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Abstract: Recent advancements in steganography and deep learning have enabled the creation of security methods for
imperceptible embedding of data within images. However, many of these methods require substantial time
and memory during the training and testing phases. This paper introduces a lighter steganography (also ap-
plicable to watermarking purposes) approach, StylePuncher, designed for encoding and decoding 2D binary
secret messages within images. The proposed network combines an encoder utilizing neural style transfer
techniques with a decoder based on an image-to-image transfer network, offering an efficient and robust so-
lution. The encoder takes a (512×512×3) image along with a high-capacity 2D binary message containing
4096 bits (e.g., a QR code or a simple grayscale logo) and ”punches” the message into the cover image. The
decoder, trained using multiple weighted loss functions and noise perturbations, then recovers the embedded
message. In addition to demonstrating the success of StylePuncher, this paper provides a detailed analysis of
the model’s robustness when exposed to various noise perturbations. Despite its lightweight and fast architec-
ture, StylePuncher achieved a notably high decoding accuracy under noisy conditions, outperforming several
state-of-the-art steganography models.

1 INTRODUCTION

The primary goal of image steganography is to encode
secret messages into a cover image so that the en-
coded and original images appear visually identical.
While focused on steganography, StylePuncher can
also be applied to watermarking for copyright protec-
tion. Inspired by prior works (Shadmand et al., 2024),
(Shadmand et al., 2021), and (Tancik et al., 2020), our
model advances the field as an effective steganogra-
phy technique.

The overall performance of a steganography
method is typically evaluated based on four key char-
acteristics: invisibility, information capacity, secu-
rity, and robustness to transmission through printing
media (printer-proof ability). These criteria collec-
tively determine the method’s effectiveness in con-
cealing data while ensuring resilience and maintain-
ing the integrity of the encoded message under vari-
ous conditions. Invisibility is measured by the sim-
ilarity between original and encoded images, ideally
imperceptible to the human eye. We argue that hu-
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man visual judgment is the most effective evaluation
method. Additionally, the capacity is quantified in
bits-per-pixel (bpp), which refers to the average num-
ber of bits embedded into each pixel of the cover im-
age (Zhang et al., 2019). The security of encoded im-
ages involves (1) resilience to noise, preserving en-
coded information, and (2) robustness against adver-
saries attempting to decode or manipulate the data
using similar models. The printer-proof characteris-
tic is assessed by the success rate of decoding physi-
cally printed encoded images, posing a challenge for
steganography models to preserve embedded infor-
mation through the print-scan process.

Current state-of-the-art steganography techniques
face several key challenges: (1) limited capacity for
secret messages, restricting practical security applica-
tions; (2) low robustness against various noise types;
(3) the need for higher image quality and improved
invisibility; and (4) reliance on large architectures re-
quiring extensive datasets, making them inefficient
and impractical for real-time or resource-constrained
applications.

This paper introduces StylePuncher, a novel deep
learning steganography method designed to address
current limitations by embedding high-capacity mes-



sages into RGB images. Inspired by image-to-image
transfer models (Goodfellow et al., 2014), (Isola et al.,
2017), (Wang et al., 2018), (Abdal et al., 2019),
StylePuncher is robust against digital and physical
noise. Its separate training of the encoder and decoder
reduces GPU requirements, while the lightweight en-
coder network enhances efficiency compared to mod-
els like CodeFace (Shadmand et al., 2021) and Stam-
pOne (Shadmand et al., 2024), improving speed and
resource utilization.

The encoder design is two folded: neural style
transfer and linear interpolation (improving the ap-
pearance of the encoded images), as visualised in Fig-
ure 1.

