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Resumo

Hoje em dia, aplicações baseadas em imagens faciais tornaram-se gen-

eralizadas em campos como segurança, medicina e entretenimento.

Fatores como iluminação, pose e expressões faciais podem impactar

o desempenho dessas aplicações. Na última década, o desenvolvi-

mento e a acessibilidade de sensores RGB-D de baixo custo tornaram

posśıvel obter informações de profundidade de objetos, levando os

pesquisadores a abordar problemas de reconhecimento facial cap-

turando imagens faciais RGB-D. No entanto, devido a restrições de

privacidade, a obtenção de dados de profundidade de rostos humanos

permanece um desafio, e as imagens faciais RGB 2D ainda são pre-

dominantes.

Seres inteligentes, como os humanos, podem usar sua vasta ex-

periência para derivar informações espaciais 3D de cenas 2D. As

metodologias de aprendizado de máquina visam resolver tais proble-

mas treinando computadores para gerar respostas precisas. O objetivo

de nossa pesquisa é melhorar o desempenho das tarefas de processa-

mento facial subsequentes, como reconhecimento facial e diagnóstico

facial, obtendo mapas de profundidade diretamente das imagens RGB

correspondentes. Propomos uma estrutura de processamento de im-

agem facial pseudo RGB-D que substitui sensores de profundidade

com mapas pseudo-profundidade gerados e oferece métodos orienta-

dos a dados para criar mapas de profundidade a partir de imagens



faciais 2D.

Especificamente, projetamos e implementamos um modelo de rede

adversarial generativa chamado ’D+GAN’ para tradução de imagem

para imagem multi-condicional com atributos faciais. Validamos a

abordagem de processamento de imagem facial pseudo RGB-D através

de experimentos em reconhecimento facial e diagnóstico facial usando

vários conjuntos de dados. A estrutura de processamento de imagem

facial pseudo RGB-D trabalha em conjunto com algoritmos de fusão

de imagens para melhorar o desempenho do reconhecimento facial e

diagnóstico facial.

Para explorar ainda mais as caracteŕısticas pseudo-profundidade,

propomos finalmente uma estrutura de processamento de imagem fa-

cial multimodal simulada que melhora significativamente o desem-

penho com uma probabilidade mais alta.

Palavras-chave: Reconhecimento facial pseudo RGB-D; diagnóstico

facial profundo; Rede Adversarial Generativa com Profundidade Adi-

cional (D+GAN); estimativa de profundidade facial monocular; rostos

espećıficos de doenças



Abstract

Today, face image-based applications have become widespread in fields

such as security, medicine, and entertainment. Factors like lighting,

pose, and facial expressions can impact the performance of these ap-

plications. Over the past decade, the development and affordability

of low-cost RGB-D sensors have made it possible to obtain depth

information of objects, leading researchers to tackle face recognition

problems by capturing RGB-D face images. However, due to privacy

restrictions, acquiring depth data from human faces remains challeng-

ing, and 2D RGB face images are still prevalent.

Intelligent beings, such as humans, can use their vast experience

to derive 3D spatial information from 2D scenes. Machine learning

methodologies aim to solve such problems by training computers to

generate accurate answers. Our research’s objective is to enhance the

performance of subsequent face processing tasks, such as face recog-

nition and facial diagnosis, by obtaining depth maps directly from

corresponding RGB images. We propose a pseudo RGB-D facial im-

age processing framework that replaces depth sensors with generated

pseudo-depth maps and offers data-driven methods to create depth

maps from 2D face images.

Specifically, we design and implement a generative adversarial net-

work model named ’D+GAN’ for multi-conditional image-to-image



translation with facial attributes. We validate the pseudo RGB-D

facial image processing approach through experiments on face recog-

nition and facial diagnosis using various datasets. The pseudo RGB-D

facial image processing framework works in conjunction with image

fusion algorithms to enhance face recognition and facial diagnosis per-

formance.

To further exploit pseudo-depth features, we ultimately propose a

simulated multimodal facial image processing framework that signifi-

cantly improves performance with a higher probability.

Keywords: Pseudo RGB-D face recognition; deep facial diagnosis;

Depth Plus Generative Adversarial Network (D+GAN); monocular

face depth estimation; disease-specific faces
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Chapter 1

Introduction

In recent decades, biometrics has gained significant attention from researchers

due to its uniqueness, stability, versatility, and difficulty to counterfeit. Among

various biometric features, facial recognition has become increasingly popular.

Face image-based applications can be found in a wide range of fields, such as

security, entertainment, and healthcare [8], [9], [10]. Numerous factors, including

illumination, posture, and expression, can impact the performance of facial image

applications. Thus, it is crucial to address these factors to enhance application

performance.

Machine learning algorithms are commonly used in facial image applications.

Machine learning (see Figure 1.1) is a process in which computers derive models

from input data through training to make decisions. In the field of digital im-

age processing, feature extraction for traditional machine learning methods relies

on hand-crafted engineering, which can be challenging. Most hand-crafted fea-

tures need to be designed by specialists to reduce data complexity. In contrast,

deep learning automates feature extraction without depending on hand-crafted

engineering. Traditional machine learning methods for image processing mainly

involve hand-crafted local descriptors combined with classifiers.

1



Figure 1.1: Brief process of machine learning

In recent years, deep learning technology has significantly improved state-

of-the-art performance in many areas, particularly in computer vision, due to

its powerful reasoning capabilities [11], [12]. Deep learning has demonstrated

its best performance in the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [13] since 2012. In the ILSVRC, numerous research experiments have

shown that features learned by deep learning methods can represent the in-

herent information of the data more effectively than hand-crafted features [14],

[15]. Some classic deep neural network models have emerged, such as AlexNet,

GoogLeNet, VGGNet, ResNet, and Inception-ResNet. The mainstream approach

has shifted toward deep learning with big data.

The most important difference between deep learning and traditional machine

learning is that its performance increases as the amount of training data increases.

If the dataset is small, the deep learning algorithm does not perform well because

the deep learning algorithm requires a large amount of data to understand the

patterns implied.

2



1.1 Face Recognition

In this PhD work, we focus on two emerging research topics: face recognition

and facial diagnosis.

1.1 Face Recognition

Face recognition refers to the technology of identifying or verifying the identity

of individuals from facial images or videos. Due to its non-invasiveness, face

recognition has become one of the most user-friendly biometric methods, leading

to a wide range of applications. Face identification involves matching a given face

image to one in a database of faces, representing a one-to-many mapping.

Darwin’s theory of evolution proposes natural selection, which is the process

of survival of the fittest and the elimination of those less adapted [16]. The

genetic characteristics of organisms that adapt well to their environment are

preserved through natural selection, a concept that is supported by abundant

evidence and has had a profound impact on academic research [17]. Nowadays,

all higher living creatures have two eyes for three-dimensional positioning, which

is crucial for foraging. In contrast, most one-eyed creatures have gone extinct.

Humans can still perform 3D positioning with one eye for a short period due

to their extensive prior experience. While human vision is three-dimensional,

most commonly encountered 2D face images lack facial spatial information. The

importance of facial spatial information is undeniable.

In the last decade, advances in and the popularity of inexpensive RGB-D

sensors have enabled us to utilize three-dimensional information. Compared to

RGB face recognition, RGB-D face recognition requires depth images captured by

depth sensors, such as Kinect [18] and PrimeSense [19]. There is some evidence,

yet to be confirmed, that RGB-D face recognition performs better in terms of

accuracy due to the effective use of spatial features [20], [21], [22].
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Figure 1.2: A Mixed Media by Gina Dsgn: The Origin of Species by Charles
Darwin (1809-1882)

In modern society, although facial recognition systems are very convenient,

they also give rise to many information security and privacy issues. In addition,

there are no popular file formats for RGB-D data, and RGB-D cameras are not as

common as RGB cameras. Therefore, RGB-D face images are not easy to collect

and are much less common than RGB face images.

The emergence of machine learning enables computers to imitate the human

learning process by learning from historical experiences to make predictions. It

occurs to us that using machine learning algorithms might enable us to create

models that effectively predict depth maps from their corresponding RGB images.
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Prior to 2014, the main approach for image processing involved hand-crafted local

descriptors with classifiers. With the development of big data and improvements

in computer hardware performance, deep learning technology has become widely

used in science and industry, offering more powerful reasoning capabilities than

traditional machine learning models. Monocular depth estimation has inspired us

to acquire 3D information from 2D face images using deep learning. Synthesizing

the above, the idea behind this section is to generate corresponding depth maps

solely from RGB face images, replacing depth maps collected by depth sensors,

to perform the pseudo RGB-D face recognition.

1.2 Facial Diagnosis

The relationship between face and disease has been discussed from thousands

years ago, which leads to the occurrence of facial diagnosis. Thousands years

ago, Huangdi Neijing [23], the fundamental doctrinal source for Chinese medicine,

recorded ”Qi and blood in the twelve Channels and three hundred and sixty-five

Collaterals all flow to the face and infuse into the Kongqiao (the seven orifices

on the face).” It indicates the pathological changes of the internal organs can

be reflected in the face of the relevant areas. In China, one experienced doctor

can observe the patient’s facial features to know the patient’s whole and local

lesions, which is called “facial diagnosis”. Similar theories also existed in ancient

India and ancient Greece. Nowadays, facial diagnosis refers to that practitioners

perform disease diagnosis by observing facial features. The shortcoming of facial

diagnosis is that for getting a high accuracy facial diagnosis requires doctors to

have a large amount of practical experience. Modern medical researches [24],

[25], [26] indicate that, indeed, many diseases will express corresponding specific

features on human faces.
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Nowadays, it is still difficult for people to take a medical examination in many

rural and underdeveloped areas because of the limited medical resources, which

leads to delays in treatment in many cases. Even in metropolises, limitations

including the high cost, long queuing time in hospital and the doctor-patient

contradiction which leads to medical disputes still exist. Computer-aided facial

diagnosis enables us to carry out non-invasive screening and detection of diseases

quickly and easily. Therefore, if facial diagnosis can be proved effective with an

acceptable error rate, it will be with great potential. With the help of artificial

intelligence, we could explore the relationship between face and disease with a

quantitative approach.

With the help of a large amount of face images with labels from public face

recognition datasets [27], [28], [29], CNN models are trained for learning most

suitable face representations automatically for computer understanding and dis-

crimination, and they get a high accuracy when testing on some specific datasets

[30], [31].

The success of deep learning in the face recognition area motivates this project

initially. However, the labelled data in the area of facial diagnosis is seriously

insufficient. If we train a deep neural network from scratch, it will inevitably

lead to overfitting. Apparently, face recognition and facial diagnosis are related.

Since there is much more labeled data in the area of face recognition, transfer

learning technology comes into view. In traditional learning, separate isolated

models are trained on specific datasets for different tasks. Transfer learning, on

the other hand, involves applying the knowledge gained while solving one problem

to a different but related problem. According to whether the feature spaces of

two domains are same or not, transfer learning can be divided into homogeneous

transfer learning and heterogeneous transfer learning [32]. In our task of facial

diagnosis, it belongs to homogeneous transfer learning. Deep transfer learning

6



1.2 Facial Diagnosis

refers to transfer knowledge by deep neural networks. Thus, transfer learning

makes it possible that identifying diseases from 2D face images by deep learning

technique to provide a non-invasive and convenient way to realize early diagnosis

and disease screening.

In the experiments, the following six diseases and their corresponding healthy

controls are selected for validation purposes. Prevalence and incidence are two

important indicators used to describe the epidemiology of diseases. Prevalence

primarily focuses on the extent to which a disease is present in a population, while

Incidence concentrates on the number of new cases that occur. Both of these

indicators play a significant role in epidemiological research and the development

of public health policies.

Prevalence is the proportion of total cases of a disease in a population at

a specific time. It is calculated by dividing the number of cases of a disease or

condition in a population by the total number of individuals in that population, as

demonstrated in Equation (1.1). Prevalence provides a snapshot of how common

a disease or condition is in a population at a given time, which includes both new

and existing cases of a disease or condition.

Prevalence =
Number of existing cases of a disease

Total population
(1.1)

Incidence refers to the number of new cases of a disease or condition that

develop in a population over a specific period of time. It is calculated by dividing

the number of new cases of a disease or condition in a population by the total

number of individuals at risk in that population, as demonstrated in Equation

(1.2). Incidence provides information on how quickly a disease or condition is

spreading in a population. Incidence includes only new cases of a disease or

condition that occurred during the specific period of time and does not include
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existing cases.

Incidence =
Number of new cases of a disease

Number of individuals at risk
(1.2)

1.2.1 Acromegaly

Acromegaly is a hormone disorder caused by excessive secretion of growth hor-

mone by the pituitary gland in adulthood, which will lead to abnormal hyperplasia

or hypertrophy of organs. A survey shows that the prevalence rate of acromegaly

ranges from 2.8 to 13.7 per 100,000 individuals approximately, and the annual

incidence rate ranges from 0.2 to 1.1 per 100,000 individuals approximately [33].

Acromegaly is not easily noticed by patients for a short period of time, and is

often mistaken for a phenomenon of weight gain or normal aging. Acromegaly

and related complications such as high blood pressure, diabetes, and heart disease

seriously affect patient health, quality of life and longevity. Studies show that

if the patients with acromegaly do not receive treatment, the average remaining

life is only about 10 years; However, if they can receive treatment, their life ex-

pectancy will be no different from that of ordinary people [34]. Therefore, early

diagnosis and treatment are necessary. Acromegaly could cause gradual facial

changes. Symptoms of acromegaly that probably appear on the patients’ face in-

clude a prominent lower jaw, prominent brow bones, an enlarged nose, thickened

lips, and wider spacing between teeth, which is shown as Figure 1.3.

1.2.2 Facial nerve paralysis

Facial nerve paralysis, caused by a dysfunction of the facial nerve, results in an in-

ability to control facial muscles for smiling, blinking, and other facial movements

on the affected side. Common causes of facial paralysis include facial nerve infec-

tion or inflammation, head trauma, and head or neck tumors. The prevalence of
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Figure 1.3: Acromegaly-specific face

Figure 1.4: Facial nerve paralysis-specific face

facial nerve paralysis ranges from 11.5 to 40.2 per 100,000 individuals [35], and

the annual incidence of facial paralysis ranges from 15 to 30 per 100,000 individu-

als approximately [36]. Facial nerve paralysis may cause numerous complications,

including irreversible facial nerve damage, abnormal regeneration of nerve fibers,

and partial or complete blindness in eyes that cannot be closed [37]. Symptoms of

facial nerve paralysis, which likely appear on the patients’ face, include paralysis

of facial expression muscles on the affected side, disappearance of forehead wrin-

kles, flattened nasolabial folds, and drooping corners of the mouth, as illustrated

in Figure 1.4.
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Figure 1.5: Down syndrome-specific face

1.2.3 Down syndrome

Down syndrome (DS) is a genetic disorder caused by trisomy of chromosome 21.

Most patients with Down syndrome have physical and intellectual disabilities.

Proper care can improve the quality of life for patients with Down syndrome.

The estimated prevalence of DS approximately ranges from 136.6 to 142.9 per

100,000 individuals[38], [39]. According to the World Health Organization [40],

the incidence of DS approximately ranges from 90.9 to 100 per 100,000 live births

worldwide. Symptoms of Down syndrome, which may appear on the patients’

face, include small palpebral fissures, wide-set eyes, a low nasal bridge, low-set

ears, and more, as illustrated in Figure 1.5.

1.2.4 Leprosy

Leprosy, also known as Hansen’s disease, is an infectious disease caused by a slow-

growing type of bacteria called Mycobacterium leprae. If a patient with leprosy

doesn’t receive timely treatment, the disease can cause a loss of pain sensation,

weakness, and poor eyesight. According to the World Health Organization, the

incidence of leprosy approximately ranges from 2.5 to 3.2 per 100,000 individuals,
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Figure 1.6: Leprosy-specific face

and the prevalence of leprosy approximately ranges from 2.2 to 2.7 per 100,000

individuals [41], [42]. Symptoms of leprosy, which may appear on the patients’

face, include granulomas, hair loss, eye damage, pale areas of skin, and facial

disfigurement (e.g., loss of nose), as illustrated in Figure 1.6.

1.2.5 Thalassemia

Thalassemia is a genetic blood disorder caused by abnormal hemoglobin pro-

duction and is one of the most common inherited blood disorders worldwide.

Hemoglobin is composed of two alpha and two beta chains. Different types of

globin gene deletions or defects result in the corresponding inhibition of globin

chain synthesis. Based on this fact, thalassemia is primarily divided into two

types: α and β. The global incidence of thalassemia approximately ranges from

0.74 to 39.79 per 100,000 individuals [43], [44], while the prevalence of thalassemia

varies from 2,500 to 15,000 per 100,000 individuals, approximately [45].

Since thalassemia can be fatal in early childhood without ongoing treatment,

early diagnosis is vital. According to medical research [46], thalassemia can re-

sult in bone deformities, especially in the face. Symptoms of thalassemia that

may appear on the face include small eye openings, epicanthal folds, a low nasal
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Figure 1.7: Thalassemia-specific face

bridge, a flat midface, a short nose, a smooth philtrum, a thin upper lip, and an

underdeveloped jaw, as illustrated in Figure 1.7.

