we also evaluated our
method with 60% residual (RiemStega60) which obtained
100% recovery accuracy in digital images. Figure 2 shows
illustrative examples of cover images and encoded images
generated by each method using the MS COCO dataset and
IMM dataset. All methods performed better in heteroge-
neous images characterized by diverse colors and rich in
details (first column) than in homogeneous images with few
details. Images created by RiemStega60 and RoSteALS
presented similar quality metrics, being superior to the other
methods. However, 81% of RoSteALS digital images were
decoded successfully, as opposed to 100% of RiemStega60
images. Visual perception is intrinsically subjective, thus
we proceed with a quantitative assessment based on SSIM,
PSNR, and LPIPS of 500 images.

Table 3 compares the qualities of the encoded images
based on the quality assessment metrics described previ-
ously. The results showed the superiority of RiemStega60
in all metrics, except for PSNR for the MS COCO dataset.
However, it is arguable whether these metrics match our vi-
sual perception. In [31] the author presented the weakness
of PSNR. The RiemStega method achieved better average
values for the three metrics compared to StegaStamp, sug-
gesting an improvement in encoded image quality. These
results revealed that our approach generates images with
higher quality than StegaStamp regardless of the dataset.
The RiemStega uses a message length of 100 bits and adds
100% of residual to the cover image because our focus is
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Figure 2. Samples of cover images and encoded images obtained by employing different techniques using MS COCO and IMM Face
datasets. It is important to note that only 81% of encoded images generated with RoSteALS were decoded digitally.

printed images. However, other approaches can be used,
for example, using the message length of 30 bits frequently
employed in some studies, and adding 60% of residual we
achieved values of 0.99, 38.00, and 0.01, for SSIM, PSNR,
and LPIPS respectively, which significantly improves the
visual image quality.

5.2. Analysis of methods for similarity measures
There are several metrics for measuring similarity be-

tween SPD matrices, and the most commonly used are
AIRM, Log-Euclidean, and Bregman divergences. In our
RiemStega approach, AIRM was chosen to measure the
similarity between the covariance matrices of the encoded
and cover images, due to its robustness to noise and its
strong invariance properties. We trained additional models
using Log-Euclidean and Jeffrey divergence metrics to sup-
port our choice. Then, these models were evaluated on the
MS COCO dataset to assess their impact on image quality.
The Log-Euclidean method achieved mean SSIM, PSNR,
and LPIPS values of 0.93, 27.0, and 0.03, respectively,
while Jeffrey divergence obtained values of 0.94, 28.7, and
0.03. Notably, the AIRM method generated images of su-
perior quality.

5.3. Impact of proposed loss function

To assess the effect of the proposed loss function on im-
age quality, we trained a new model excluding the Rloss. In
this configuration, the loss function (Equation (5)) included
only three components: LPIPS, Wasserstein loss, and cross-
entropy loss. Using the MS COCO dataset, this model
achieved mean values of 0.93 for SSIM, 25.57 for PSNR,
and 0.03 for LPIPS. With the addition of the proposed loss,
there was an improvement in all metrics. Additionally, we
measured the time needed to calculate δR. We generated
two random matrices A,B ∈ R1024×1024×3 and calculated
δR(A,B) 1000 times for statistical measurements, with 10
steps for warm-up. The results show an average running
time of 0.052 s per call, indicating a measurable, but not
significant impact on training performance.

5.4. Recover capability results

In order to evaluate the robustness of the proposed ap-
proach regarding the capacity to extract the hidden message,
a set of experiments was performed using digital and printed
images.



Table 3. The SSIM, PSNR, and LPIPS between stego and cover images using MS COCO and IMM Face Dataset. The best values are in
bold.

MS COCO Dataset IMM Face Dataset
Models SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓
RiemStega60 (Ours) 0.98 34.39 0.01 0.98 36.98 0.01
RiemStega (Ours) 0.95 30.03 0.02 0.96 32.61 0.03
StegaStamp 0.89 28.47 0.03 0.92 30.75 0.04
RoSteALS 0.94 30.36 0.03 0.96 35.62 0.02
SSL 0.95 36.41 0.02 0.93 36.42 0.06

5.4.1 Robustness evaluated in digital images

RiemStega integrates Spatial Transformer Networks (STN)
[23], which provides some invariance properties to scale,
rotation, and more generic warping. In order to evaluate the
invariance of the Riemannian approach we trained the same
model excluding STN (RiemStega without STN). There-
fore, we assessed the robustness of the Riemannian ap-
proach with and without STN. The robustness of the meth-
ods was evaluated using different transformations, such as
rotation, resize, blur, JPEG, contrast, and brightness. The
results presented in Figure 3, showed that the Riemannian
methods outperformed the other three methods in almost
all transformations. Although they have lower performance
than SSL in rotations bigger than 15 degrees, they have
stronger robustness for small values of rotations. The Rie-
mannian model without STN was as effective as the Rie-
mannian model with STN, showing the effectiveness of the
Riemannian distance under these transformations.