The decoder network in StylePuncher is based on
the U-Net architecture, as employed in the pix2pix
network, and is designed to recover the secret mes-
sage from encoded (”punched”) images. Trained in-
dependently from the encoder, the decoder uses en-
coded images as input and the secret message as the
ground truth label, as shown in Figure 2. We eval-
uated four decoder configurations: standard U-Net,
U-Net with a discriminator, U-Net with an attention
mechanism (Oktay et al., 2018), and U-Net with a
Spatial Transformer Network (STN) (Jaderberg et al.,
2015). The decoder training incorporates four loss
functions: perceptual loss (Zhang et al., 2018), object
loss (Isola et al., 2017), total variation (TV) loss (Ar-
jovsky et al., 2017a), and a StegaStamp discriminator
(Tancik et al., 2020) to enhance performance.

As for invisibility and quality of StylePuncher en-
coded images, they are measured by three perceptual
loss functions (Chen and Bovik, 2011) (Zhang et al.,
2018)(Kettunen et al., 2019), a face features distance
(Deng et al., 2019) and a color histogram loss func-
tion (Afifi et al., 2021). The results from the tests
with the three loss functions showed than our model
is a robust steganography model with capacity as high
as 0.52×10−2 bpp.

In Section 6, we also present the sensitivity per-
formance of our decoder networks in the presence of
various simulated noise sources. The average decoder
performance reaches approximately 85% successful
rate in the presence of several distortion perturbations
while having the best performance between the robust
steganography models (Shadmand et al., 2021), (Tan-
cik et al., 2020).

2 Related Work

Image Steganography was initially performed with
the use of traditional computer vision tools, such
as Discrete Wavelet Transform (DWT) (Barni
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Figure 1: StylePuncher encoder architecture. In block 1, the
StylePuncher encoder is designed with loss functions and an
optimiser that ”punches” a 2D binary message into images
while optimizing variables of the primary encoded images
in two epochs. In block 2, the primary encoded image is
blended with the original image to produce encoded images.
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Figure 2: The decoder follows a structure similar to the
pix2pix network and is trained using perceptual loss, West-
ern loss, and a modified virtual QR Code mechanism to en-
hance performance and robustness.

et al., 2001), Discrete Fourier Transform (DFT)
(O’Ruanaidh et al., 1996), Discrete Cosine Transform
(DCT) (Hsu and Wu, 1999) or LSB (Tamimi et al.,
2013). LSB uses the least significant bits (LSB) to
hide a secret message into a cover image (Tamimi
et al., 2013). The hiding capacity of LSB is approxi-
mately 0.20.2 bits per pixel (bpp) (Zhu et al., 2018).
While these methods allow high-capacity message en-
coding, they often struggle with maintaining the per-
ceptual quality of encoded images and suffer from
data loss under noise-induced distortions.

Recent advances in deep learning, particularly
Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014), (Mirza and Osindero, 2014), have
significantly improved image steganography perfor-
mance.

The first deep learning-based steganography
method, DeepStega (Baluja, 2017), utilized auto-
encoding networks to encode a 64×64×3 secret im-
age into a cover image of identical resolution. During
training, small noise was added to the encoder’s out-
put to prevent encoding the secret image directly into
the binary space of the cover image, such as LSB.

The StegaStamp method (Tancik et al., 2020) in-
troduced a robust steganography technique capable of
validating encoded messages from physically printed
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Figure 3: Virtual QR code reader is inspired in ArtCode
(Su et al., 2021), where we replace average-pooling to find
the center pixel faster than the original model. The kernel
of the SS-layer for the encoder is a Gaussian function like
ArtCode, but we use a matrix with ones for the decoder.

images. This was achieved through noise simulation
techniques to mimic printer and digitization perturba-
tions. By employing LPIPS perceptual loss (Zhang
et al., 2018) during training, the method minimized
perceptual quality differences between encoded and
cover images, significantly enhancing the appearance
of encoded samples.

The CodeFace model (Shadmand et al., 2021) is
the first practical full model for encoding and decod-
ing secret messages from small face images in ID doc-
uments. It enhances image quality by minimizing dif-
ferences in facial features between encoded and orig-
inal images and improves decoder performance by
training with low-resolution encoded images. Both
CodeFace and StegaStamp encoders can hide up to
100 bits in 400×400×3 pixel images but decode reli-
ably only from large printed images with high texture
levels, such as 6×6 cm images.