1.2.6 Hyperthyroidism

Hyperthyroidism is a common endocrine disease caused by excessive amounts of

the thyroid hormones T3 and T4 which can regulate the body’s metabolism by

various causes. The incidence of hyperthyroidism approximately ranges from 50

to 1300 per 100,000 individuals [47], and the average prevalence of hyperthy-

roidism approximately ranges from 800 to 1300 per 100,000 individuals [48].

If not treated early, hyperthyroidism can cause a series of serious compli-

cations and even threaten the patient’s life. The typical facial characteristics

of hyperthyroidism include thinning hair, shiny and protruding or staring eyes,

increased ocular fissure, less frequent blinking, nervousness, consternation, and

fatigue, as illustrated in Figure 1.8.

Figure 1.9 summarizes the prevalence of the six aforementioned condition cat-

egories. Figure 1.10 summarizes the incidence of the six aforementioned condition

categories.
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Figure 1.8: Hyperthyroidism-specific face

Figure 1.9: Prevalence of the six conditions used for the study
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Figure 1.10: Incidence of the six conditions used for the study
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1.3 Contributions

In the PhD research, our contributions to face recognition can be summarized

as follows:

1. We propose and validate a pseudo RGB-D face recognition framework, as

illustrated in Figure 1.11. Figure 1.11 presents a modular process, where

algorithms within the module lists can be selected for preprocessing, depth

generation, image fusion, and feature extraction, and then combined for

face recognition. The best embodiment discovered is provided.

2. In order to fully utilize facial attributes, we specifically propose a GAN-

based model, D+GAN, which performs multi-conditional image-to-image

translation with facial attribute labels, transforming RGB face images into

corresponding depth maps.

3. Based on the obtained depth maps, we improve the face recognition perfor-

mance in cooperation with image fusion technologies, especially the Non-

subsampled Shearlet Transform (NSST) [49].

In the PhD research, our contributions to facial diagnosis could be summa-

rized as follows:

1. We definitely propose using deep transfer learning from face recognition to

perform the computer-aided facial diagnosis on four conditions.

2. We apply the pseudo RGB-D facial image processing framework on the

facial diagnosis on six conditions.

3. In order to make more effective use of pseudo-depth features, at the end

of this dissertation, we propose an improved pseudo RGB-D facial image

processing framework, simulated multimodal framework, to further improve

the facial diagnosis performance.
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Figure 1.11: Pseudo RGB-D face recognition framework

The aforementioned partial research findings have been published as follows:

1. B. Jin, L. Cruz, and N. Gonçalves, ”Pseudo RGB-D Face Recognition”,

IEEE Sensors Journal , vol. 22, no. 22, pp. 21780–21794, 2022, DOI:

10.1109/JSEN.2022.3197235. (Google Scholar citations: 35+)

2. B. Jin, L. Cruz, and N. Gonçalves, ”Deep facial diagnosis: deep transfer

learning from face recognition to facial diagnosis”, IEEE Access , vol. 8,

pp. 123649–123661, 2020, DOI: 10.1109/ACCESS.2020.3005687. (Google

Scholar citations: 105+)

3. B. Jin, L. Cruz, and N. Gonçalves, ”Face Depth Prediction by the Scene

Depth”, IEEE/ACIS 19th International Conference on Computer

and Information Science (ICIS), pp. 42–48, 2021.

DOI: 10.1109/ICIS51600.2021.9516598. (Google Scholar citations: 10+)

4. B. Jin, ”Deep learning facial diagnosis system, CN”, National Invention
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Patent , Priority Date: 03.05.2017, Granted (2022), ZL201711255031.1,

Publication of CN108806792B.

The aforementioned partial research findings are in the process of being pre-

pared for publication:

1. B. Jin and N. Gonçalves, ”Pseudo RGB-D Face Recognition, CN”, Na-

tional Invention Patent , Priority Date: 04.08.2022, Preliminary Exam-

ination Passed, AN:202210959034.8.

2. ”Simulated Multimodal Deep Facial Diagnosis”, IEEE Journal

1.4 Dissertation Structure

The dissertation is organized as follows: In Chapter 1, we introduce the relevant

background of the PhD study. In Chapter 2, we review the related work in the

fields of face recognition and facial diagnosis. In Chapter 3, we describe our

proposed methods and their implementations. Our experimental results for face

recognition are analyzed in Chapter 4. In Chapter 5, we analyze our experimental

results for facial diagnosis. In Chapter 6, we engage in a discussion about the

methodology and results presented throughout the thesis. Finally, in Chapter

7, we draw conclusions from our research and outline potential future research

directions.
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Chapter 2

Related Works

2.1 Face Recognition

Face recognition refers to the technology of identifying or verifying the iden-

tity of subjects from faces in images or videos. The history of face recognition

algorithms can be traced back to the 1970s. Traditional machine learning meth-

ods involve extracting hand-crafted features, which are designed by specialists

to reduce the complexity of input data, and training a model from the input to

discover patterns for decision-making. Matthew Turk and Alex Pentland pro-

posed the Eigenfaces method for face recognition, which uses a smaller set of face

image features approximating the set of known face images [50]. Marian Stew-

art Bartlett et al. proposed using the Independent Component Analysis (ICA)

method for face recognition, demonstrating that ICA representations were su-

perior to Principal Components Analysis (PCA) based representations for face

recognition across changes in certain conditions [51]. P. Jonathon Phillips devel-

oped a Support Vector Machine (SVM) based algorithm to generate the decision

surface for face recognition [52].

In the past ten years, traditional machine learning methods have increas-
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Figure 2.1: Thumbnails from ILSVRC

ingly been replaced by deep learning methods based on the convolutional neural

network (CNN) in face recognition. The CNN structures mainly used in face

recognition are basically consistent with the ones for classification tasks in Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC) [13], which is shown

as Figure 2.1. In order to adapt to the task of face recognition, researchers mainly

focus on discovering better training loss functions.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton proposed AlexNet, a

classic CNN framework for classifying a large number of images in ILSVRC-2010

[1].

Matthew D. Zeiler and Rob Fergus discovered that the lower layers of a con-

volutional neural network capture generic features, while the higher ones learn

source task-specific features through the deconvolution method. This forms the

basis of deep transfer learning [2]. Figure 2.3 shows an example for describing

this conclusion.

Yaniv Taigman et al. presented the DeepFace system, which can achieve

human-level performance in face recognition [53]. The backbone network of Deep-

Face is based on AlexNet, and the loss function used is Softmax.

Karen Simonyan and Andrew Zisserman proposed the VGG model, which
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Figure 2.2: An illustration of the architecture of AlexNet from [1]

was developed to increase the depth of Convolutional Neural Networks (CNNs)

in order to improve model performance [3].

Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman proposed the

VGG-Face model, which is based on the VGG-16 CNN architecture and is de-

signed to represent a face image as a robust vector of scores. The VGG-Face

model was trained using 2.6 million images of 2.6 thousand people for face recog-

nition and verification [27].

Christian Szegedy et al. proposed GoogLeNet, a 22-layer deep convolutional

neural network that is a variant of the Inception Network [4].

Florian Schroff et al. presented FaceNet, which uses GoogLeNet as its back-

bone network and employs the triplet loss function for training, to directly map

face images to Euclidean space [54].

Kaiming He et al. proposed ResNet, which increases the network depth to 152

layers by using residual blocks [5]. To address the vanishing gradient problem,

ResNet adds skip connections, which combine the input x with the output after

several weight layers, as shown in the Figure 2.6.
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Figure 2.3: Visualization of features in a fully trained CNN model from [2]
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Figure 2.4: An illustration of VGG Net Structure from [3]

Figure 2.5: GoogLeNet Structure from [4]

Figure 2.6: A Building Block of Residual Network from [5]
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Jiankang Deng et al. introduced the Additive Angular Margin Loss function,

which aims to enhance the discriminative power of learned feature embeddings.

When combined with ResNet, this function enables the model to achieve state-

of-the-art results in the field of face recognition [30].

Similarly, in the field of RGB-D face recognition research, in the past decade,

RGB-D face recognition technology has made significant progress, with researchers

achieving breakthroughs in various aspects. The following is a review of RGB-D

face recognition research in recent years:

Construction and expansion of RGB-D face datasets: With the popularization

of RGB-D sensors, such as Microsoft Kinect and Intel RealSense, researchers

have collected a large number of face images with depth information. These

datasets, including CASIA-3D [55], BU-3DFE [56], and Bosphorus [57], have laid

the foundation for the development of RGB-D face recognition algorithms.

RGB-D Feature Extraction Methods: Traditional feature extraction methods,

such as Local Binary Pattern (LBP) and Principal Component Analysis (PCA),

have been applied to RGB-D face recognition tasks [58]. Researchers have used

deep neural networks with CNN structures to extract features from face depth

maps. Yuancheng Lee et al. employed a 12-layer deep neural network, initially

trained with a color face dataset, and later fine-tuned on depth face images for

feature extraction, to perform joint classification [21]. Donghyun Kim et al. uti-

lized a fine-tuned DCNN to extract features from 2D depth maps converted from

3D point clouds for calculating distances in face matching [59]. Hao Zhang et

al. applied convolutional neural network models to learn complementary fea-

tures between RGB and depth images, thereby enhancing the accuracy of RGB

face recognition [60]. Furthermore, Luo Jiang, Juyong Zhang, and Bailin Deng

proposed an attribute-aware loss function for RGB-D facial data [61].
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2.1.1 Depth Estimation

Depth estimation to obtain a representation of the spatial structure of objects

plays a crucial role in navigation, robotics, and augmented reality for inferring

scene geometry from 2D images [62]. Suppose that there is a 2D image I, and we

need a function F to calculate its corresponding depth D. This process can be

written as:

D = F (I) (2.1)

There is no doubt that F is a very complex function.

Because obtaining specific depth from a single image is equivalent to inferring

three-dimensional space from a two-dimensional image, traditional depth estima-

tion methods do not perform well in monocular depth estimation. Consequently,

people have focused more on studying stereo vision, which involves obtaining

depth information from multiple images. We can obtain the change of disparity

between two pictures according to the change of viewing angle, so as to achieve

the purpose of obtaining the depth. David Eigen, Christian Puhrsch and Rob

Fergus used a multi-scale convolutional network architecture to predict the depth

map from a single image on both NYU Depth and KITTI datasets [63]. Iro Laina

et al. proposed a fully convolutional architecture encompassing residual learning

to model the mapping between monocular scene images and corresponding depth

maps [64]. Alhashim and Wonka used a standard encoder-decoder architecture

with features extracted using pre-trained networks to get the depth [65]. The

encoder part consists of a truncated DenseNet-169 pretrained by ImageNet with-

out any additional modifications. The decoder is composed of basic blocks of

convolutional layers, which are applied to the concatenation of the 2x bilinear

upsampling from the previous block and the block in the encoder with the same

spatial size after upsampling. For the above methods, it is necessary to know
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in advance the reference standard of the depth value corresponding to a large

number of input pictures as training constraints, so as to back-propagate in the

deep neural network, and train the neural network to perform depth prediction

for scenes. It is referred to as supervised learning. In practice, it is not easy to

obtain the depth values corresponding to a scene. At present, the commonly used

method is to obtain the depth from the infrared sensor such as Kinect [18] or with

the help of a laser LIDAR. Though the infrared sensor is relatively cheap, the

collected depth range and accuracy are limited. In contrast, the cost of LIDAR

is high. Using unsupervised learning for training is able to get a deep neural

network model without knowing the depth before. Clement Godard, Oisin Mac

Aodha and Gabriel J. Brostow used unsupervised learning method which is with-

out ground truth to estimate the depth. The basic idea is to match the pixels of

the left and right views to get the disparity map so as to calculate and optimize

the depth map by Left-Right Consistency [66]. For getting a better performance,

Clement Godard et al. used self-supervised learning with a standard, fully con-

volutional, U-Net to predict the depth [67].

Researchers have applied machine learning methods to estimate the depth of

human faces from monocular images since the 1990s. Shang-Hong Lai, Chang-

Wu Fu and Shyang Chang estimated the depth from defocus by using the raw

image data in the vicinity of the edge [68]. Zhan-Li Sun, and Kin-Man Lam con-

verted depth estimation into an independent component analysis (ICA) problem

by incorporating a prior from the CANDIDE 3-D face model [69]. Zhan-Li Sun,

Kin-Man Lam, and Qing-Wei Gao employed the nonlinear least-squares model

to estimate the depth values of facial feature points and the pose of the 2D face

image [70]. Since 2014, with the development of deep learning, researchers have

successively used deep learning methods to perform monocular face depth esti-

mation, which is similar with face recognition. Jiyun Cui et al. presented a deep
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neural network with a cascaded FCN and CNN architecture to estimate depth

information of RGB face images [71]. Stefano Pini et al. applied a conditional

Generative Adversarial Network (cGAN) for learning to translate intensity face

images into their corresponding depth maps [72]. Abdullah Taha Arslan and Erol

Seke applied a conditional Wasserstein GAN to perform face depth estimation

[73]. Bo Jin, Leandro Cruz and Nuno Gonçalves predicted face depth maps by

using pretrained models for scene depth estimation directly [74], which is also

within the scope of the dissertation.

2.2 Facial Diagnosis

In this section, we primarily review some of the classic studies in computer-aided

facial diagnosis, which are relatively limited in number. Since transfer learning

serves as the core processing algorithm in our facial diagnosis research, we have

dedicated a subsection in this section to introduce the related work on transfer

learning.

Schneider et al. applied texture and geometry to compare graphs for similarity

in order to detect acromegaly through face classification [75]. Their dataset in-

cludes face images of 57 patients with acromegaly. They claimed to have achieved

an accuracy of 81.9%.

Zhao et al. proposed using ICA to locate the anatomical facial landmarks

to discriminate between Down syndrome and healthy populations [76]. Their

dataset includes 50 face images of patients with Down syndrome. They claimed

to have achieved an accuracy of 0.967 and a F1 score of 0.956.

Zhao et al. proposed identifying patients with Down syndrome by ensembling

the outputs of multiple different classifiers [77]. Their dataset includes 50 face

images of patients with Down syndrome. They claimed to have achieved an
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accuracy of 0.967.

Kong et al. performed detection of acromegaly from facial photographs us-

ing a voting method to combine the predictions of basic estimators, including a

Generalized Linear Model (GLM), a k-Nearest Neighbors (KNN) model, a Sup-

port Vector Machines (SVM) model, a CNN model, and a Random Forests (RF)

model [78]. Their dataset includes 641 face images of patients with acromegaly.

They claimed to have achieved a sensitivity of 96% and a specificity of 96%.

Boehringer et al. performed principal component analysis and linear discrimi-

nant analysis for a computer-based diagnosis among the 10 syndromes [79]. Their

dataset includes 147 facial images with 10 syndromes, which means the average

number of disease-specific face images for each category is approximately 15.

They claimed to have achieved an accuracy of 75.7% for 10-class classification.

Shukla et al. used deep convolutional neural network to detect 6 disorders

[80]. Their dataset includes 1126 facial images with 6 disorders, which means the

average number of disease-specific face images for each category is approximately

188. They claimed to have achieved an accuracy of 48% for 6-class classification

and an accuracy of 98.80% for binary classification.

Gurovich et al. introduced a facial image analysis framework called Deep-

Gestalt, which employs computer vision and deep learning algorithms to quantify

similarities to hundreds of syndromes [81]. Their dataset includes 17106 images

with 216 different syndromes, which means the average number of disease-specific

face images for each category is approximately 79. They claimed to have achieved

61.3∼68.7% top-1 accuracy and 89.4∼90.6% top-10 accuracy in identifying the

correct syndrome on hundreds of images.

Jin et al. proposed using deep transfer learning from face recognition to facial

diagnosis, named ’Deep Facial Diagnosis’ [82]. Their dataset includes 280 images

with 4 different diseases, which means the average number of disease-specific face
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images for each category is 70. They claimed to have achieved an overall top-1

accuracy of over 90%.

Porras et al. used deep neural networks and facial statistical shape models to

screen children for genetic syndromes [83]. Their dataset includes 1,400 children

images with 128 genetic conditions, which means the average number of disease-

specific face images for each category is approximately 11. They claimed to have

achieved an accuracy of 88% for the detection of a genetic syndrome.

Compared to two-dimensional images, three-dimensional images contain in-

formation about the spatial relationships between objects. In light of this, some

researchers have started to explore facial diagnosis using three-dimensional facial

images.

Hallgŕımsson et al. conducted binary classification on 3D human face im-

ages using both parametric methods and machine learning techniques [84]. Their

dataset includes 3327 images with 396 different syndromes, which means the av-

erage number of disease-specific face images for each category is approximately 8.

They claimed to have achieved balanced accuracy was 73% and mean sensitivity

49%.

Bannister et al. performed 3D facial surface modeling using deep learning

and performed 3D facial diagnosis [85]. Their dataset includes 4700 scans with

47 different syndromes, which means the average number of disease-specific face

images for each category is approximately 100. They claimed to have achieved

overall top-1 accuracy of 71%, and a mean sensitivity of 43% across all syndrome

classes.