5.4.2 Robustness evaluated in printed images

In the experiments, we first randomly selected 30 images
from each dataset, and then embedded 100-bit messages,
which comprise hash codes with eight characters. After-
ward, the hashes are converted into bit strings and applied
the error-correcting codes Bose-Chaud huri-Hocquenghem
(BCH) [11]. The decoding capabilities were tested in
printed images with three sizes: 3cm × 3cm, 5cm × 5cm,
and 10cm × 10cm. These images were printed with two
different printers: printer 1 (Konica Minolta C360i), and
printer 2 (brother-HLL3270CDW-series). In order to keep
the same distance to the camera and the same surrounding
illumination sources, the printed images are uniformly posi-
tioned, and then photographed using a Samsung Galaxy S22
Ultra. These pictures were cropped and rectified with clas-
sic image processing methods. A magenta boundary with
a width of 5 pixels on each side is added to each printed
image (see supplementary material). Then, the images are
converted to grayscale and binarized using a threshold value
of 160. This threshold was set empirically to detect only the
content inside of the magenta border. Afterwards, a binary
hole-filling technique was applied to detect the bounding

boxes encompassing all regions bigger than 20, 000 pixels.
All regions with an aspect ratio bigger than 0.82 are then
selected for decoding. All these thresholds were set empir-
ically to minimize false detections.

For each printed image, 10 photos were captured, hav-
ing 300 samples for each image size. In total, considering
the three sizes we have 900 samples for each printer. SSL
and RoSteALS methods were tested only in the MS COCO
dataset and one printer because none of the printed images
were decoded. The decoding results are reported in Table
4. For RiemStega, all captured images with sizes of 5cm,
and 10cm were decoded when using the IMM Face dataset
(100% accuracy) and almost all with the MS COCO dataset
(accuracy higher than 94%). For images with a size of 3cm,
there was a slight decrease in accuracy with the IMM Face
dataset and a higher decrease with the MS COCO dataset
(accuracy of 61.3%). The StegaStamp method performed
well for image sizes of 10cm and 5cm with accuracy higher
than 86.7% and 70% respectively. For images with a size of
3cm, there was a strong accuracy decrease, achieving in one
case a very low value (accuracy of 27%). This performance
degradation indicates that StegaStamp is more dependent on
image size. These results show evidence that RiemStega is
a more robust solution. Furthermore, RiemStega appears to
have good generalization across datasets and printers.

6. Results for image generation task

To show a wider application of the proposed approach,
preliminary experiments were conducted involving the gen-
eration of images using GAN. To evaluate the proposed
loss, we train a pix2pix network [22] with 256×256×3 res-
olution on the Edges2Shoes dataset [22]. We define the gen-
erator loss (GLoss) as the combination of LPIPS and pro-
posed loss, that is, GLoss = LPIPS+Rloss. The training
was performed using the Edges2Shoes dataset (49.8k im-
ages for training and 200 images for testing). A learning
rate of 1 × 10−5 and a batch size of 8 was employed dur-
ing the training process. The other setups are the same as
the original code published by the authors. The results re-
ported in Figure 4 showed that the proposed method gener-
ated images closer to the ground truth than the conventional



Figure 3. Decoding accuracy after different transformations, namely, rotation angle, resize, blur, JPEG, contrast, and brightness.

Table 4. Decoding accuracy for printed images using MS COCO Dataset and IMM Face Dataset.

MS COCO Dataset IMM Face Dataset
Printer 1 Printer 2 Printer 1 Printer 2

Size (cm) Riem
Stega
(Ours)

Stega
Stamp

Riem
Stega
(Ours)

Stega
Stamp

RoSteALS SSL Riem
Stega
(Ours)

Stega
Stamp

Riem
Stega
(Ours)

Stega
Stamp

A
cc

ur
ac

y

10x10 99.7 99.3 97.0 86.7 0 0 100.0 98.7 100.0 95.7
5x5 97.7 99.0 94.0 70.0 0 0 100.0 81.0 100.0 94.0
3x3 76.7 58.3 61.3 27.0 0 0 99.3 74.0 93.7 56.0

Input Ground truth
Output  

RiemPix2Pix
Output conventinal 

Pix2Pix

Figure 4. Images generated using RiemPix2pix and conventional
Pix2pix based on the input image to produce the corresponding
ground truth.

Table 5. The SSIM, PSNR, LPIPS, and FID between original and
generated images using conventional Pix2pix and Pix2pix with the
proposed loss (RiemPix2pix) using 200 images.

Metrics SSIM ↑ PNSR ↑ LPIPS ↓ FID ↓
RiemPix2pix 0.629 10.7 0.249 82.5
Pix2pix 0.610 9.9 0.254 100.5

algorithm, and Table 5 demonstrated that they have better
quality.

7. Limitations
Although we achieved a good trade-off between image

quality and decoding capability, there are still many chal-
lenges ahead. Some encoded images still have visible ar-

tifacts, mainly homogeneous images with few details. As
future work, it is intended to exploit: 1) alternative ways
to merge the cover image and the residual, such as alpha
blending, and image gradients, and 2) new neural network
architectures. In some cases the quantitative metrics do not
match human perception, so in future work we will develop
metrics more aligned with our visual perception.

8. Conclusions

This study proposes an approach that represents images
through covariance matrices and defines a new loss func-
tion based on Riemannian distance, which aims to generate
encoded images that are more similar to the original ones.
It also uses invariance properties of Riemannian distance
to tackle the transformation that usually happens in printed
images. The robustness of the proposed approach was eval-
uated in two different tasks, namely, printer-proof water-
marking, and image-generative task using GANs. This ap-
proach proves to be effective in generating encoded images
with higher quality and higher decoding accuracy. The re-
sults show promising evidence that the Riemannian distance
is an alternative to Euclidean distance for measuring image
similarity since the RiemStega method obtained better re-
sults than the StegaStamp that uses L2 distance.
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