The HiNet model (Jing et al., 2021), built on
deep learning normalizing flows, employs an invert-
ible neural network (INN) to embed one image within
another of the same size. Utilizing wavelet domain
transformation and inverse learning, HiNet enables
high-capacity, secure, and imperceptible message em-
bedding with strong recovery accuracy. It supports a
payload capacity of 24−120 bpp but is highly sensi-
tive to noise and perturbations.

Recently, the StampOne (Shadmand et al., 2024)
model proposed a generalized approach to enhancing
steganography using deep learning, specifically based
on Generative Adversarial Networks (GANs). This
method aims to increase both the message capacity
and robustness of the model when subject to various
printer and camera augmentations.

3 Methodology

StylePuncher consists of a style transfer encoder net-
work, inspired by ArtCode (Su et al., 2021), and an

image-to-image transfer decoder. The encoder incor-
porates a virtual QR Code simulator loss function in-
troduced in ArtCode, optimized using the Adam op-
timizer. The style transfer optimization process is ex-
ecuted twice to embed the message points into the
original image, resulting in encoded images. Follow-
ing this embedding phase, the quality of the encoded
images is further refined through linear interpolation
with the original images, enhancing their visual fi-
delity. Further details are given in section 3.1.

The decoder network then takes the encoded im-
ages as input and reconstructs the QR Code message
as output. It is trained over 28,000 steps for noise-free
conditions, or 100,000 steps when simulating noise,
to minimize the corresponding loss functions.

We implemented two separate applications for the
encoder and decoder. Additionally, for detecting the
region of interest in the encoded images, we utilized
two models: YOLOv4 (Wang et al., 2021) and PRnet
face detection (Wang and Solomon, 2019).

3.1 Encoder

StylePuncher’s encoder network consists of two main
components: a modified ArtCode Neural Style Trans-
fer (NST) network (Su et al., 2021) and a linear in-
terpolation operator that blends the primary encoded
and original images (see Figure 1).

In modifying ArtCode, we replaced its original
loss functions with a perceptual loss function (Zhang
et al., 2018), instead of the VGG16 NST, to better
preserve the appearance of the encoded images dur-
ing training. To redesign the virtual QR code simula-
tor mechanism, we retained the Sampling-Simulation
(SS) layer (Iss), which employs a convolution layer
with a non-trainable Gaussian kernel and an s× s ma-
trix to detect the center of black and white blocks, as
follows:

G(i, j) =
1

2πσ2 e−
i2+ j2

2σ2 (1)

where (i, j) is a pixel of a kernel matrix and the origin
at the module center. The factor σ adjusts the size in
bits of the message punched in the cover image.

The loss function is illustrated in Figure 3. Both
the encoded image and the secret message are con-
verted from RGB to grayscale. The secret message
is passed through the frozen SS-layer, where a binary
feature vector (Fm×m) is extracted. It is also processed
through a 2D average pooling layer and mapped using
ετ to compute the binary matrix (Qm×m) of the mes-
sage, where τ is the binary threshold applied to the
secret message pixels (QR Code).

The encoded image follows a similar process.
Initially, the primary encoded image’s pixel values
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Figure 4: Samples of encoded images - StylePuncher can hide and read a message in an image’s region of interest.
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Figure 5: Examples of steganography models that encode a
hidden message into image’s ROI. The size of DeepStega’s
input and output is 64×64×3, smaller than other models.
Therefore, for a fair comparison, we use a smaller encoding
ROI in DeepStega.

match those of the original image. During training,
the network converts the encoded image from RGB
to grayscale, and the SS-layer extracts its binary fea-
ture vector (F

′
m×m). It then passes through a 2D aver-

age pooling layer and is mapped using ε
′
τw,τb

, which
computes the matrix of maximum pixels (Cm×m) with

thresholds τw and τb for white and black pixels, re-
spectively.