2.2.1 Transfer Learning

Pan and Yang categorize transfer learning approaches into instance-based transfer

learning, feature-based transfer learning, parameter-based transfer learning, and
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Table 2.1: A summary of existing research in facial diagnosis

Research Condition
No. of DSF images

per category
Cls. problem Method

Schneider et al.
(2011)

Acromegaly 57 2D Binary Texture and geometry

Q. Zhao et al.
(2014)

Down syndrome 50 2D Binary ICA

Q. Zhao et al.
(2014)

Down syndrome 50 2D Binary Ensemble learning

Kong et al.
(2018)

Acromegaly 641 2D Binary Ensemble learning

Boehringer et al.
(2006)

10 syndromes 15 2D Multi-class LDA

Shukla et al.
(2017)

6 disorders 188 2D Multi-class DCNN

Gurovich et al.
(2019)

216 syndromes 81 2D Multi-class DCNN

B. Jin et al.
(2020)

4 conditions 70 2D Multi-class Deep transfer learning

Porras et al.
(2021)

128 conditions 11 2D Multi-class Deep neural networks

Hallgŕımsson et al.
(2020)

396 syndromes 8 3D Multi-class Parametric methods and ML

Bannister et al.
(2022)

47 syndromes 100 3D Multi-class Normalizing flows

relation-based transfer learning [32]. Here we list some classical researches of each

category.

Instance-based transfer learning is to reuse the source domain data by reweight-

ing. Dai et al. presented TrAdaBoost to increase the instance weights that are

beneficial to the target classification task and reduce the instance weights that

are not conducive to the target classification task [86]. Tan et al. proposed a Se-

lective Learning Algorithm (SLA) to solve the Distant Domain Transfer Learning

(DDTL) problem with the supervised autoencoder as a base model for knowledge

sharing among different domains [87].

As for feature-based transfer learning, it is to encode the knowledge to be

transferred into the learned feature representation to reduce the gap between the

source domain and the target domain. Pan et al. presented transfer compo-

nent analysis (TCA) using Maximum Mean Discrepancy (MMD) as the measure-
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ment criterion to minimize the data distribution difference in different domains

[88]. Long et al. presented Joint Adaptation Networks (JAN) to align the joint

distributions-based on a joint maximum mean discrepancy (JMMD) criterion [89].

Regarding Parameter-based transfer learning is to encode the transferred

knowledge into the shared parameters. It is widely used in the medical appli-

cation. Razavian et al. found that CNNs trained on large-scale datasets (e.g.

ImageNet) are also pretty good feature extractors [90]. Esteva et al. used Google

Inception v3 CNN architecture pretrained on the ImageNet dataset (1.28 million

images over 1,000 generic object classes) and fine-tuned on their own dataset

of 129,450 skin lesions comprising 2,032 different diseases [91]. The high accu-

racy demonstrates an artificial intelligence capable of classifying skin cancer with

a level of competence comparable to dermatologists. Yu et al. used a voting

system-based on the output of three CNNs for medical images modality classi-

fication [92]. They fixed earlier layers of CNNs for reserving generic features of

natural images, and trained high-level portion for medical image features. Shi

et al. used a deep CNN based transfer learning method for pulmonary nodule

detection in CT slices [93]. Raghu et al. demonstrated feature-independent ben-

efits of transfer learning for better weight scaling and convergence speedups in

medical imaging [94]. Shin et al. evaluated CNN architectures, dataset charac-

teristics and transfer learning for thoraco-abdominal lymph node (LN) detection

and interstitial lung disease (ILD) classification [95].

Besides, relation-based transfer learning is to transfer the relationship among

the data in the source and target domains. Davis and Domingos utilized Markov

logic to discover properties of predicates including symmetry and transitivity, and

relations among predicates [96].
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Chapter 3

Materials and Methods

In this chapter, we have introduced the materials and methods used for face

recognition and facial diagnosis respectively. The materials and methods used

in these two topics are both interconnected and distinct. This chapter mainly

focuses on describing the methods common to both tasks, with specific differences

in methods between the two tasks to be detailed separately in the next chapters.

3.1 Face Recognition

In this section, we propose a pseudo RGB-D face recognition framework, as illus-

trated in Figure 1.11. Figure 1.11 presents a modular process, where algorithms

within the module lists can be selected for preprocessing, depth generation, im-

age fusion, and feature extraction, and then combined for face recognition. For

depth-generation, we specifically propose a GAN-based model, D+GAN, which

performs multi-conditional image-to-image translation with facial attribute la-

bels, transforming RGB face images into corresponding depth maps.

Generative Adversarial Network (GAN), proposed by Ian Goodfellow et al.,

is a model that learns a mapping from random noise vector to output images [6].
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3.1 Face Recognition

Figure 3.1: Schematic diagram of the original GAN structure from [6]

The original GAN consists of two parts which are a generator and a discrimi-

nator, which is shown as Figure 3.1. The objective of the generator is to map

input Gaussian noise into a fake image, and the discriminator is to determine

whether the input image comes from the generator or not, that is, to compute

the probability of the input image being false. The conditional generative ad-

versarial network (cGAN), proposed by Mehdi Mirza and Simon Osindero, is a

supervised model that can generate output images with a desired condition from

random noise [97]. Pix2Pix, proposed by Phillip Isola et al., could be regarded

as a special case of cGAN. It takes the 2D image as the input condition of cGAN

to realize the image-to-image translation [98]. ACGAN, proposed by Augustus

Odena, Christopher Olah and Jonathon Shlens, is required not only to judge

whether the input image is true or not, but also to classify the category of the

input image in the discriminator part [99].

For adapting our task that is generating the corresponding depth from RGB

face images better, we comprehensively refer to the above network structures

and cooperate with some advanced skills, and propose the D+GAN. Figure 3.2

indicates the main structures of cGAN, Pix2Pix, ACGAN and D+GAN. It con-
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Figure 3.2: Main structures of GANs. (a) cGAN (b) ACGAN (c) Pix2Pix (d)
Ours: D+GAN

cisely shows the difference between D+GAN and other GANs’ main structures.

They both control the generated images by introducing external conditions. For

cGAN and ACGAN, the generator generates fake samples from random noise and

conditions. For Pix2Pix, the generator generates fake images from images which

could be regarded as conditions. Whereas, for D+GAN, the generator generates

fake images from condition images and their corresponding labels. For cGAN

and Pix2Pix, the discriminator determines whether the sample is the real sample

that meet the condition. For ACGAN, the discriminator determines not only

whether the sample is the real sample that meets the condition, but also the cat-

egory of each sample. Whereas, for D+GAN, the discriminator determines not

only whether the input sample is the real sample that corresponds the condition

image, but also the multiple categories that each sample belongs to.
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Figure 3.3: Image samples from Bosphorus 3D Face Database

3.1.1 Dataset

In our experiments, there are 9290 pairs of colored images and corresponding

depth maps from Bosphorus 3D Face Database [57] and CASIA 3D Face Database

[55] for training the GAN models. Binghamton University 3D Facial Expression

(BU-3DFE) Database [56] is only for testing.

Bosphorus 3D Face Database Bosphorus 3D Face Database widely used

for 3D face processing contains 105 subjects and 4666 faces in the database.

One third of the subjects are professional actors or actresses. There are various

expressions (up to 35), head poses (13 yaw and pitch rotations) and varieties of

face occlusions for each subject. Facial data in the dataset is acquired by a 3D

system based on the structured-light. The ground truth depth images and their

corresponding color images are transformed from 3D point cloud files provided

by the Bosphorus database. Some example RGB images and their corresponding

depth maps from the dataset are illustrated in the Figure 3.3.
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Figure 3.4: Image samples from CASIA 3D Face Database

CASIA 3D Face Database CASIA 3D Face Database collected by the Chi-

nese Academy of Sciences contains 4624 scans of 123 persons. The scans are

collected by the Minolta Vivid 910 which is a non-contact 3D digitizer. Each

person in the database has 37 or 38 scans which include variations of poses, ex-

pressions and illuminations. Most of the persons in the database are Mongoloid.

Some example RGB images and their corresponding depth maps from the dataset

are illustrated in the Figure 3.4.

Binghamton University 3D Facial Expression (BU-3DFE) Database

There are 100 subjects in the BU-3DFE Database of which 56 are male and

44 are female. The majority of subjects were undergraduates with various races.

For each subject, there are 25 3D models with seven expressions which are hap-

piness, disgust, fear, anger, surprise, sadness and neutral with different levels of

intensity. Some example RGB images and their corresponding depth maps from

the dataset are illustrated in the Figure 3.5.
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Figure 3.5: Image samples from BU-3DFE Database

3.1.2 Preprocessing

In practice, images always have different backgrounds which can affect the pro-

cessing performance of the algorithm. Since training image pairs transformed

from 3D data have black backgrounds. In this section the main purpose is to

remove the image background out of the face uniformly. Firstly, the threshold is

calculated by using Otsu’s method [100]. Then, the image is transformed to a

binary image by the threshold. Thus, 8-connected objects are labeled to locate

the face based on the binary image. Next, background pixels are replaced with

black pixels. Finally, an open operation which is an erosion followed by a dila-

tion is performed to remove small objects and smooth the boundaries of larger

objects of the image. The pseudo-code for removing the background is depicted

as follows:

Func RemoveBg(Img):

1: Begin

36



3.1 Face Recognition

2: Thr = Otsu(Img)

3: BinImg = Binarize(Img, Thr)

4: LabImg = Label(BinImg,8-Conn)

5: FaceImg = BlackBg(LabImg)

6: OutImg = OpenOp(FaceImg)

7: return OutImg

8: End

3.1.3 Depth Plus Generative Adversarial Network:

D+GAN

In the task of generating face depth maps from corresponding RGB images, we

propose a generative adversarial network named D+GAN for making full use of

the attribute information of the human face. The generator (G) is composed of

residual modules [5], self-attention modules [7] and convolution neural network,

and its input is a 256 × 256 RGB image and its facial attribute labels which

include the corresponding gender, age and race categories. The output is a depth

map with the same size, which realizes the mapping of image to image. The

discriminator (D) is used to identify the quality of the depth map. In our design,

D+GAN not only outputs the score of the depth map, but also determines gender,

age and race categories. Thus the input of the discriminator is a 256× 256 depth

map with its labels, and the output of the discriminator contains four scalar

values which represent probabilities of true or false, age, gender and race. Figure

3.6 shows the structure of D+GAN.

3.1.3.1 Generator

Specifically, the core architecture of the generator is U-shaped [101], which con-

sists of an encoder and a decoder. The encoder is mainly used for feature extrac-
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Figure 3.6: D+GAN: A GAN architecture for translating RGB images to depth
maps with multiple face attributes

tion and feature compression of the image. It reduces the size of the input image

and the number of feature parameters while increases the number of channels,

which realizes the down-sampling process. The decoder with a symmetric and op-

posite structure to the encoder performs the encoding representation up-sampling

successively and restores it to the same feature size as the encoder input.

The generator model also utilizes a skip connection in the convolutional layer

between the encoder and decoder to build an information flow transmission ap-

proach, which can relieve the gradient disappearance problem effectively. The

encoder is composed of 8 two-dimensional convolutional layers, as shown in Fig-

ure 3.6. The number of convolution kernels set is [64, 128, 256, 256, 512, 512,

512, 512] respectively, and the strides are set to [2, 1, 2, 1, 2, 1, 2, 1] sequentially.

There are one Batch Normalization (BN) layer for normalizing input features

to accelerate the convergence process and one layer with the ReLU activation

function for introducing the sparsity of data to suppress the overfitting after each
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convolutional layer except for the first one.

The decoder is mainly composed of the convolutional neural network and

deconvolutional neural network. In the decoder, the convolutional neural network

is designed for feature extraction, and its calculation method is the same as that

of the encoder, while deconvolutional neural network is designed for increasing the

size of feature maps for up-sampling. In addition, the decoder intersperses two

convolutional neural layers as shown in Figure 3.6. The number of convolution

kernels set is [512, 512, 256, 256, 256, 128, 128, 128, 64, 3] respectively, and the

strides are set to [2, 1, 1, 2, 1, 1, 2, 1, 1, 2] sequentially. Layer 1, 4, 7 and 10 are

the deconvolutional layers. Similarly, BN layers and ReLU activation functions

are added after each convolution layer except for the last one. Finally, the tanh

activation function is used to normalize the output depth map at [-1, 1].

Residual block In order to fully extract features and increase model capacity,

ten groups of residual block and self attention module combinations are used con-

secutively at the connection between the encoder and decoder of the generator.

In our design, we use residual blocks to replace the original design of UNet. In the

residual block H(x), the original mapping is changed into F (x) +x from F (x) by

using skip connections, which makes the neural network to be easier optimized.

The number of convolution kernels is 256, the kernel size is 3× 3, and the stride

is set to 1.

Self-attention module Self-attention mechanism can learn from distant blocks,

so it is used in both generator and discriminator in our design. The self-attention

module helps to learn multi-level and long range dependencies across image re-

gions, which is complementary to the convolution layer. In the self-attention mod-

ule, the input feature x with n channels is transformed into query (Q = WQx),
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Figure 3.7: The illustration of self-attention module [7]

key (K = WKx) and value (V = WV x) by convolution operations. The size of

Q,K, V remains unchanged, but the number of channels becomes n/8, n/8 and n

respectively. Next, Q, K, and V are serialized by channels so that feature map of

qm×n
8
, km×n

8
and vm×n are obtained respectively, where m represents the feature

size. The final output of attention weight distribution is computed as:

attention(q, k, v) = softmax(qkT )v (3.1)

3.1.3.2 Discriminator

The discriminator of D+GAN consists of a backbone structure for distinguish-

ing between true and false, and three branches for identifying face attributes of

the image generated. In the backbone network, in order to provide more infor-

mation exchange between channels and save computing resources, we insert a

self-attention module after some higher convolutional layers as described above

before the branch node. In detail, there are ten convolutional layers where the
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number of convolution kernels set is [64, 64, 64, 128, 128, 128, 256, 256, 256, 512]

respectively and the strides are set to [2, 1, 1, 2, 1, 1, 2, 1, 1, 2] sequentially. The

size of convolution kernels is 3×3, except the first layer is 5×5. In order to make

the training process more stable, we set up spectral normalization [102] in these

10 convolutional layers to make the neural network robust to input disturbances.

Spectral Normalization In detail, for the weight Wm×n of the neural network,

the spectral norm is the maximum singular value of the matrix. The maximum

singular value σ(Wm×n) is defined as:

σ(Wm×n) = max
δ

||Wm×nδ||2
||δ||2

(3.2)

In practice, σ(Wm×n) is approximately calculated by the power iteration, and

then the weight Wm×n is updated to Wm×n/σ(Wm×n) in the forward direction

during training, which is the process of spectral normalization.

The four branch networks get the output of the branch node as the input and

perform different classification tasks. The first branch network is used to judge

whether the depth map is true or false, which is essentially a binary classification

task. Similarly, the second, third and fourth branch networks are used to classify

age, gender and race respectively. In detail, the age label is divided into three

categories which are 19-39 years old, 40-60 years old, and above 60 years old.

The gender label is divided into two categories which are male and female. The

race label is divided into three categories which are Caucasoid, Mongoloid and

Negroid. These four branch networks have the same network structure except for

the last layer, which are composed of seven two-dimensional convolutional layers,

and their kernel size is 3× 3. The number of convolution kernels in the first six
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layers is 512 with a stride of 1, and the number of kernels in the last layer is 2 or

3 with a stride of 2.

3.1.3.3 Loss Function

The loss of the discriminator LD consists of two parts. The first part LS,D,

adopted from standard GAN, is used to distinguish between training samples

and generated samples, which is indicated as:

LS,D = EY ∈Pdat(Y ),X∈Pdat(X) [logD1 (X, Y )]

+EX∈Pdat(X) [log(1−D1(G(X), X)))]
(3.3)

where X represents the RGB face image to be translated, Y represents the condi-

tion image corresponding to the real depth image, and Pdat represents the prob-

ability distribution of the corresponding dataset. D1 represents the output of

the first discriminator. For the condition real image Y and the generated image

G(X), the classifiers in the discriminator should be able to predict the classes it

belongs to.