The error weight (κm×m) is defined as zero when
Cm×m and Qm×m are identical (both 0 or 1), and as one
otherwise. The virtual QR Code loss function is then
calculated using the following expression:

Lcode = κm×m(Fm×m −F
′
m×m) (2)

where m is the size of the message and s is the size of
the kernel. The details of Lcode are shown in Figure 3.

By using the average pooling layer and the Ten-
sorflow toolkit, to extract Cm×m and Qm×m, increases
the speed by 100 times over the traditional approach
of ArtCode (Su et al., 2021). The encoder produces
images such that the perception of the encoded and
original images is similar, with indistinguishable dif-
ferences, as can be seen in Figure 4.

In the second block, to improve the encoder’s per-
formance, the pixel values between a primary en-
coded image and an original image are linearly in-
terpolated to generate an invisible encoded image, as
follows:

Penc(i jc) = α× ppri(i jc)+(1.0−α)× po(i jc) (3)

where penc, ppri and po(i jc) are normalized pixels
(between 0 and 1) of the encoded, primary encoded
and original images, respectively, for the channel c of



Figure 6: The quality of encoded images as a parameter of the encoder network is measured. The smaller the value, the
better LPIPS and ELPIPS which measure the perceptual distance between encoded and original images. We also compute
Euclidean distances between original and encoded face images as in ArcFace (Deng et al., 2019). The colour errors are
computed between encoded and original photos by comparing colour histograms.

the pixel (i j). The value α is an interpolation factor
that lies in the range [0,0.4].

3.2 Decoder

The decoder is an image-to-image transfer network
that takes a 512×512×3 encoded image as input and
outputs a 512×512×1 recovered message, which can
be read by standard QR Code scanning applications,
as illustrated in Figure 2

We have implemented several variations of the de-
coder network, all based on the pix2pix framework
(Isola et al., 2017). The first version is a U-Net archi-
tecture, as used in the original pix2pix model, with-
out incorporating a discriminator. The second version
includes a Conditional Generative Adversarial Net-
work (CGAN) discriminator, which classifies whether
each image patch is real or fake. Upon compari-
son, we found that the inclusion of the discriminator
negatively impacts the decoder’s performance, as de-
tailed in section 6. In the third model, we integrated
an attention mechanism (Oktay et al., 2018) into the
pix2pix framework. We chose the attention U-Net to
enable the model to focus on relevant features during
training, inspired by its application in medical image
analysis (Oktay et al., 2018). Finally, we explored
the use of a Spatial Transformer Network (STN) com-
bined with pix2pix (Jaderberg et al., 2015). The STN
helps to crop and normalize the appropriate region
within the image, simplifying subsequent classifica-
tion tasks and improving the decoder’s overall perfor-
mance.

For training the decoder, our approach utilizes a
combination of loss functions, including the virtual
QR Code reader loss (LDC), the perceptual loss (LPer)
(Zhang et al., 2018), the object loss (Lob j) (Isola et al.,
2017), and the total variation (TV) loss (LTV ) (Ar-
jovsky et al., 2017a). The virtual QR Code reader

used in the decoder is similar to the one employed in
the encoder, but it uses a matrix with values equal to
1 instead of a Gaussian kernel in the SS-layer.

We incorporate a discriminator within the decoder
to minimize the discrepancy between the extracted
message and the original message. A Wasserstein ad-
versarial loss (ldisc) (Arjovsky et al., 2017b) is com-
puted by evaluating the difference between the dis-
criminator’s feature outputs for the extracted and orig-
inal messages, ensuring a closer alignment between
them.

The complete loss function is defined as:

Loss =WDC × lDC +WPer × lPer

+Wob j × lob j +WTV × lTV +Wdisc × ldisc
(4)

where WDC, WPer,Wob j and WTV are the respective
weights assigned to each loss component. Wdisc and
ldisc are the weight and loss function of the discrimi-
nator.

4 Datasets

The dataset used for training the StylePuncher model
is the CelebFaces Attributes dataset (CelebA) (Liu
et al., 2018), which contains 202,599 large-scale im-
ages of celebrities. For object images, we utilized the
ImageNet dataset (Deng et al., 2009), which includes
thousands of diverse images. From these two datasets,
we randomly selected 50,000 images for training. For
testing, we employed the PICS face dataset (Hancock,
2008) and the Color FERET face dataset (Phillips
et al., 2000), comprising a total of 13,659 images. All
facial images presented in this study belong to celebri-
ties.



5 Perturbation simulation

Applying perturbation or noise self-attack simulations
enhances decoder robustness in real-world scenarios.
The three primary noise types impacting images are
digital, printer, and sensor perturbations (Cunha et al.,
2024).

Digital perturbations. Digital noise refers to dis-
tortions during transfer, storage, or application-level
manipulation of images. Here, we focus solely on
noise from JPEG compression.

Printer and designed perturbations. Printers in-
troduce various noises, such as Gaussian noise, affine
transforms, sharpening, and random gray transforms,
which can compromise hidden information.

Sensor perturbations. Cameras capture images
differently based on lighting and environmental con-
ditions. Sensor perturbations, simulated in our solu-
tion, include random brightness, contrast, hue shifts,
medium blur, perspective warps, and added padding.

6 Experiments

6.1 Training configuration and
hardware setup

The StylePuncher networks were trained using the
Adam optimizer (Kingma and Ba, 2014) with a learn-
ing rate of 10e−5 and β = 0.95. The training process
involved 11×104 epochs with a batch size of 5, over
a total duration of 48 hours. The input and output im-
age sizes were 512× 512× 3. We used two Nvidia
Geforce GTX 1060 GPUs for training the networks.

6.2 Capacity evaluation of
steganography models

The capacity, or the amount of information a model
can hide in an image, is a critical metric for evaluating
the network performance. This capacity is influenced
by the network architecture, vulnerability to noise dis-
tortion, and the design of loss functions. Normalizing
models like HiNet achieve the highest capacity at 120
bpp, setting the baseline for a benchmark comparison.
LSB (0.2 bpp) and DeepStega (0.1 bpp) follow, with
lower capacities than the normalizing flow models.

CodeFace (Shadmand et al., 2021) and the Ste-
gaStamp (Tancik et al., 2020) model demonstrate a
much smaller capacity, retrieving 0.21 × 10−3 bpp
and 0.13 × 10−3 bpp, respectively, when recover-
ing hyperlinks after applying error-correcting algo-
rithms. Although their capacities (regarding the max-

Table 1: Qualitative Results: Model Ranking
Based on Scores (0-10)

Model Score (0-10)
LSB 8.89

HiNet 8.69
StylePuncher (Ours) 8.68

CodeFace 6.89
DeepStega 6.05
StegaStamp 4.08

imum amount of hidden information) are lower, these
models are specifically designed to withstand distor-
tions caused by image transfer through physical me-
dia, such as printing and re-digitization, making their
printer-proof characteristic particularly valuable.

Finally, the StylePuncher model, while maintain-
ing robustness against various noise distortions, sig-
nificantly improves upon these robust models with
a capacity of 0.52× 10−2 bpp, making a substantial
enhancement in the field of resilient steganography
methods.

6.3 Encoder performance

Fidelity, the quality of the encoded image and its sim-
ilarity to the original, is a key measure of encoder
performance. Human judgment remains the most reli-
able method for evaluating encoder effectiveness, par-
ticularly across different steganography models. As
shown in Figure 5, we conducted a survey based on
the ITU-R BT.500.11 recommendation (BT, 2002)
and (Zhai and Min, 2020), commonly used for im-
age quality assessments, such as by the JPEG working
group (ISO/IEC JTC 1/SC 29/WG 1).