The second part LC,D, classification loss, is the cross entropy loss of age,

gender and race classification, which is indicated as:

LC,D =
4∑
i=2

EX∈Pdat(X)[logP (Di = c|G(X))]

+EY ∈Pdat(Y )[logP (Di = c|Y )]

(3.4)

where Di represents the ith discriminator, and Ci represents the corresponding

label. Totally, the training loss of the discriminator, LD, can be expressed as:

LD = λ1LS,D + λ2LC,D (3.5)
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For the generator, its loss function LG contains four parts. First, it is expected

that the generated samples can deceive the discriminator, thus LS,G is defined as:

LS,G = −EX∈Pdat(X)[logD1(G(X), X)] (3.6)

In order to ensure the similarity of input and output images of the generator,

L2-loss is introduced as:

LO,G = −EY ∈Pdat(Y ),X∈Pdat(X) [‖Y −G(X)‖2] (3.7)

Next, the generator is expected to generate high-quality samples so that they can

be correctly classified by the discriminator. Similarly, the classification loss LC,G

is defined as:

LC,G =
4∑
i=2

EX∈Pdat(X)[logP (Di = c|G(X))] (3.8)

In addition, in order to avoid the over-fitting, the weight regularization term LW,G

is introduced. It is expressed as:

LW,G =
1

2
||W ||2 (3.9)

Totally, the training loss of generator, LG, can be expressed as:

LG = λ1LS,G + λ2LC,G + λ3LO,G + λ4LW,G (3.10)

The D+GAN is implemented with Python and TensorFlow. Python is a

widely used, high-level, and general-purpose programming language [103]. Ten-

sorFlow is an open source software library for machine learning and artificial

intelligence [104].
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3.1.4 Face Depth Prediction by the Scene Depth

In general, 3D scene understanding dataset can be divided into outdoor scene

dataset and indoor scene dataset. The representative of outdoor scene and indoor

scene datasets are KITTI [105] and NYU Depth V2 [106] respectively. In this

section, we have introduced deep neural network models trained with supervised

or unsupervised learning using these two 3D scene datasets. The performance of

these models will be compared in the experiments in the next chapter.

3.1.4.1 Supervised Learning

Generally, it is required to know in advance the depth values corresponding to a

large number of input pictures as training constraints, so as to back-propagate

the deep neural network and train neural network for depth prediction of similar

scenes. The loss function of the depth regression problem is considering the

difference between the true value of the depth map and the predicted value of the

depth regression network. In Densedepth [65], the loss function can be indicated

as:

L (y, ỹ) =
c

n
∗

n∑
i

|yi − ỹi|+
1

n

n∑
i

|gx (yi, ỹi) + gy (yi, ỹi)|

+
1− SSIM (y, ỹ)

2

(3.11)

where y indicates the ground truth depth map, and ỹi indicates the generated

depth map. c is a constant, empirically set to 0.1. gx and gy are functions of

computing the differences in components x and y for the depth maps gradients.

Structural Similarity Index (SSIM) [107] is a metric to measure the similarity

between y and ỹi.

In this strategy, many well-known multi-layer pre-trained networks with dif-

ferent structures can fully utilize the advantages of deep neural networks as a
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function simulator.

3.1.4.2 Self-supervised Learning

Stereo training modality In stereo vision, it is supposed that there are two

cameras L and R, and one point whose coordinates are (x,D). The disparity

represents the translation value required for the pixels in the left camera to form

the corresponding pixels in the right camera. According to the triangle similarity

law, the disparity denoted as dis can be calculated as:

dis = xL − xR =
f ∗ b
D

(3.12)

where f is the focal length of the camera, and b is the distance between two

cameras. Therefore, a mapping function F for predicting the disparity is expected

as:

IL (dis+ xL) = IL (F (xL) + xL) = IR (xR) (3.13)

Thus, IL is used for the input, and IR is used for the reference, the model for

predicting disparity can be achieved. Finally, the depth map can be obtained

with disparity and camera parameters b and f . When in the training process, the

problem is formulated as the minimization of a photometric reprojection error:

Lp = min
∑
τ

E(It, I〈τ〉) (3.14)

Lp =
∑
τ

α
1− SSIM(It, I〈τ〉)

2
+ (1− α)

∥∥It − I〈τ〉∥∥ (3.15)

where It represents the target image, Iτ represents the source image and I〈τ〉

represents the sampled source image. In Monodepth2 [67], the value of α is fixed

as 0.85 empirically, and the final loss combining per-pixel smoothness and masked
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photometric losses is as:

L = c1Lp + c2Ls (3.16)

where

Ls =

∣∣∣∣∂xdtdt
∣∣∣∣ e−|∂xIt| + ∣∣∣∣∂ydtdt

∣∣∣∣ e−|∂yIt| (3.17)

In the equation above, dt represents the mean depth.

Mono training modality Our source image Iτ could be the second view of

It in stereo training while Iτ are the temporally adjacent frames of It in mono

training, that is, Iτ ∈ {It−1, It+1}. Additionally, Iτ includes both the second view

and temporally adjacent frames of It in the mix training modality.

3.2 Facial Diagnosis

In the facial diagnosis section, Disease-specific Faces (DSF) dataset [108] and

Disease-specific Faces 2 (DSF2) dataset [109] were built in the context of thesis

for training and testing models.

3.2.1 Dataset

Disease-Specific Faces (DSF) Dataset The DSF dataset [108] used includes

condition-specific face images which are collected from professional medical pub-

lications, medical forums, medical websites and hospitals with definite diagnostic

results. In the DSF dataset used in Section 5.1, there are totally 350 face images

(JPG files) in the dataset, and there are 70 images in 4 types of condition-specific

faces described in Section 1.2. The four condition-specific faces are shown in Fig-

ure 3.8. Generally the ratio of training data and testing data is from 2:1 to 4:1.

In our experiments with the small dataset, the ratio is set as 4:3 for the efficient

46



3.2 Facial Diagnosis

Table 3.1: The statistics of the races in the dataset.

Condition-specific face
Number of face images

Caucasoid Mongoloid Negroid
Beta-thalassemia 9 54 7
Hyperthyroidism 36 28 6
Down syndrome 48 16 6
Leprosy 12 37 21
Control 21 40 9
Total 126 175 49

evaluation. Table 3.1 shows the statistics of the races distinguished by eyes of

face images in the experiments.
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(a) Beta-thalassemia (b) Hyperthyroidism

(c) Down syndrome (d) Leprosy

Figure 3.8: Disease-specific faces

Disease-Specific Faces 2 (DSF2) dataset The DSF2 dataset [109] includes

6 condition-specific faces and health controls. Six conditions are acromegaly, fa-

cial nerve paralysis, Down syndrome, leprosy, thalassemia and hyperthyroidism,

which is aforementioned in Section 1.2. The DSF2 dataset utilized consists of

condition-specific face images with diagnostic results from professional medical

publications, medical websites, forums, and hospitals. These results were re-

viewed by practicing physicians to create labels for supervised learning of the
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Figure 3.9: Approximate age distribution

model. And there is no evidence that the patients in the photos had two or more

of the six conditions at the time the photos were taken.

To protect patient privacy, it is essential to de-identify condition-specific face

image data. This entails removing all information that could potentially be used

to identify an individual, such as names, birthdates, and medical record numbers.

Furthermore, in order to protect patient privacy, we do not permit the direct

publication of any images from the dataset in any media or publications.

The number of faces of each class is 85. There are a total of 595 images in

the dataset. The proportions of age, gender, and ethnicity within the dataset are

approximately represented in Figures 3.9, 3.10, and 3.11.

Acromegaly-specific face and facial nerve paralysis-specific face in the DSF2

dataset are shown in Figure 3.12 and Figure 3.13 respectively.
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Figure 3.10: Approximate gender distribution

Figure 3.11: Approximate race distribution
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Figure 3.12: Acromegaly-specific face

Figure 3.13: Facial nerve paralysis-specific face
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3.2.2 Deep Transfer Learning

Training a CNN which is end to end learning from scratch will inevitably lead

to over-fitting since that the training data is generally insufficient for the task of

facial diagnosis. Transfer learning is applying the knowledge gained while solving

one problem to a different but related problem. In the transfer learning problem

[110], generally we let Ds indicate the source domain, Dt indicate the target

domain and X be the feature space domain. H is assumed to be a hypothesis

class on X, and I(h) is the set for characteristic function h ∈ H. The definition

of H-divergence between Ds and Dt which is used to estimate divergence of

unlabeled data is:

dH(Ds,Dt) = 2 sup
h∈H

∣∣∣∣ Pr
x∈Ds

[I(h)]− Pr
x∈Dt

[I(h)]

∣∣∣∣ (3.18)

where Pr indicates the probability distribution. sup means computing the supre-

mum, which is the least upper bound of the set. Furthermore, the relationship

between errors of target domain and source domain can be calculated as:

et (h) ≤ es (h) +
1

2
d̂H∆H (us, ut) + 4

√
2d log (2m′) +

log 2
δ

m′ + λ (3.19)

where us and ut are unlabeled samples from Ds and Dt respectively. Briefly, the

difference in the error between source domain and task domain is bounded as:

|et − es| ≈
1

2
dH∆H (Ds,Dt) (3.20)

where dH∆H indicates the distance of symmetric difference hypothesis space H∆H.

The equations above have proved that transfer learning from different domains

is mathematically effective [111]. Deep transfer learning (DTL) [32], [112] is to

transfer knowledge by pretrained deep neural network which originally aims to
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perform facial verification and recognition in this work. Thus the source task is

face recognition and verification, and the target task is facial diagnosis. In this

case, the feature spaces of the source domain and target domain are same while

the source task and the target task are different but related. The similarity of

two tasks motivates us to use deep transfer learning from face recognition to solve

facial diagnosis problem with a small dataset. If divided according to transfer

learning scenarios, it belongs to inductive transfer learning. If divided according

to transfer learning methods, it belongs to parameter based transfer learning. In

this section, two main deep transfer learning strategies [113], [114] are applied

to perform comparison. In the main experiment, DCNN models pretrained by

VGG-Face dataset [27] and ImageNet dataset [115] are compared with traditional

machine learning methods. VGG-Face dataset contains 2.6M images over 2.6K

people for face recognition and verification, and ImageNet dataset contains more

than 14M images of 20K categories for visual object recognition.

The pretrained CNN is for end-to-end learning so that it can extract high-level

features automatically. Since deep transfer learning is based on the fact that CNN

features are more generic in early layers and more original dataset-specific in later

layers, operation should be performed on the last layers of DCNN models. The

diagram of facial diagnosis by deep transfer learning is shown in Figure 3.14. The

implementation is based on Matlab (version: 2017b) with its CNNs toolbox for

computer vision applications named MatConvNet (version: 1.0-beta25). NVIDIA

CUDA toolkit (version: 9.0.176) and its library CuDNN (version: 7.4.1) are

applied for GPU (model: Nvidia GeForce GTX 1060) accelerating.

3.2.2.1 DTL1: Fine-tuning the Pretrained CNN Model

In this section, we replace the final fully connected layer of the pretrained CNN

by initializing the weight. When fine-tuning the CNN (see PSEUDOCODE 1),
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3.2 Facial Diagnosis

Figure 3.14: The schematic diagram of facial diagnosis by deep transfer learning

we calculate activation value through forward propagation of the convolutional

layer as:

clu,v =
+∞∑
i=−∞

+∞∑
j=−∞

σ (i, j) · al−1
i+u,j+vkr

l
i,j + bl (3.21)

where a indicates input feature map of some layer, and k indicates its correspond-

ing kernel. σ is defined as:

σ (i, j) =

1 if 0 6 i, j 6 1

0 if others

(3.22)

Therefore, the output value of convolution operation is calculated as f(clu,v) in

which f is the activation function. When updating the weights, we calculate error
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term through back propagation of the convolutional layer as:

El
g,h =

∂J(W, b;x, y)

∂clg,h

=
r−1∑
i=0

r−1∑
j=0

∂J(W, b;x, y)

∂c
(l+1)
i,j

·

∂β(l+1)
∑(i+1)r−1

u=ir

∑(j+1)r−1
u=jr f

(
clu,v
)

+ b(l+1)

∂clg,h

= β(l+1)E
(l+1)
i+pr,j+qrf

′ (clg,h)
(3.23)

where f , same with above, represents the activation function, J represents the

cost function, (W, b) are the parameters and (x, y) are the training data and label

pairs. Since the pretrained model has already converged on the original training

data, a small learning rate of 5 × 10−5 is utilized. Weight Decay for avoiding

overfitting to a certain extent is set as 5× 10−4, and momentum for accelerating

convergence in mini-batch gradient descent (SGD) is set as 0.9. Here we take

VGG-16 model also named VGG-Face as an example, which is the best case in

the main experiment. A softmax loss layer is added for retraining by 100 epochs

initially. Figure 3.15 containing three indicators Objective, Top-1 error and Top-3

error shows the process of fine-tuning the pretrained VGG-Face for the multiclass

classification task. Objective is the sum loss of all samples in a batch. The loss

can be calculated as:

L = −
∑
i

yi ln pi = −
∑
i

yi ln
ezi∑
k e

zk
(3.24)

where yi refers to the i th true classification result, pi represents the i th output

of the softmax function, and zi represents the i th output of the convolutional

neural network. The Top-1 error refers to the percentage of the time that the

classifier did not correctly predict the class with the highest score. The Top-
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3 error refers to the percentage of the time that the classifier did not include

the correct class among its top 3 guesses. As it can be seen from Figure 3.15,

all three indicators converge after retraining for about 11 epochs, which indicates

fine-tuning is successful and effective. However, the validation error is higher than

the training error, which is because of the limitation of the fine-tuning strategy

on the small dataset. As shown in Figure 3.15, after 24 epochs the validation

top-1 error rises while the training error doesn’t, which indicates over-fitting may

occur. So we saved the fine-tuned CNN model after retraining 24 epochs for

testing. The early stopping technique is used here. The softmax layer is used for

classification, which is consistent with the pretrained model.

Time complexity is the number of calculations of one model / algorithm, which

can be measured with floating point operations (FLOPs). In our estimations, the

Multiply-Accumulate Operation (MAC) is used as the unit of FLOPs. In CNNs,

time complexity of a single convolutional layer can be estimated as:

O
(
M2 ·K2 · Cin · Cout

)
(3.25)

where M is the side length of the feature map output by each kernel, K is the

side length of each kernel, and C represents the number of corresponding channels

[116]. Thus, the overall time complexity of convolutional neural networks can be

estimated as:

O

(
D∑
l=1

M2
l ·K2

l · Cl−1 · Cl

)
(3.26)

The FLOPs of the fully connected layers can be estimated by I · O where I

indicates input neuron numbers and O indicates output neuron numbers. I cor-

responds to Cl−1 and O corresponds to Cl in the above formula. Because pre-

trained models for object and face recognition have a larger number of categories,

the time complexity of adapted models by DTL1 in our task is smaller than the
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PSEUDOCODE 1

original corresponding pretrained model.

3.2.2.2 DTL2: CNN as Fixed Feature Extractor

In this section, the CNN is used as a feature extractor directly for the smaller

dataset (see PSEUDOCODE 2). During training process for facial diagnosis, we

only want to utilize the partial weighted layers of the pretrained CNN model to

extract features, but not to update the weights of it. As the architect Ludwig

Mies van der Rohe said, ”Less is more”. We select the linear kernel for the SVM

[117] model to do classification in this strategy, because the dimension of the

input feature vectors is much larger than the number of samples. For the reason

that CNN features are more original dataset specific in the last layers, we directly

extract features of the layer which is located before the final fully connected layer

of pretrained DCNN models, and then train a linear SVM classifier leveraging
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Figure 3.15: The process of fine-tuning the pretrained VGG-Face model

the features extracted as:

min
w

{
C
∑
i

max
(
1− yiwTxi, 0

)
+

1

2
‖w‖2

}
(3.27)

where C which is a hyper-parameter indicates a penalty factor, and (xi, yi) rep-

resents the training data. After the training process, we could obtain the linear

SVM model trained to perform testing.

During the training phase, the time complexity of SVM is different in different

situations, namely whether most support vectors are at the upper bound or not,

and depending on the ratio of the number of vectors and the number of training

points. During the testing phase, the time complexity of SVM is O(M ·Ns) where

M is the number of operations required by the corresponding kernel, and Ns is the

number of support vectors. For a linear SVM classifier, the algorithm complexity

is O(dl · Ns) where dl is the dimension of input vectors [118]. In our tasks, Ns

is larger than the number of output neurons of CNN final fully connected layers

in DTL1, while generally smaller than it in the original corresponding pretrained

models.
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PSEUDOCODE 2
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Chapter 4

Face Recognition Experiment

Results and Analysis

4.1 Depth Plus Generative Adversarial Network:

D+GAN

In this section, we not only evaluate on the face depth map generated itself, but

also validate it for the face recognition task in various datasets.

4.1.1 Qualitative Results and Analysis

To perform the qualitative evaluation, we calculate some indicators on the three

3D face datasets described in Section 3.2 to evaluate the quality of the obtained

depth map. In this section, we present outputs of face depth maps generated by

several state-of-the-art techniques for some examples. There are Monodepth2,

DenseDepth (KITTI), DenseDepth (NYU-Depth V2), 3DMM, Pix2Pix, Cycle-

GAN and D+GAN for comparison.

In this study, Monodepth2 [67] is trained on the KITTI dataset with the
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mono training modality. DenseDepth (KITTI) [65] is trained successively on the

ImageNet and KITTI datasets, and DenseDepth (NYU-Depth V2) is trained suc-

cessively on the ImageNet and NYU-Depth V2 datasets. 3D Morphable Model

(3DMM) [119] is to generate a textured 3D face with parameters including ver-

tices, triangles and attribute based on Basel Face Model (BFM). With these pa-

rameters, we render this 3D face into the depth map via a rasterization renderer.