In a survey of 76 participants, eight pairs of origi-
nal and encoded images from six steganography mod-
els were evaluated for similarity. Based on qualitative
scores (0–10) and the Mean Opinion Score (MOS), as
presented in Table 1. StylePuncher ranked slightly be-
low HiNet and LSB, which are highly noise-sensitive.
Among robust models, however, StylePuncher was
the top performer in encoded image quality.

Additionally, Certain loss functions, such as SSIM
(Chen and Bovik, 2011), LPIPS (Zhang et al., 2018),
and eLPIPS (Kettunen et al., 2019), quantify percep-
tual image similarity, aligning with human judgment.
These metrics are particularly useful for evaluating
steganography models’ fidelity.

However, the perceptual loss functions used in our
evaluation are not fully rigorous in accurately measur-
ing human visual perception (Avanaki et al., 2024).
In fact, these functions suggest that DeepStega-
encoded images offer better perceptual quality than
StylePuncher, CodeFace, and StegaStamp. However,
in reality, DeepStega-encoded images undergo sig-
nificant color transformations, which are not effec-



Table 2: Global Encoder Performance Based on Average
Error Scores

Model Average Error Score
LSB 0.004

HiNet 0.009
StylePuncher (Ours) 0.065

CodeFace 0.071
DeepStega 0.103
StegaStamp 0.161

tively captured by these loss functions. To address
this limitation, we introduced a more comprehensive
approach by measuring the color histogram distance
(Afifi et al., 2021) between the encoded and original
images, as shown in the final (right) plot of Figure 6.
This method provides a more accurate reflection of
color fidelity in the encoded images.

To further improve the quality of the encoded im-
ages in the context of face images, we also measure
the distance of face features between encoded and
original images, by using the ArcFace model (Deng
et al., 2019), which is based on the cosine distance.

The results of the comparison of all loss func-
tions for all models are presented in Figure 6. We
computed the average from the five mentioned error
functions for every model as the global encoder per-
formance, which is shown in Table 2. LSB (0.004)
and HiNet (0.009) have the best results. After them,
for the robust models, come StylePuncher (0.065) and
CodeFace (0.071) that then have the best encoded im-
ages. The worst results were achieved for DeepStega
(0.103) and StegaStamp (0.161). As can be seen, the
scores obtained by the human judgement survey are
in line with these metrics.

6.4 Decoder performance

The decoder’s performance is evaluated based on its
ability to accurately recover hidden messages under
various distortions and noise simulations. Its robust-
ness for real-world printed images is enhanced by ap-
plying perturbation, noise, or self-attack simulations,
as outlined in Section 5. This subsection examines
the model’s sensitivity to several distortions, includ-
ing hue adjustment, JPEG compression, random con-
trast, random brightness, resolution changes, linear
interpolation, Gaussian noise, and arbitrary rotations.
This analysis assesses the decoder’s effectiveness in
preserving message integrity under challenging con-
ditions.

The noise resistance ratio (dnoise) is used to evalu-
ate the decoder’s performance, measuring its ability to
recover encoded messages under noise perturbations.
The metric is defined as:

dnoise =
△w
△W

(5)

where △w represents the range of noise intensity lev-
els within which the decoder successfully recovers the
message, and △W is the total possible range of noise
intensities. This ratio directly quantifies the decoder’s
robustness against various noise distortions, facilitat-
ing a clear comparison of its resistance capabilities
across different noise levels.