GAN models including Pix2Pix, CycleGAN and D+GAN are all trained on the

Bosphorus 3D Face Database and CASIA 3D Face Database for 20 epochs, and

their training curves all converge before or around 16 epochs. Adam optimizer is

used for Pix2Pix and CycleGAN, while Adadelta optimizer is used for D+GAN.

The IDs of the example cases are bs016 LFAU 22 0 of Bosphorus 3D Face

Database, 008-025 of CASIA 3D Face Database and F0010 FE03WH F2D of

BU-3DFE Database respectively. The ground truth depth image and its corre-

sponding color image are transformed from 3D data provided.

4.1.1.1 Case Study: bs016 LFAU 22 0 of Bosphorus 3D Face Database

Figure 4.1 presents the results for the case of bs016 LFAU 22 0 of Bosphorus 3D

Face Database. Figure 4.1a shows the RGB face image which is transformed from

3D data provided, and Figure 4.1b shows the ground truth face depth map which

is transformed from 3D data provided. Figure 4.1c shows the output generated by

Monodepth2. The result shows vaguely the contour of the face, and the relative

depth information is not accurately expressed. Figure 4.1d shows the output

generated by DenseDepth (KITTI). The result can only show the outline of the

face, and cannot show the depth of facial details. Figure 4.1e shows the output

generated by DenseDepth (NYU-Depth V2). The result shows the depth better,

but still lacks the facial detailed depth. Figure 4.1f shows the output generated

by 3DMM. The result shows more face detailed depth information, however the
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contour of eyes, nose, mouth and the face shape showed are visually very different

to the ground truth. We infer that this is because 3DMM is based on an average

model. Visually, Figure 4.1g and Figure 4.1h show basically satisfactory results

which are generated by Pix2Pix and CycleGAN. Figure 4.1i shows the best result,

in visual inspection, which is the output generated by D+GAN. The depth values

especially in eyes, nose and mouth shown by D+GAN are more precise than

Pix2Pix and CycleGAN.

The autocorrelation function is usually used as the texture measure in the

image. The texture coarseness of the image is proportional to the expansion of

the autocorrelation function. We assume that one image is denoted as I(x, y).

Autocorrelation function is defined as:

C (ξ, η, a, b) =

∑a+w
x=a−w

∑b+w
y=b−w I(x, y)I(x− ξ, y − η)∑a+w

x=a−w
∑b+w

y=b−w[I(x, y)]2
(4.1)

where (a, b) is the pixel in the window which size is (2w + 1) ∗ (2w + 1). ξ, η =

±0,±1,±2...±N . ξ and η are shifting variables on the pixels.

In the case of bs016 LFAU 22 0 of Bosphorus 3D Face Database, autocorre-

lation function graphs on depth maps generated by various models are shown

as Figure 4.2. In the autocorrelation function graph, a larger downward trend

observed as ξ and η increase indicates a greater coarseness of the corresponding

image. Figure 4.2b shows the autocorrelation function graph of the ground truth

depth map. Comparing with Figure 4.2a, Figure 4.2b has a smaller downward

trend as ξ and η increase, which means the depth map has a lower coarseness

than its corresponding grayscale image. Subjectively, the spatial details of the

face should be changed regularly. Comparing with Figure 4.2b, Figure 4.2c, Fig-

ure 4.2d and Figure 4.2e has a larger downward trend as ξ and η increasing,

which means the depth maps generated by Monodepth2, DenseDepth (KITTI)
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Figure 4.1: Face depth maps generated by various models in the case of
bs016 LFAU 22 0. (a) Input RGB image, (b) Ground truth depth map, (c)
Model: Monodepth2, (d) Model: DenseDepth (KITTI), (e) Model: DenseDepth
(NYU-Depth V2), (f) Model: 3DMM, (g) Model: Pix2Pix, (h) Model: Cycle-
GAN, (i) Proposed Model: D+GAN
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Figure 4.2: Autocorrelation function graphs of various output images: (a) Orig-
inal RGB image, (b) Ground truth depth map, (c) Depth map generated by
Monodepth2, (d) Depth map generated by DenseDepth (KITTI), (e) Depth map
generated by DenseDepth (NYU-Depth V2), (f) Depth map generated by 3DMM,
(g) Depth map generated by Pix2Pix, (h) Depth map generated by CycleGAN,
(i) Depth map generated by D+GAN

and DenseDepth (NYU-Depth V2) have a higher coarseness than the ground

truth depth map. Conversely, the shapes of Figure 4.2f, Figure 4.2g, Figure 4.2h

and Figure 4.2i are similar with Figure 4.2b, which indicates the depth maps

generated by 3DMM, Pix2Pix, CycleGAN and D+GAN have a higher quality.

In the case of bs016 LFAU 22 0 of Bosphorus 3D Face Database, local SSIM

maps of the depth maps generated by various models are shown in Figure 4.3.

The structural similarity index measure (SSIM) is to measure the similarity be-

tween two images. In the SSIM map, regions with smaller local SSIM values

correspond to different regions from the reference image. Similarly, regions with
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Figure 4.3: Local SSIM maps of depth maps generated by various models. (a)
Model: Monodepth2, (b) Model: DenseDepth (KITTI), (c) Model: DenseDepth
(NYU-Depth V2), (d) Model: 3DMM, (e) Model: Pix2Pix, (f) Model: Cycle-
GAN, (g) Proposed Model: D+GAN

larger local SSIM values correspond to uniform regions of the reference image.

The reference image here is the ground truth face depth map. From Figure

4.3, it can be observed that Figure 4.3g representing D+GAN has the most red

area. Figure 4.3e representing Pix2Pix and Figure 4.3f representing CycleGAN in

overall perform well except in specific areas of eyes, nose and mouth in compari-

son with Figure 4.3g. Figure 4.3d representing 3DMM shows a larger difference

in face shape besides in eyes, nose and mouth. In addition, besides eyes, nose

and mouth areas, Figure 4.3a representing Monodepth2, Figure 4.3b represent-

ing DenseDepth (KITTI) and Figure 4.3c representing DenseDepth (NYU-Depth

V2) show a larger difference in four corners out of the face. Among these three,

Figure 4.3c shows a less difference in the area of the human face.
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4.1.1.2 Case Study: 008-025 of CASIA 3D Face Database

Figure 4.4 presents the results for the case of 008-025 of CASIA 3D Face Database.

Unlike the previous example, the input image in this example is a bust. In all, the

performance of each model is similar to that in the above example. Figure 4.4g,

Figure 4.4h and Figure 4.4i representing three GAN models show a satisfactory

result. Especially for Figure 4.4i representing D+GAN, it is difficult to see the

difference from the ground truth with the naked eye. It is worth mentioning that

3DMM can only be used for the human head area (see Figure 4.4f).

In the case of 008-025 of CASIA 3D Face Database, autocorrelation function

graphs on depth maps generated by various models are shown as Figure 4.5. It

shows the coarseness of the generated depth map. It is worth mentioning that

Figure 4.5 indicates the texture coarseness of the depth map of the bust should be

higher than the face (see Figure 4.2). Comparing with Figure 4.5b, Figure 4.5c,

Figure 4.5d and Figure 4.5e has a smaller downward trend as ξ and η increasing,

which means the depth maps generated by Monodepth2, DenseDepth (KITTI)

and DenseDepth (NYU-Depth V2) have a lower coarseness than the ground truth

depth map. In contrast, Figure 4.5g, Figure 4.5h and Figure 4.5i representing

three GAN models have similar trends with Figure 4.5b, which implies they retain

depth information well.

In the case of 008-025 of CASIA 3D Face Database, local SSIM maps of the

depth maps generated by various models are shown in Figure 4.6. It shows the

similarity of areas in the depth maps generated. In all, the performance of each

model is similar to that in the last example. It is worth mentioning that the

areas of clothes and neck in the depth map generated by CycleGAN are not as

satisfactory as Pix2Pix and D+GAN (see Figure 4.6f).
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Figure 4.4: Face depth maps generated by various models in the case of 008-025.
(a) Input RGB image, (b) Ground truth depth map, (c) Model: Monodepth2,
(d) Model: DenseDepth (KITTI), (e) Model: Densedepth (NYU-Depth V2), (f)
Model: 3DMM, (g) Model: Pix2Pix, (h) Model: CycleGAN, (i) Proposed Model:
D+GAN
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Figure 4.5: Autocorrelation function graphs of various output images: (a) Orig-
inal RGB image, (b) Ground truth depth map, (c) Depth map generated by
Monodepth2, (d) Depth map generated by DenseDepth (KITTI), (e) Depth map
generated by DenseDepth (NYU-Depth V2), (f) Depth map generated by 3DMM,
(g) Depth map generated by Pix2Pix, (h) Depth map generated by CycleGAN,
(i) Depth map generated by D+GAN
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Figure 4.6: Local SSIM maps of depth maps generated by various models. (a)
Model: Monodepth2, (b) Model: DenseDepth (KITTI), (c) Model: DenseDepth
(NYU-Depth V2), (d) Model: 3DMM, (e) Model: Pix2Pix, (f) Model: Cycle-
GAN, (g) Proposed Model: D+GAN

4.1.1.3 Case Study: F0010 FE03WH F2D of BU-3DFE Database

Figure 4.7 presents the results for the case of F0010 FE03WH F2D of BU-3DFE

Database. It is worth mentioning that, unlike the previous examples, GAN mod-

els are not trained by BU-3DFE Database. In all, the performance of each model

is similar to that in the first example. Figure 4.7g, Figure 4.7h and Figure 4.7i

representing three GAN models show a more satisfactory result than others. In

detail, Figure 4.7g and Figure 4.7h representing Pix2Pix and CycleGAN respec-

tively show a inaccurate depth in the eyes area. However, D+GAN performs well

in the eyes area (see Figure 4.7i). It is worth mentioning that 3DMM generates

inaccurate results in the face shape again (see Figure 4.7f).

In the case of F0010 FE03WH F2D of BU-3DFE Database, autocorrelation

function graphs on depth maps generated by various models are shown by Figure

4.8. It shows the coarseness of the depth map generated. It is worth mentioning
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Figure 4.7: Face depth maps generated by various models in the case of
F0010 FE03WH F2D. (a) Input RGB image, (b) Ground truth depth map, (c)
Model: Monodepth2, (d) Model: DenseDepth (KITTI), (e) Model: DenseDepth
(NYU-Depth V2), (f) Model: 3DMM, (g) Model: Pix2Pix, (h) Model: Cycle-
GAN, (i) Proposed Model: D+GAN
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Figure 4.8: Autocorrelation function graphs of various output images: (a) Orig-
inal RGB image, (b) Ground truth depth map, (c) Depth map generated by
Monodepth2, (d) Depth map generated by DenseDepth (KITTI), (e) Depth map
generated by DenseDepth (NYU-Depth V2), (f) Depth map generated by 3DMM,
(g) Depth map generated by Pix2Pix, (h) Depth map generated by CycleGAN,
(i) Depth map generated by D+GAN

that the graph shape of Figure 4.8f representing 3DMM is the most similar with

Figure 4.8b representing the ground truth in this case. Figure 4.8g and Figure

4.8h has a smaller downward trend as ξ and η increasing, which means the depth

maps generated for the face by Pix2Pix and CycleGAN have a lower coarseness.

In the case of F0010 FE03WH F2D of BU-3DFE Database, local SSIM maps

of the depth maps generated by various models are shown in Figure 4.9. It shows

the similarity of areas in the depth maps generated. In all, the performance of

each model is similar to that in the previous example. It is worth mentioning

that the areas of clothes and neck in the depth map generated by CycleGAN are

not as satisfactory as Pix2Pix and D+GAN (see Figure 4.9). In comparison with
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Figure 4.9: Local SSIM maps of the depth maps generated by various models. (a)
Model: Monodepth2, (b) Model: DenseDepth (KITTI), (c) Model: DenseDepth
(NYU-Depth V2), (d) Model: 3DMM, (e) Model: Pix2Pix, (f) Model: Cycle-
GAN, (g) Proposed Model: D+GAN

Figure 4.9e, Figure 4.9g representing D+GAN performs better in the area of the

eyes.

4.1.2 Quantitative Results and Analysis

In this section, quantitative analysis is carried out. The Structural Similarity

Index (SSIM), Root Mean Squared Error (RMSE) and Peak Signal-to-Noise Ratio

(PSNR) are selected to evaluate of the quality of the face depth map generated

by several models on three datasets described before which are Bosphorus 3D

Face Database, CASIA 3D Face Database and BU-3DFE Database.

The Structural Similarity Index (SSIM) [107] is the widely used standard for

evaluating structural similarity in images that evaluates the quality of a processed
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image from a ground truth image. We calculate the SSIM for above six models

as:

SSIM(a, b) = [l(a, b)]α[c(a, b)]β[s(a, b)]γ (4.2)

where

l(a, b) =
2µaµb + C1

µ2
a + µ2

b + C1

(4.3)

c(a, b) =
2σaσb + C2

σ2
a + σ2

b + C2

(4.4)

s(a, b) =
σab + C3

σaσb + C3

(4.5)

In the above equations, there are two images denoted as a and b. µa and µb

indicate the local mean values of corresponding images, σa and σb indicate the

standard deviations and σab indicates the cross-covariance for images. Weights

α > 0, β > 0 and γ > 0. C1, C2 and C3 are all constants to avoid the denominator

being 0.

A lower RMSE value means a more accurate result corresponding to the ref-

erence. The RMSE between images a and b is calculated as:

RMSE(a, b) =

√√√√ 1

M ×N

M∑
i=1

N∑
i=1

(a(i, j)− b(i, j))2 (4.6)

where M and N are width and height of the image respectively.

The Mean Squared Erro (MSE) between images a and b is calculated as:

MSE(a, b) =
1

M ×N

M∑
i=1

N∑
i=1

(a(i, j)− b(i, j))2 (4.7)

PSNR, a logarithmic form using the decibel scale based on MSE, is widely
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used to quantify reconstruction quality for images. It is defined as:

PSNR = 10 log10

L2

MSE
= 20 log10

L

RMSE
(4.8)

where L is the maximum possible pixel value of the image. Here, L equals 255.

The histogram representations of the calculated average results of SSIM,

RMSE, and PSNR for the above three data sets are shown in Figures 4.10 to

4.12, which are presented in Table 4.1. Not only qualitatively, but also quantita-

tively, the GAN model overall outperforms other models in these three datasets.

Among them, the depth map output by D+GAN can get the best SSIM, RMSE

and PSNR values.

For a 256×256 image, among the above three GAN models, Pix2Pix re-

quires 18.6G multiply-accumulate operations (MACs) approximately, CycleGAN

requires about 56.8G MACs approximately [120], and D+GAN, the embodiment

showed, requires about 21.6G MACs approximately. These computations are ac-

ceptable for today’s GPUs. Using the GAN model to obtain high-quality spatial

information of face images will take more computation, which is a trade-off.

4.2 Pseudo RGB-D Face Recognition

4.2.1 Results and Analysis

In this section, classic machine learning and deep learning models including PCA

[50], ICA [51], FaceNet [54] and InsightFace [30] are selected as face recognition

methods. Five classic face recognition datasets including ORL [121], Yale [122],

UMIST [123], AR [124] and FERET [125] are selected.

In order to make effective use of generated depth features in the pseudo RGB-

D face recognition, image fusion algorithms are utilized. Through comparisons
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4.2 Pseudo RGB-D Face Recognition

Figure 4.10: 2-D histogram representation of various models in SSIM indicators
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4.2 Pseudo RGB-D Face Recognition

Figure 4.11: 2-D histogram representation of various models in PSNR indicators
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4.2 Pseudo RGB-D Face Recognition

Figure 4.12: 2-D histogram representation of various models in RMSE indicators
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4.2 Pseudo RGB-D Face Recognition

Table 4.1: Quantitative Index Results

Method Index
Dataset

Bosphorus CASIA 3D BU-3DFE

Monodepth2
SSIM 0.660 0.205 0.585
RMSE 60.77 99.15 54.41
PSNR 12.46 8.205 13.42

DenseDepth
(KITTI)

SSIM 0.697 0.339 0.555
RMSE 92.70 127.7 95.91
PSNR 8.789 6.007 8.494

DenseDepth
(NYU Depth V2)

SSIM 0.728 0.334 0.570
RMSE 74.38 123.7 86.79
PSNR 10.70 6.283 9.361

3DMM
SSIM 0.747 0.624 0.677
RMSE 50.20 73.27 64.82
PSNR 14.12 10.83 11.90

Pix2Pix
SSIM 0.933 0.949 0.852
RMSE 13.43 11.11 26.41
PSNR 25.56 27.22 19.70

CycleGAN
SSIM 0.916 0.851 0.792
RMSE 21.26 34.36 34.23
PSNR 17.41 21.58 17.44

D+GAN
SSIM 0.970 0.978 0.869
RMSE 4.122 3.803 23.99
PSNR 35.83 36.53 20.53
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4.2 Pseudo RGB-D Face Recognition

among Wavelet-based methods, Laplacian Pyramid and Non-subsampled Shearlet

Transform (NSST) [49], NSST performs the best so as to be selected as the image

fusion method for our face recognition experiments.

The shearlet system can be expressed as:

ΛD,S(Ψ) =
{

Ψj,k,l(x) = |det(D)|j/2Ψ(SlDjx− k) :

j, l ∈ Z; k ∈ Z2}
(4.9)

where j, k, and l denote the scale, shift, and direction respectively. D, the

anisotropic expanding matrix, is expressed as:

D =

4 0

0 2

 (4.10)

and S, the shear matrix, is expressed as:

S =

1 1

0 1

 (4.11)

The NSST performs multi-scale and multi-directional decomposition on input

images by Non-subsampled Pyramids (NSPs) and shearing filters in the first place.

Next, according to the made fusion strategy, the high frequency and low frequency

sub-band images decomposed are transformed and combined into new sub-band

images. Last, the final fused image is achieved by the inverse NSST on the new

sub-band images. In our embodiment, the filter set for the Laplacian Pyramid

decomposition is ’maxflat’. The vector indicating decomposition directions is set

to [3, 3, 4, 4]. The vector indicating the local support of the shearing filter is set

to [8, 8, 16, 16]. The fusion coefficient is set to 0.5.

Besides NSST, D+GAN is selected as the preferred embodiment for generating
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4.2 Pseudo RGB-D Face Recognition

Figure 4.13: Accuracy histogram of PCA in RGB and Pseudo RGB-D modes

the pseudo face depth map in the pseudo RGB-D face recognition due to its good

performance in the previous section. If the training images are sufficient, due

to the great learning ability of the deep learning model, it is easy to have a

100% accuracy during testing. Therefore, in the evaluation, due to the different

capabilities of ML models, we used separate experimental settings to differentiate

the performance of face recognition of each model.

In experiments of testing PCA, two images of each person in the dataset are

applied for testing, and the rest images of that person are for training. The

number of feature face set is 30 for PCA. In this case, the mode of pseudo RGB-

D face recognition improves the accuracy by 10.2%, 9.0%, 4.6%, 6.3% and 5.5%

approximately on ORL, Yale, UMIST, AR and FERET dataset respectively.

In experiments of testing ICA, five images of each person in the dataset are

applied for training, and rest images of that person are for testing. The number

of components set is 70 for ICA. The mode of pseudo RGB-D face recognition
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4.2 Pseudo RGB-D Face Recognition

Figure 4.14: Accuracy histogram of ICA in RGB and Pseudo RGB-D modes

improves the accuracy by 12.7%, 9.6%, 3.4%, 10.6% and 14.8% approximately on

ORL, Yale, UMIST, AR and FERET dataset respectively.

In experiments of testing DL models including FaceNet and InsightFace, for

ORL and AR datasets, 30% of the images of each person are used for training,

and 70% of the images of each person are used for testing. For Yale dataset, 20%

of the images of each person are used for training, and 80% of the images of each

person are used for testing. For UMIST dataset, 10% of the images of each person

are used for training, and 90% of the images of each person are used for testing.

For FERET dataset, 40% of the images of each person are used for training, and

60% of the images of each person are used for testing. Since the number of images

of each person in the ORL and YALE datasets is relatively small, and the total

number of people is also relatively small. Therefore, using the pre-trained model

to directly extract features, and then training a linear SVM classifier for testing

could get better results. For the datasets UMIST, AR and FERET with more

images, fine-tuning the pretrained network model could be used as a conventional

strategy.
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4.2 Pseudo RGB-D Face Recognition

Figure 4.15: Accuracy histogram of FaceNet: Inception ResNet v1 (CASIA-
WebFace) in RGB and Pseudo RGB-D modes

Table 4.2 presents the face recognition results by two modes including RGB

and Pseudo RGB-D using traditional ML and advanced DL models on the five

classical face recognition datasets. Table 4.3 presents the performance difference

from RGB mode to Pseudo RGB-D mode.

Specifically, in experiments of testing the FaceNet: Inception ResNet v1 model

pretrained by CASIA-WebFace, the mode of pseudo RGB-D face recognition im-

proves the accuracy by 2.7%, 5.7%, 0.4%, 0.9% and 11.3% approximately on

datasets ORL, Yale, UMIST, AR and FERET respectively. In experiments of

testing the FaceNet: Inception ResNet v1 model pretrained by VGG-Face2, the

mode of pseudo RGB-D face recognition improves the accuracy by 0%, 0%, 1.7%,

0.7% and 1.3% approximately on datasets ORL, Yale, UMIST, AR and FERET

respectively. In experiments of testing the Insightface: IResNet34 model pre-

trained by MS1MV2, the mode of pseudo RGB-D face recognition improves the

accuracy by 2.1%, 3.2%, 1.0%, 0.2% and 7.9% approximately on datasets ORL,

Yale, UMIST, AR and FERET respectively. In experiments of testing the In-
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4.3 Summary

Figure 4.16: Accuracy histogram of FaceNet: Inception ResNet v1 (VGG-Face2)
in RGB and Pseudo RGB-D modes

sightface: IResNet100 model pretrained by MS1MV2, the mode of pseudo RGB-

D face recognition improves the accuracy by 2.7%, 5.7%, 0.3%, 2.4% and 2.5%

approximately on datasets ORL, Yale, UMIST, AR and FERET respectively.

Table 4.2 shows that, in the face recognition experiments, the best performing

results annotated in bold for each dataset of the five, almost all use the mode of

pseudo RGB-D face recognition. It can be concluded that pseudo RGB-D face

recognition proposed is able to improve the accuracy in comparison with RGB

face recognition using different classic traditional ML and DL models. Especially

for traditional ML models, pseudo RGB-D face recognition mode can increase

the accuracy more.

4.3 Summary

In the field of facial recognition, many deep learning models have already achieved

very high accuracy rates. To allow for comparison and to prevent all models
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4.3 Summary

Figure 4.17: Accuracy histogram of Insightface: IResNet34 (MS1MV2) in RGB
and Pseudo RGB-D modes

Figure 4.18: Accuracy histogram of Insightface: IResNet100 (MS1MV2) in RGB
and Pseudo RGB-D modes
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Table 4.2: Experimental Results of Face Recognition

Mode Method
Dataset

ORL Yale UMIST AR FERET

RGB
Face Recognition

PCA 84.9% 62.2% 69.3% 41.5% 49.1%
ICA 79.0% 45.6% 72.9% 46.6% 55.0%

FaceNet: Inception ResNet v1
(CASIA-WebFace)

98.6% 38.5% 90.8% 76.5% 59.8%

FaceNet: Inception ResNet v1
(VGG-Face2)

100.0% 0.0% 88.0% 75.4% 56.0%

InsightFace: IResNet34
(MS1MV2)

84.6% 92.6% 79.5% 90.1% 75.6%

InsightFace: IResNet100
(MS1MV2)

92.9% 91.1% 77.8% 85.0% 53.4%

Pseudo RGB-D
Face Recognition

PCA 93.6% 67.8% 72.6% 44.1% 51.8%
ICA 89.0% 50.0% 76.3% 51.5% 63.1%

FaceNet: Inception ResNet v1
(CASIA-WebFace)

100.0% 40.6% 91.2% 77.2% 66.6%

FaceNet: Inception ResNet v1
(VGG-Face2)

100.0% 0.0% 89.5% 75.9% 56.7%

InsightFace: IResNet34
(MS1MV2)

86.4% 95.6% 80.2% 90.3% 81.5%

InsightFace: IResNet100
(MS1MV2)

95.4% 96.3% 78.0% 87.0% 54.7%

Table 4.3: Changes of Face Recognition Results

Change

Method
Dataset

ORL Yale UMIST AR FERET
PCA 8.7% 5.6% 3.3% 2.6% 2.7%
ICA 10.0% 4.4% 3.4% 4.9% 8.1%

FaceNet: Inception ResNet v1
(CASIA-WebFace)

1.4% 2.1% 0.4% 0.7% 6.8%

FaceNet: Inception ResNet v1
(VGG-Face 2)

0 0 1.5% 0.4% 0.7%

InsightFace: IResNet34
(MS1MV2)

1.8% 3% 0.7% 0.2% 5.9%

InsightFace: IResNet100
(MS1MV2)

2.5% 5.2% 0.2% 2% 1.3%
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from achieving 100% accuracy, we only used a small portion of the dataset for

training. In our experiments, the improvement of the Pseudo RGB-D mode on

the FaceNet: Inception ResNet v1 (VGG-Face 2) model was limited, which was

due to the scarcity of training data provided to the model.

Inspired by the occurrence of RGB-D face recognition, we propose a pseudo

RGB-D face recognition framework. In essence, the ML model is able to imitate

the relative depth map from its corresponding RGB image by learning from big

data to replace the depth sensors. We provide a D+GAN model for making

increased use of face attribute information to generate the high quality face depth

map. In cooperation with NSST, the pseudo RGB-D face recognition obtains

an overall improvement in comparison with RGB face recognition. With the

pseudo RGB-D face recognition framework, we could modularly adapt off-the-

shelf algorithm models to promote the performance of RGB face recognition. In

the facial recognition experiments we designed, the PRGB-D mode was able to

further enhance the performance of advanced facial recognition models trained

with RGB images. In future, we will continue to discover simple and effective

models to perform the monocular face depth estimation, and efficient ways to

apply them to improve the biometric recognition performance.
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Chapter 5

Facial Diagnosis Experiment

Results and Analysis

In this chapter, we will present the results of facial diagnosis experiments accord-

ing to different time stages. In Section 5.1, we primarily validate the effectiveness

of using pre-trained face recognition models in facial diagnosis tasks. In Section

5.2, building upon the use of pre-trained face recognition models, we initially

employed pseudo-depth, as described in Pseudo RGB-D Face Recognition of Sec-

tion 3.1, to enhance the performance of RGB facial diagnosis tasks. In Section

5.3, we introduced a Simulated Multimodal Framework that makes fuller use of

pseudo-depth information, thereby further enhancing the performance of RGB

facial diagnosis tasks.

5.1 Deep Facial Diagnosis

5.1.1 Experimental Results and Discussions

In this section, we perform the experiments on two tasks of facial diagnosis by two

strategies of deep transfer learning including fine-tuning abbreviated as DTL1 and
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5.1 Deep Facial Diagnosis

using CNN as a feature extractor abbreviated as DTL2 as presented in Section

3.2. The deep learning models pretrained for object detection and face recognition

are selected for comparison. In addition, we compare the results with traditional

machine learning methods using the hand-crafted feature that is Dense Scale-

Invariant Feature Transform (DSIFT) [126]. DSIFT, which is often used in object

recognition, performs Scale Invariant Feature Transform (SIFT) on a dense grid

of locations of the image at a certain scale and orientation. The SVM algorithm

for its good performance in few-shot learning, is used as the classifier for Bag of

Features (BOF) models with DSIFT descriptors.

Two cases of facial diagnosis are designed in this section. One is the detection

of beta-thalassemia, which is a binary classification task. The other one is the

detection of four conditions which are beta-thalassemia, hyperthyroidism, Down

syndrome and leprosy with the healthy control, which is a multiclass classification

task and more challenging.

5.1.1.1 Single Condition Detection: Beta-thalassemia

In practice, we usually need to perform detection or screening on one specific

condition. In this case, we only use 140 images of the dataset which is composed

of 70 beta-thalassemia-specific face images and 70 images for healthy control. 40

of each type images are for training, and 30 of each type images are for testing.

It is a binary classification task. By comparing all selected machine learning

methods (see TABLE 5.2), we find that the best overall top-1 accuracies can be

achieved by using the strategies of deep transfer learning on the VGG-Face model

(VGG-16 pretrained on the VGG-Face dataset). Furthermore, applying DTL2:

CNN as a feature extractor can get a better accuracy of 95.0% than using DTL1:

fine-tuning in this task, which is indicated by Figure 5.1.

Figure 5.1 shows the confusion matrices of DTL1 and DTL2 on the VGG-
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5.1 Deep Facial Diagnosis

Figure 5.1: The confusion matrix for beta-thalassemia detection (a binary clas-
sification task). (a) DTL1: VGG-Face (Fine-tuning). (b) DTL2: VGG-Face
(Feature Extractor) + SVM Linear. D1 represents the beta-thalassemia-specific
face, N0 represents the healthy control.

Face model in this task. D1 represents the beta-thalassemia-specific face, and

N0 represents the healthy control. The row in the confusion matrix indicates the

predicted classes, and the column in the confusion matrix indicates the actual

classes. In detail, two of thirty testing images for each type, false positives and

false negatives, are misclassified by DTL1, which leads to an accuracy of 93.3%.

For DTL2, thirty images belonging to the type of beta-thalassemia in actual, true

positives, are all classified correctly. On the other hand, three of thirty images,

false positives, are belonging to the healthy control in actual, but classified as

the beta-thalassemia-specific face. Figure 5.2 shows the receiver operating char-

acteristic (ROC) curves of the VGG-Face model by DTL1 and DTL2. The blue

dotted line indicates the performance of DTL1, and the red solid line indicates

the performance of DTL2. The Areas Under ROC curves (AUC) calculated are

0.969 and 0.978 correspondingly.

For comparison, deep learning models pretrained such as AlexNet, VGG16

and ResNet are used. In addition, traditional machine learning methods extract-

ing DSIFT features on the face image and predicting with a linear or nonlinear

SVM classifier [127] are selected. Five indicators that are accuracy, precision,
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5.1 Deep Facial Diagnosis

Figure 5.2: The receiver operating characteristic (ROC) curves of the VGG-Face
model. The blue dotted line indicates the performance of DTL1, and the red
solid line indicates the performance of DTL2.

sensitivity, specificity and F1-score which is a weighted average of the precision

and sensitivity are selected to evaluate the performance of models. The indicator

of FLOPs spent for forward pass is estimated to evaluate the time complexity of

models. Table 5.1 lists the results of both traditional machine learning methods

and fine-tuning deep learning models pretrained on the ImageNet and VGG-Face

dataset in this task.

From the results, we find that the performance by traditional machine learning

methods is close to the performance of fine-tuning (DTL1) deep learning models

pretrained on ImageNet. However, the performance of fine-tuning (DTL1) the

deep learning models pretrained on VGG-Face is overall better than ones pre-

trained on ImageNet, which is reasonable. Because the source domain of VGG-

Face is nearer to DSF dataset than ImageNet. Table 5.2 lists the results of CNN

as a feature extractor on the pretrained deep learning models (DTL2). Applying
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Table 5.1: Binary classification results on the detection of beta-
thalassemia (Traditional:Row 2&3 and DTL1:Row 4-9)

Method
(Traditional and DTL1)

Pretrain FLOPs Accuracy Precision Sensitivity Specificity F1-Score

DSIFT
+ SVM Linear

N 1.28G 71.7% 67.6% 83.3% 60.0% 74.6%

DSIFT
+ SVM Chiˆ2

N 1.28G 68.3% 65.7% 76.7% 60.0% 70.8%

AlexNet
(Fine-tuning)

ImageNet 723M 76.7% 86.4% 63.3% 90.0% 73.1%

AlexNet
(Fine-tuning)

VGG-Face 723M 80.0% 72.5% 96.7% 63.3% 82.9%

VGG16
(Fine-tuning)

ImageNet 15.47G 78.3% 75.8% 83.3% 73.3% 79.4%

VGG16
(Fine-tuning)

VGG-Face 15.47G 93.3% 93.3% 93.3% 93.3% 93.3%

ResNet50
(Fine-tuning)

ImageNet 3.87G 75.0% 77.8% 70.0% 80.0% 73.7%

ResNet50
(Fine-tuning)

VGG-Face 3.87G 91.7% 100% 83.3% 100% 90.9%

DTL2: CNN as a feature extractor can get an overall better performance than

traditional machine learning methods and DTL1. However, deep learning models

pretrained on VGG-Face seem to behave not necessarily better than deep learning

models pretrained on ImageNet in this strategy. It will be further investigated in

the next experiment.

5.1.1.2 Multiple Conditions Detection

In practical applications, performing the detection or screening of multiple con-

ditions at once can greatly increase efficiency. To further evaluate the algorithm,

in this case, the task dataset contains a total of 350 images, with 70 images for

each facial type. During the training process, a total of 200 images (40 images of

each type) are used, while during the testing process, 150 images (30 images of

each type) are used. This is a multi-class classification task.