For example, in the case of JPEG compression, the
quality factor varies from 0 to 100 (△W = 100− 0).
The contrast factor varies from 0 to 1.0. The bright-
ness value varies between −1 for complete darkness
and 1 for maximum brightness. The Linear inter-
polation of pixels between encoded and background
images varies from 0 to 1.0 (see Eq. 3). As the
maximum resolution that the decoder network can
get is 512× 512× 3, the resolution value varies be-
tween 1 × 1 × 3 and 512 × 512 × 3 (the resolution
value is variable for each model according to the in-
put size). The standard deviation of Gaussian noise
varies between 0 and 0.90. We also consider ran-
dom rotation which we consider that varies between
0.0001 and 0.5 radians. Finally, the full decoder per-
formance (Ddecoder) of every model is computed by
averaging the results of every model in the presence
of every type of noise (dnoise). The performances
of the four selected network structures are summa-
rized in Table 4. A standard QR code reader, due
to built-in redundancy, can correctly interpret QR
code messages with up to 40% distortion. Accord-
ingly, we accept recovered messages with a maximum
of 30% binary cross-entropy error (BCEE), remain-
ing safely below the maximum acceptable distortion
threshold. When all four models were trained with
various noise types, the U-Net network with Spatial
Transformer Network (STN) demonstrated the best
performance, while the U-Net with a discriminator
(pix2pix) showed the weakest results among the four.
However, none of the models were capable of decod-
ing the message from encoded images with slight ro-
tations exceeding 0.001 radians.

Following the identification of U-Net+STN as the
best-performing decoder network through ablation
studies, the network was further trained with random
noise simulations. Initially, training was conducted
over 105 epochs, introducing JPEG compression, con-
trast, and brightness noise incrementally. The noise
levels were applied to the encoded images within the
following intervals: JPEG compression ranged from
25 to 60, brightness noise varied between −0.95 and
−0.95, and contrast noise was adjusted within the
range of 0.050.05 to (0.05, 0.20).

Additional noise types, including random resolu-
tion, linear interpolation, Gaussian noise, and ran-
dom rotation, were sequentially added to the pre-



Table 3: StylePuncher decoder performance (four different decoder models are considered)

Noise U-Net U-Net
+discriminator

U-Net
+attention U-Net+STN

JPEG Compression 0.42 0.22 0.14 0.65
Contrast 0.6 0.5 0.65 0.85
Brightness 0.55 0.45 0.47 0.87
Linear interpolation 0.3 0.25 0.29 0.4
Different resolution 0.19 0.01 0.01 0.52
Gaussian noise 0.13 0.13 0.15 0.13
Decoder performance 0.36 0.26 0.28 0.57

Table 4: The best-elected decoder of StylePuncher is compared with two robust steganography models: CodeFace and Ste-
gaStamp.

Noise StegaStamp CodeFace StylePuncher (Ours) StylePuncher (Ours)
with noise simulation

JPEG Compression 0.93 0.96 0.65 0.87
Contrast 0.90 0.90 0.85 0.95
Brightness 0.87 0.70 0.87 0.99
Linear interpolation 0.01 0.01 0.4 0.96
Different resolution 0.86 0.86 0.52 0.70
Gaussian noise 0.62 0.28 0.13 0.80
Rotation 0.5 0.5 0.01 0.67
Decoder performance 0.67 0.60 0.49 0.85

trained network, with each type trained for 70× 104

epochs. This incremental training with increasingly
complex noise simulations improved the decoder’s
performance from 0.49 to 0.83, as shown in Table 3.

Table 3 compares our best model (U-Net+STN,
with and without noise simulation) to state-of-the-art
methods. While HiNet and LSB excel in capacity and
encoder performance, their decoders are highly noise-
sensitive, with a performance of zero under noisy con-
ditions. DeepStega achieves a robustness rate of 0.05
under rotation but shows zero performance against
other noise types.

CodeFace and StegaStamp, designed with noise
simulation for printer-proof robustness, perform well
under JPEG compression and varying resolution.
However, our StylePuncher model, also trained with
noise simulation, outperforms all others when ex-
posed to multiple noise types. StylePuncher achieves
the highest decoder performance, with an 85% suc-
cess rate under noise conditions, setting a new bench-
mark among steganography models.