By comparing all selected machine learning methods, we find that the best

overall top-1 accuracies can be achieved by using the deep transfer learning strate-

gies based on the VGG-Face model. Furthermore, applying DTL2: VGG-Face
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Table 5.2: Binary classification results on the detection of beta-
thalassemia (DTL2)

Method
(DTL2)

Pretrain FLOPs Accuracy Precision Sensitivity Specificity F1-Score

AlexNet
(Feature Extractor)

+ SVM Linear
ImageNet 723M 90.0% 87.5% 93.3% 86.7% 90.3%

AlexNet
(Feature Extractor)

+ SVM Linear
VGG-Face 723M 85.0% 86.2% 83.3% 86.7% 84.7%

VGG16
(Feature Extractor)

+ SVM Linear
ImageNet 15.47G 88.3% 84.8% 93.3% 83.3% 88.8%

Best: VGG16
(Feature Extractor)

+ SVM Linear
VGG-Face 15.47G 95.0% 90.9% 100% 90.0% 95.2%

ResNet50
(Feature Extractor)

+ SVM Linear
ImageNet 3.87G 91.7% 93.1% 90.0% 93.2% 91.5%

ResNet50
(Feature Extractor)

+ SVM Linear)
VGG-Face 3.87G 86.7% 95.8% 76.7% 96.7% 85.2%

as a feature extractor can get a better accuracy of 93.3% than using DTL1:

fine-tuning in this task, which is indicated by Figure 5.3. Figure 5.3 shows the

confusion matrices of DTL1 and DTL2 on the VGG-Face model in this task. D1

represents the beta-thalassemia-specific face, D2 represents the hyperthyroidism-

specific face, D3 represents the DS-specific face, D4 represents the leprosy-specific

face and N0 represents the healthy control. The row in the confusion matrix in-

dicates the predicted classes, and the column in the confusion matrix indicates

the actual classes. From the Figure 5.3(b), four of thirty images are belonging to

the hyperthyroidism-specific face in actual, but classified as other types, which

indicates it is relatively difficult for the classifier to recognize hyperthyroidism

from face images. For recognizing beta-thalassemia, Down syndrome and lep-

rosy, the classifier has a very good accuracy. Figure 5.3(a) of DTL1 also shows a

low accuracy on recognizing hyperthyroidism.

Table 5.3 lists the results of traditional machine learning methods and deep

learning methods in the multiclass classification task as previously described.
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5.1 Deep Facial Diagnosis

Figure 5.3: The confusion matrix for multiple conditions detection (a multiclass
classification task). (a) DTL1: VGG-Face (Fine-tuning). (b) DTL2: VGG-
Face (Feature Extractor) + SVM Linear. D1 represents the beta-thalassemia-
specific face, D2 represents the hyperthyroidism-specific face, D3 represents the
DS-specific face, D4 represents the leprosy-specific face and N0 represents the
healthy control.

Since the multiclass classification task is more difficult than the binary classifica-

tion task as presented before, the accuracies of machine learning models decrease

generally. The results by deep transfer learning methods are much better than

the results by traditional machine learning methods in this task, which is as

expected. And deep learning models pretrained on VGG-Face behave generally

better than deep learning models pretrained on ImageNet in both strategies. The

performance of DTL2: CNN as a feature extractor is overall better than that of

DTL1: Fine-tuning again, which probably is due to the relatively small dataset.

Fig 5.4-5.6 provide a clear illustration of the changes in accuracy and the cor-

responding trends for AlexNet, VGG16, and ResNet50 under DTL1 and DTL2,

respectively.

On the basis of applying DTL2, for exploring a better performance by deep

transfer learning, we investigate the performance of ResNet50 and SE-ResNet50

[128] models pretrained on MS-Celeb-1M [28] and VGGFace2 [29]. MS-Celeb-1M
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Table 5.3: Multiclass classification results on the detection of four con-
ditions

Method Pretrain FLOPs Accuracy Method Pretrain FLOPs Accuracy
DSIFT

+ SVM Linear
N 1.28G 49.3%

DSIFT
+ SVM Chiˆ2

N 1.28G 54.0%

AlexNet
(Fine-tuning)

ImageNet 723M 66.0%
AlexNet

(Feature Extractor)
+ SVM Linear

ImageNet 724M 78.0%

AlexNet
(Fine-tuning)

VGG-Face 723M 73.3%
AlexNet

(Feature Extractor)
+ SVM Linear

VGG-Face 724M 86.0%

VGG16
(Fine-tuning)

ImageNet 15.47G 72.0%
VGG16

(Feature Extractor)
+ SVM Linear

ImageNet 15.47G 78.0%

VGG16
(Fine-tuning)

VGG-Face 15.47G 86.7%
Best:VGG16

(Feature Extractor)
+ SVM Linear

VGG-Face 15.47G 93.3%

ResNet50
(Fine-tuning)

ImageNet 3.87G 77.3%
ResNet50

(Feature Extractor)
+ SVM Linear

ImageNet 3.87G 86.7%

ResNet50
(Fine-tuning)

VGG-Face 3.87G 82.0%
ResNet50

(Feature Extractor)
+ SVM Linear

VGG-Face 3.87G 88.7%

is a widely used dataset of roughly 10 million photos from 100,000 individuals

for face recognition. VGGFace2 is a large-scale dataset containing more than

3.3 million face images over 9K identities for face recognition. Table 5.4 lists the

results of ResNet50 and SE-ResNet50 models pretrained on the different datasets.

SE-ResNet50 has a more complex structure but does not get better results than

ResNet50 here, which is according with the fact that ”VGG-Face” model achieves

the best results in our experiments. The results indicate that pretraining on more

task-related datasets can improve the performance in this task. The ResNet50

pretrained on MS-Celeb-1M and finetuned on VGGFace2 improves its accuracy

from 86.7% (ImageNet) to 92.7% which is closest to the best result. The testing

accuracy of the specialists published [129] is about 80%. DTL2: CNN as a feature

extractor still outperforms clinicians, which is promising.

Regarding the time complexity (see TABLE 5.1-5.4), as mentioned in the

theoretical part, the time complexity of DTL1 and DTL2 are both smaller than

that of the corresponding pretrained model, and the time complexity of DTL2 is
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Table 5.4: Multiclass classification advanced results on the detection of
four conditions

Method(DTL2) Pretrain FLOPs Accuracy
ResNet50

(Feature Extractor)
+ SVM Linear

VGGFace2 3.87G 82.0%

SE-ResNet50
(Feature Extractor)

+ SVM Linear
VGGFace2 3.88G 84.7%

ResNet50
(Feature Extractor)

+ SVM Linear

VGGFace2
&

MS-Celeb-1M
3.87G 92.7%

SE-ResNet50
(Feature Extractor)

+ SVM Linear

VGGFace2
&

MS-Celeb-1M
3.88G 90.0%

a bit larger than that of DTL1. Since the FLOPs of CNN models are almost more

than a few hundred millions now, the difference in FLOPs values of the adapted

model and its corresponding pretrained model shown in tables is not obvious.

From these experiments, we can conclude that the performance by deep learn-

ing methods are overall better than the results by traditional machine learning

methods as expected. The difference is more expressive for the multiclass classifi-

cation task. In the case of the small dataset of facial diagnosis, DTL2: CNN as a

feature extractor is more appropriate than DTL1: Fine-tuning. Furthermore, it

is because of the similarity between the target domain and the source domain of

deep learning models pretrained for face recognition that the better performance

can be reached by deep transfer learning methods. Deep learning models pre-

trained on more datasets for face recognition can achieve a better performance

on facial diagnosis by deep transfer learning.
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Figure 5.4: AlexNet accuracy comparison in DTL1 and DTL2

Figure 5.5: VGG16 accuracy comparison in DTL1 and DTL2
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Figure 5.6: ResNet50 accuracy comparison in DTL1 and DTL2

5.1.2 Summary

More and more studies have shown that computer-aided facial diagnosis is a

promising way for condition screening and detection. In this work, we propose

deep transfer learning from face recognition methods to realize computer-aided

facial diagnosis definitely and validate them on single condition and multiple con-

ditions with the healthy control. The experimental results of above 90% accuracy

have proven that CNN as a feature extractor is the most appropriate deep trans-

fer learning method in the case of the small dataset of facial diagnosis. It can

solve the general problem of insufficient data in the facial diagnosis area to a

certain extent. In the future, we will continue to discover deep learning models

to perform facial diagnosis effectively with the help of data augmentation meth-

ods. We hope that more and more conditions can be detected efficiently by face

photographs.
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5.2 Pseudo RGB-D Facial Diagnosis

In this section, we apply the pseudo RGB-D facial image processing framework on

the facial diagnosis on 6 conditions including acromegaly, facial nerve paralysis,

Down syndrome, leprosy, thalassemia and hyperthyroidism. The Disease-Specific

Faces 2 (DSF2) dataset used in this section includes aforementioned six conditions

and healthy controls.

5.2.1 Experimental Results and Analysis

Following Pseudo RGB-D Face Recognition, for pseudo-depth generation, we

utilize aforementioned D+GAN. For image fusion, we propose a wavelet soft-

thresholding-based method, which is robust to noise.

Wavelet soft-thresholding image fusion The algorithm is implemented us-

ing Matlab. The first step involves performing a multilevel 2-D wavelet decom-

position on each image that is to be fused. The general form of the function is

[C, S] = wavedec2(X, N, wname). For the inputs, X represents the input matrix,

N denotes the level of decomposition, and wname specifies the wavelet used. In

this embodiment, a 4-level decomposition using the Symlets 4 wavelet function

[130] is performed (see Figure 5.7). For the outputs, C represents the wavelet

decomposition vector, and S is the bookkeeping matrix containing the number of

coefficients by level and orientation.

The second step involves obtaining the threshold value using the equation

thr =
√

2 ∗ log(n). Here, n represents the number of input images. The general

form of the function is [thr, sorh, keepapp] = ddencmp(in1, in2, x). For the

inputs, x represents the input 2-D matrix, in1 denotes the mode for denoising or

compression, and in2 specifies whether to use wavelets or wavelet packets. For

the outputs, thr indicates the threshold, sorh determines whether soft or hard
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Figure 5.7: Sym4 wavelet waveform
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Figure 5.8: Comparison of Hard and Soft Thresholding Techniques

thresholding is used, and keepapp selects whether the approximation coefficients

are thresholded or not for other purposes.

The third step entails performing 2-D coefficient soft thresholding [131]. The

general form of the function is NC = wthcoef2(′type′, C, S,N, T, SORH). For

the inputs, ’type’ specifies the type of coefficients, C represents the wavelet de-

composition vector, and S denotes the bookkeeping matrix containing the number

of coefficients by level and orientation, which are the outputs from the first step.

N indicates the detail levels to be thresholded, T represents the corresponding

thresholds obtained in the second step, and SORH determines whether soft or

hard thresholding is applied (see Figure 5.8). For the outputs, NC denotes the

processed detail coefficients.

The fourth step involves fusing coefficients. Generally, low-frequency compo-

nents represent areas in the image where brightness or grayscale values change

slowly, describing the main part of the image. High-frequency components corre-

spond to parts of the image that change drastically, describing the edges, noise,

and details of the image. Two fusion strategies are adopted. The first involves

averaging the corresponding coefficients of the two images. The second strategy

takes the wavelet coefficients with large absolute values from the two images for

high-frequency coefficients and averages the two images for low-frequency coeffi-
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cients.

The final step entails performing a multilevel wavelet reconstruction of the

matrix. The general form of the function is x = waverec2(c, s, wname). For

the inputs, C represents the processed wavelet decomposition vector, and S de-

notes the processed bookkeeping matrix containing the number of coefficients by

level and orientation, which are outputs from the first step. wname specifies the

wavelet name used. For the output, x represents the reconstructed matrix.

The pseudo-code for the wavelet soft-thresholding image fusion is depicted as

follows:

Func WST Fusion2D(Img1, Img2):

1: Begin

2: // Perform wavelet 2D decomposition

3: C1, S1 = WaveletDecomposition(Img1)

4: C2, S2 = WaveletDecomposition(Img2)

5: // Compute threshold

6: thr = sqrt(2 * log(2))

7: // Perform soft-thresholding

8: C1 = SoftThreshold(C1, thr)

9: C2 = SoftThreshold(C2, thr)

10: // Combine coefficients

11: Cf = CombineCoefficients(C1, C2)

12: // Wavelet reconstruction

13: FusedImage = WaveletReconstruction(Cf)

14: return FusedImage

15: End

For feature extraction and classification, we initially fine-tune the pre-trained

models of FaceNet [54] and InsightFace [30], a process that mirrors the approach
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utilized in the study ’Pseudo RGB-D Face Recognition’. The employed Insight-

Face model includes two structures: InsightFace: IResNet34 and InsightFace:

IResNet100, both pre-trained with the MS1MV2 dataset. Meanwhile, FaceNet

models are pre-trained with the CASIA-WebFace and VGG-Face2 datasets. Fine-

grained classification is applicable to classification tasks characterized by sub-

stantial intra-class differences and minor inter-class differences. Inspired by the

philosophy of fine-grained classification, we introduce a bilinear operation into

both InsightFace and FaceNet processing models, as illustrated in Figure 5.9.

The mathematical process can be represented by following equations:

Bi (l, I, u, v) = uT (l, I)v(l, I) (5.1)

where Bi represents the bilinear feature combination, l denotes location, I is the

input image, and u and v are two feature functions.

ψ (I) =
∑
l

Bi(l, I, u, v) (5.2)

where ψ represents the feature map for the entire image.

x = vec(ψ(I)) (5.3)

y = sign(x)
√
|x| (5.4)

z =
y

‖y‖2

(5.5)

where z represents the final fused feature utilized for classification.

For a more comprehensive assessment, three different cases are performed.
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5.2 Pseudo RGB-D Facial Diagnosis

Figure 5.9: Bilinear model for fine-grained facial diagnosis

Case 1 is that 45 images of each category for training, and 40 images of each

category for testing. Case 2 is that 50 images of each category for training, and

35 images of each category for testing. Case 3 is that 55 images of each category

for training, and 30 images of each category for testing.

For evaluation, in addition to accuracy being of significance for facial diagno-

sis, Matthews Correlation Coefficient is selected as an alternative indicator.

The Matthews Correlation Coefficient (MCC) [132] is a widely used met-

ric for evaluating the performance of classification models, including multi-class

classification tasks. It takes into account the confusion matrix to provide a com-

prehensive assessment of classification accuracy. The MCC ranges from -1 to

1, with -1 indicating a completely incorrect classification, 1 indicating a perfect

classification, and 0 signifying a random classification. For binary classification,

the MCC is calculated using the formula:

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.6)
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where TP means True Positives, TN means True Negatives, FP means False

Positives, and FN means False Negatives. For multiclass classification problems,

the MCC can be calculated by treating each class as binary (i.e., class i versus

the rest) and averaging the MCCs for each binary problem.

Compared to the RGB mode of the InsightFace34 model, the Pseudo RGB-D

mode of the Bilinear-InsightFace model has different degrees of improvement in

the aforementioned three cases, which is as shown in Table 5.5, Table 5.6 and

Table 5.7.

Compared to the RGB mode of the InsightFace100 model, the Pseudo RGB-D

mode of the Bilinear-InsightFace model does not have an improvement effect in

all cases, which is as shown in Table 5.7.

Compared to the RGB mode of the FaceNet (CASIA-WebFace) model, the

Pseudo RGB-D mode of the Bilinear-FaceNet model has different degrees of im-

provement in the aforementioned three cases, which is as shown in Table 5.8,

Table 5.9 and Table 5.10.

Compared to the RGB mode of the FaceNet (VGG-Face2) model, the Pseudo

RGB-D mode of the Bilinear-InsightFace model does not have an improvement

effect in all cases, which is as shown in Table 5.9 and Table 5.10.

It is worth noting that sometimes using only the bilinear model can achieve

better results.