6.5 Discussion

The StylePuncher model surpasses existing steganog-
raphy methods with key advantages. It demonstrates
exceptional robustness against noise and distortions,
including JPEG compression, brightness and contrast
variations, Gaussian noise, and arbitrary rotations.
This resilience is achieved through noise simulations
during training, enabling the model to handle real-
world perturbations, such as printer-proof scenarios.
Furthermore, StylePuncher is computationally effi-
cient, allowing separate training of the encoder and

decoder, which reduces GPU usage and accelerates
training. Its lightweight encoder architecture, with
fewer layers than models like CodeFace and Stam-
pOne, further enhances efficiency.

StylePuncher excels in fidelity by maintaining
high visual quality in encoded images, preserving
their similarity to the originals even with embedded
data—an essential feature for steganography applica-
tions. The model employs perceptual loss functions
and an accurate color histogram distance metric, en-
suring that encoded images remain visually indistin-
guishable from the originals to the human eye.

7 Conclusion

In this work, we present StylePuncher, a robust
steganography model uniquely resistant to various
physical noises. It outperforms other printer-proof
methods, such as CodeFace and StegaStamp, in hid-
den message capacity. The encoder produces signif-
icantly higher-quality encoded images compared to
other robust models. Among the four decoder struc-
tures explored, experiments identified the U-Net com-
bined with a Spatial Transformer Network (STN) as
the most effective configuration.

Future work on StylePuncher will focus on im-
proving its robustness in decoding messages from
printed images affected by stronger perturbations,
such as scratches or significant color changes. This
can be achieved by integrating a frequency balance
method into the style transfer process, enhancing the
model’s resilience to distortions introduced during
printing.
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N. (2024). Noise simulation for the improvement
of training deep neural network for printer-proof
steganography. In Proceedings of the 13th Interna-
tional Conference on Pattern Recognition Applica-
tions and Methods, pages 179–186.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255.
IEEE.

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). Ar-
cface: Additive angular margin loss for deep face
recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 4690–4699.

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). Ar-
cFace: Additive Angular Margin Loss for Deep Face
Recognition. In 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
4685–4694.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and Ben-
gio, Y. (2014). Generative adversarial nets. In NIPS.

Hancock, P. (2008). Psychological image collection at stir-
ling (pics). Web address: http://pics. psych. stir. ac.
uk.

Hsu, C.-T. and Wu, J.-L. (1999). Hidden digital watermarks
in images. IEEE Transactions on Image Processing,
8(1):58–68.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017).
Image-to-image translation with conditional adversar-
ial networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
1125–1134.

Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015).
Spatial transformer networks. In Advances in Nneural
Information Processing Systems, pages 2017–2025.

Jing, J., Deng, X., Xu, M., Wang, J., and Guan, Z. (2021).
Hinet: Deep image hiding by invertible network. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 4733–4742.

Kettunen, M., Härkönen, E., and Lehtinen, J. (2019). E-
lpips: robust perceptual image similarity via ran-
dom transformation ensembles. arXiv preprint
arXiv:1906.03973.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2018). Large-
scale celebfaces attributes (celeba) dataset. Retrieved
August, 15(2018):11.

Mirza, M. and Osindero, S. (2014). Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.

Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich,
M., Misawa, K., Mori, K., McDonagh, S., Hammerla,
N. Y., Kainz, B., et al. (2018). Attention u-net: Learn-
ing where to look for the pancreas. arXiv preprint
arXiv:1804.03999.

O’Ruanaidh, J., Dowling, W., and Boland, F. (1996). Wa-
termarking digital images for copyright protection.
IEE Proceedings-Vision, Image and Signal Process-
ing, 143(4):250–256.

Phillips, P. J., Moon, H., Rizvi, S. A., and Rauss, P. J.
(2000). The feret evaluation methodology for face-
recognition algorithms. IEEE Transactions on pat-
tern analysis and machine intelligence, 22(10):1090–
1104.

Shadmand, F., Medvedev, I., and Goncalves, N. (2021).
Codeface: A deep learning printer-proof steganog-
raphy for face portraits. IEEE Access, 9:167282–
167291.

Shadmand, F., Medvedev, I., Schirmer, L., Marcos, J., and
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