Pseudo RGB-D facial image processing framework presents a modular pro-

cess. Algorithms within the module lists can be selected for preprocessing, depth-

generating, image fusion, and feature extraction & recognition. There is no need

to reinvent the wheel. Nowadays, there exist many models that have been trained

with a lot of computing resources. Especially for facial diagnosis, pretrained DL

models for face recognition should be made full use of. Pseudo RGB-D facial

image processing framework can promote facial diagnosis performance with small
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Table 5.5: InsightFace Performance @Training: 45; Testing: 40

Mode Method
Accuracy Score

(ACC)
Matthews Correlation Coefficient

(MCC)

RGB

InsightFace: IResNet34
(MS1MV2)

0.557 0.497

Bilinear-InsightFace: IResNet34
(MS1MV2)

0.596 0.532

InsightFace: IResNet100
(MS1MV2)

0.557 0.492

Bilinear-InsightFace: IResNet100
(MS1MV2)

0.711 0.667

Pseudo RGB-D

InsightFace: IResNet34
(MS1MV2)

0.529 0.459

Bilinear-InsightFace: IResNet34
(MS1MV2)

0.636 0.575

InsightFace: IResNet100
(MS1MV2)

0.571 0.509

Bilinear-InsightFace: IResNet100
(MS1MV2)

0.682 0.632

Table 5.6: InsightFace Performance @Training: 50; Testing: 35

Mode Method
Accuracy Score

(ACC)
Matthews Correlation Coefficient

(MCC)

RGB

InsightFace: IResNet34
(MS1MV2)

0.506 0.437

Bilinear-InsightFace: IResNet34
(MS1MV2)

0.612 0.550

InsightFace: IResNet100
(MS1MV2)

0.629 0.578

Bilinear-InsightFace: IResNet100
(MS1MV2)

0.718 0.675

Pseudo RGB-D

InsightFace: IResNet34
(MS1MV2)

0.514 0.451

Bilinear-InsightFace: IResNet34
(MS1MV2)

0.620 0.563

InsightFace: IResNet100
(MS1MV2)

0.559 0.498

Bilinear-InsightFace: IResNet100
(MS1MV2)

0.678 0.625
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Table 5.7: InsightFace Performance @Training: 55; Testing: 30

Mode Method
Accuracy Score

(ACC)
Matthews Correlation Coefficient

(MCC)

RGB

InsightFace: IResNet34
(MS1MV2)

0.581 0.517

Bilinear-InsightFace: IResNet34
(MS1MV2)

0.610 0.546

InsightFace: IResNet100
(MS1MV2)

0.719 0.675

Bilinear-InsightFace: IResNet100
(MS1MV2)

0.742 0.702

Pseudo RGB-D

InsightFace: IResNet34
(MS1MV2)

0.562 0.495

Bilinear-InsightFace: IResNet34
(MS1MV2)

0.610 0.547

InsightFace: IResNet100
(MS1MV2)

0.657 0.604

Bilinear-InsightFace: IResNet100
(MS1MV2)

0.657 0.601

Table 5.8: FaceNet Performance @Training: 45; Testing: 40

Mode Method
Accuracy

(ACC)
Matthews correlation coefficient

(MCC)

RGB

FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.411 0.352

Bilinear-FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.407 0.323

FaceNet: Inception ResNet v1
(VGG-Face2)

0.382 0.322

Bilinear-FaceNet: Inception ResNet v1
(VGG-Face2)

0.454 0.372

Pseudo RGB-D

FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.357 0.284

Bilinear-FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.421 0.342

FaceNet: Inception ResNet v1
(VGG-Face2)

0.375 0.297

Bilinear-FaceNet: Inception ResNet v1
(VGG-Face2)

0.404 0.340
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Table 5.9: FaceNet Performance @Training: 50; Testing: 35

Mode Method
Accuracy

(ACC)
Matthews correlation coefficient

(MCC)

RGB

FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.400 0.309

Bilinear-FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.420 0.332

FaceNet: Inception ResNet v1
(VGG-Face2)

0.408 0.331

Bilinear-FaceNet: Inception ResNet v1
(VGG-Face2)

0.314 0.218

Pseudo RGB-D

FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.404 0.311

Bilinear-FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.469 0.390

FaceNet: Inception ResNet v1
(VGG-Face2)

0.404 0.322

Bilinear-FaceNet: Inception ResNet v1
(VGG-Face2)

0.298 0.238

Table 5.10: FaceNet Performance @Training: 55; Testing: 30

Mode Method
Accuracy

(ACC)
Matthews correlation coefficient

(MCC)

RGB

FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.376 0.298

Bilinear-FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.519 0.459

FaceNet: Inception ResNet v1
(VGG-Face2)

0.386 0.292

Bilinear-FaceNet: Inception ResNet v1
(VGG-Face2)

0.419 0.331

Pseudo RGB-D

FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.381 0.320

Bilinear-FaceNet: Inception ResNet v1
(CASIA-WebFace)

0.552 0.483

FaceNet: Inception ResNet v1
(VGG-Face2)

0.390 0.324

Bilinear-FaceNet: Inception ResNet v1
(VGG-Face2)

0.371 0.306
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Figure 5.10: Simulated multimodal facial image processing framework for en-
hanced performance

training data.

5.3 Simulated Multimodal Deep Facial Diagno-

sis

In the last chapter, we used the pseudo RGB-D face recognition framework in the

face diagnosis task. But the results show that the pseudo RGB-D face recognition

framework does not improve performance for every selected model. In order to

better utilize the pseudo-depth generated, we propose a simulated multimodal

facial image processing framework, which is shown as Figure 5.10.

It makes RGB images to generate multiple simulated multi-modal images

through the generative model and image fusion strategies, and trains and predicts

the simulated multi-modal images respectively. It obtains the final prediction re-
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sult through weighted majority voting of individual results. Behind this approach

lies the thought of self-evolution.

In our practice, this method has a significant improvement over the RGB face

diagnosis. In our embodiment, we use D+GAN to generate the pseudo-depth

map, and perform the wavelet soft-thresholding image fusion aforementioned be-

fore on the pseudo-depth map with 2 different strategies.

Strategy 1 is to use the mean value for both low-frequency and high-frequency

parts of the two images. By Strategy 1, we get Pseudo RGB-D 1 images.

Strategy 2 is that in the part of high-frequency coefficients, the wavelet coef-

ficients with large absolute values in the two pictures are applied; in the part of

low-frequency coefficients, the mean wavelet coefficients of the two pictures are

applied. Through Strategy 2, we get Pseudo RGB-D 2 images.

In our embodiment, we have four modes of images which are RGB images,

Pseudo RGB-D 1 images, Pseudo RGB-D 2 images and pseudo-depth images

to perform training and predicting respectively. Four modes of image examples

are displayed in Figure 5.11. For comparison, all models were trained for 150

epochs with a low learning rate, and their loss functions all converged. The final

prediction results are obtained by weighted majority voting of the predictions

from each model. The prediction weights assigned are positively correlated with

the accuracy of the models on the training set.

5.3.1 Experimental Results and Analysis

For a more comprehensive assessment, three different cases are performed. Case 1

is that 45 images of each category for training, and 40 images of each category for

testing. Case 2 is that 50 images of each category for training, and 35 images of

each category for testing. Case 3 is that 55 images of each category for training,

and 30 images of each category for testing. For fair comparison, the training
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Figure 5.11: Simulated multimodal image samples in DSF2 dataset
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period of all models in this section is set to 200 epochs.

Figures 5.12-5.17 visually illustrate the performance changes of various models

under different modes.

In an experiment using the FaceNet: Inception ResNet v1 (CASIA-Webface)

model, with each category containing 45 training images and 40 testing images,

the simulated multimodal framework improved the ACC by 0.73% and the MCC

by 0.85% in comparison to the RGB mode, as demonstrated in Figures 5.12 and

5.13.

In an experiment using the bilinear FaceNet: Inception ResNet v1 (CASIA-

Webface) model, with each category containing 45 training images and 40 testing

images, the simulated multimodal framework improved the ACC by 14.00% and

the MCC by 18.58% in comparison to the RGB mode, as demonstrated in Figures

5.12 and 5.13.

In an experiment using the FaceNet: Inception ResNet v1 (VGG-Face2)

model, with each category containing 45 training images and 40 testing images,

the simulated multimodal framework improved the ACC by 3.66% and the MCC

by 3.11% in comparison to the RGB mode, as demonstrated in Figures 5.12 and

5.13.

In an experiment using the bilinear FaceNet: Inception ResNet v1 (VGG-

Face2) model, with each category containing 50 training images and 35 testing

images, the simulated multimodal framework improved the ACC by 2.86% and

the MCC by 5.09% in comparison to the RGB mode, as demonstrated in Figures

5.14 and 5.15.

In an experiment using the InsightFace: IResNet34 (MS1MV2) model, with

each category containing 45 training images and 40 testing images, the simulated

multimodal framework improved the ACC by 0.72% and the MCC by 0.60% in

comparison to the RGB mode, as demonstrated in Figures 5.12 and 5.13.
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Figure 5.12: Accuracy of Simulated Multimodal Framework for Facial Diagnosis
in Case 1

In an experiment using the bilinear InsightFace: IResNet34 (MS1MV2) model,

with each category containing 45 training images and 40 testing images, the

simulated multimodal framework improved the ACC by 10.24% and the MCC by

13.16% in comparison to the RGB mode, as demonstrated in Figures 5.12 and

5.13.

In an experiment using the InsightFace: IResNet100 (MS1MV2) model, with

each category containing 45 training images and 40 testing images, the simulated

multimodal framework reduced the ACC by 7.71% and the MCC by 9.76% in

comparison to the RGB mode, as demonstrated in Figures 5.12 and 5.13.

In an experiment using the bilinear InsightFace: IResNet100 (MS1MV2)

model, with each category containing 45 training images and 40 testing images,

the simulated multimodal framework improved the ACC by 1.41% and the MCC

by 1.65% in comparison to the RGB mode, as demonstrated in Figures 5.12 and

5.13.
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Figure 5.13: MCC of Simulated Multimodal Framework for Facial Diagnosis in
Case 1

In an experiment using the FaceNet: Inception ResNet v1 (CASIA-Webface)

model, with each category containing 50 training images and 35 testing images,

the simulated multimodal framework improved the ACC by 15.25% and the MCC

by 22.65% in comparison to the RGB mode, as demonstrated in Figures 5.14 and

5.15.

In an experiment using the bilinear FaceNet: Inception ResNet v1 (CASIA-

Webface) model, with each category containing 50 training images and 35 testing

images, the simulated multimodal framework improved the ACC by 2.34% and

the MCC by 2.79% in comparison to the RGB mode, as demonstrated in Figures

5.14 and 5.15.

In an experiment using the FaceNet: Inception ResNet v1 (VGG-Face2)

model, with each category containing 50 training images and 35 testing images,

the simulated multimodal framework improved the ACC by 12.01% and the MCC
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by 16.92% in comparison to the RGB mode, as demonstrated in Figures 5.14 and

5.15.

In an experiment using the bilinear FaceNet: Inception ResNet v1 (VGG-

Face2) model, with each category containing 50 training images and 35 testing

images, the simulated multimodal framework improved the ACC by 6.69% and

the MCC by 10.55% in comparison to the RGB mode, as demonstrated in Figures

5.14 and 5.15.

In an experiment using the InsightFace: IResNet34 (MS1MV2) model, with

each category containing 55 training images and 30 testing images, the simulated

multimodal framework improved the ACC by 3.17% and the MCC by 5.25% in

comparison to the RGB mode, as demonstrated in Figures 5.14 and 5.15.

In an experiment using the bilinear InsightFace: IResNet34 (MS1MV2) model,

with each category containing 50 training images and 35 testing images, the

simulated multimodal framework improved the ACC by 10.67% and the MCC by

14.00% in comparison to the RGB mode, as demonstrated in Figures 5.14 and

5.15.

In an experiment using the InsightFace: IResNet100 (MS1MV2) model, with

each category containing 50 training images and 35 testing images, the simulated

multimodal framework reduced the ACC by 1.27% and the MCC by 1.56% in

comparison to the RGB mode, as demonstrated in Figures 5.14 and 5.15.

In an experiment using the bilinear InsightFace: IResNet100 (MS1MV2)

model, with each category containing 50 training images and 35 testing images,

the simulated multimodal framework improved the ACC by 3.48% and the MCC

by 3.39% in comparison to the RGB mode, as demonstrated in Figures 5.14 and

5.15.

In an experiment using the FaceNet: Inception ResNet v1 (CASIA-Webface)

model, with each category containing 55 training images and 30 testing images,
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Figure 5.14: Accuracy of Simulated Multimodal Framework for Facial Diagnosis
in Case 2

Figure 5.15: MCC of Simulated Multimodal Framework for Facial Diagnosis in
Case 2
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the simulated multimodal framework improved the ACC by 16.18% and the MCC

by 24.83% in comparison to the RGB mode, as demonstrated in Figures 5.16 and

5.17.

In an experiment using the bilinear FaceNet: Inception ResNet v1 (CASIA-

Webface) model, with each category containing 55 training images and 30 testing

images, the simulated multimodal framework improved the ACC by 12.91% and

the MCC by 14.60% in comparison to the RGB mode, as demonstrated in Figures

5.16 and 5.17.

In an experiment using the FaceNet: Inception ResNet v1 (VGG-Face2)

model, with each category containing 55 training images and 30 testing images,

the simulated multimodal framework improved the ACC by 8.55% and the MCC

by 14.38% in comparison to the RGB mode, as demonstrated in Figures 5.16 and

5.17.

In an experiment using the bilinear FaceNet: Inception ResNet v1 (VGG-

Face2) model, with each category containing 55 training images and 30 testing

images, the simulated multimodal framework improved the ACC by 10.26% and

the MCC by 16.31% in comparison to the RGB mode, as demonstrated in Figures

5.16 and 5.17.

In an experiment using the InsightFace: IResNet34 (MS1MV2) model, with

each category containing 55 training images and 30 testing images, the simulated

multimodal framework improved the ACC by 2.41% and the MCC by 3.10% in

comparison to the RGB mode, as demonstrated in Figures 5.16 and 5.17.

In an experiment using the bilinear InsightFace: IResNet34 (MS1MV2) model,

with each category containing 55 training images and 30 testing images, the

simulated multimodal framework improved the ACC by 6.25% and the MCC by

8.24% in comparison to the RGB mode, as demonstrated in Figures 5.16 and

5.17.
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Figure 5.16: Accuracy of Simulated Multimodal Framework for Facial Diagnosis
in Case 3

In an experiment using the InsightFace: IResNet100 (MS1MV2) model, with

each category containing 55 training images and 30 testing images, the simulated

multimodal framework improved the ACC by 0.70% and the MCC by 0.88% in

comparison to the RGB mode, as demonstrated in Figures 5.16 and 5.17.

In an experiment using the bilinear InsightFace: IResNet100 (MS1MV2)

model, with each category containing 55 training images and 30 testing images,

the simulated multimodal framework improved the ACC by 0.63% and the MCC

by 0.60% in comparison to the RGB mode, as demonstrated in Figures 5.16 and

5.17.

The experimental results for the three cases are listed in Tables 5.11-5.13.

From the tables, it is observed that for the SM mode enhancing the RGB mode,

out of the 24 experiments conducted, only one case did not show any improve-

ment, which resulted in an effectiveness rate of 95.83%. In these 24 experiments,

the ACC improved by an average of approximately 6.22%, while the MCC im-
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Figure 5.17: MCC of Simulated Multimodal Framework for Facial Diagnosis in
Case 3

proved by an average of about 8.67%. From the tables, it is observed that in terms

of the improvement effect of the SM mode and the bilinear structure model on

the RGB mode and non-bilinear structure models, only one out of 12 experiments

showed no improvement, leading to an effectiveness rate of 91.67%. Moreover, in

these 12 experiments, the ACC improved by an average of approximately 19.97%,

and the MCC improved by an average of about 25.50%.
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Table 5.11: Comparison results of models in Case 1

Train-test split ratio Model Evaluation metrics
Mode

RGB SM

45:40

FaceNet (CASIA-Webface)
ACC 41.07% 41.43%
MCC 0.3523 0.3548

Bilinear FaceNet (CASIA-Webface)
ACC 40.71% 45.35%
MCC 0.3226 0.3740

FaceNet (VGG-Face2)
ACC 38.24% 39.64%
MCC 0.3224 0.3320

Bilinear FaceNet (VGG-Face2)
ACC 45.36% 46.79%
MCC 0.3726 0.3920

InsightFace: IResNet34
(MS1MV2)

ACC 55.71% 56.07%
MCC 0.4975 0.4998

Bilinear InsightFace: IResNet34
(MS1MV2)

ACC 59.64% 65.71%
MCC 0.5319 0.6015

InsightFace: IResNet100
(MS1MV2)

ACC 55.71% 60.00%
MCC 0.4918 0.5431

Bilinear InsightFace: IResNet100
(MS1MV2)

ACC 71.07% 72.14%
MCC 0.6666 0.6780

Table 5.12: Comparison results of models in Case 2

Train-test split ratio Model Evaluation metrics
Mode

RGB SM

50:35

FaceNet (CASIA-Webface)
ACC 40.00% 46.11%
MCC 0.3091 0.3789

Bilinear FaceNet (CASIA-Webface)
ACC 52.65% 53.78%
MCC 0.4660 0.4791

FaceNet (VGG-Face2)
ACC 40.82% 45.71%
MCC 0.3306 0.3874

Bilinear FaceNet (VGG-Face2)
ACC 31.43% 33.47%
MCC 0.2178 0.2407

InsightFace: IResNet34
(MS1MV2)

ACC 50.61% 52.24%
MCC 0.4378 0.4612

Bilinear InsightFace: IResNet34
(MS1MV2)

ACC 61.22% 67.76%
MCC 0.5500 0.6274

InsightFace: IResNet100
(MS1MV2)

ACC 62.86% 62.04%
MCC 0.5775 0.5686

Bilinear InsightFace: IResNet100
(MS1MV2)

ACC 71.84% 74.29%
MCC 0.6747 0.7009
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5.3 Simulated Multimodal Deep Facial Diagnosis

Table 5.13: Comparison results of models in Case 3

Train-test split ratio Model Evaluation metrics
Mode

RGB SM

55:30

FaceNet (CASIA-Webface)
ACC 37.62% 43.81%
MCC 0.2985 0.3723

Bilinear FaceNet (CASIA-Webface)
ACC 51.90% 58.57%
MCC 0.4587 0.5255

FaceNet (VGG-Face2)
ACC 38.57% 41.90%
MCC 0.2917 0.3341

Bilinear FaceNet (VGG-Face2)
ACC 41.90% 46.19%
MCC 0.3310 0.3854

InsightFace: IResNet34
(MS1MV2)

ACC 58.10% 59.52%
MCC 0.5169 0.5326

Bilinear InsightFace: IResNet34
(MS1MV2)

ACC 60.95% 64.76%
MCC 0.5463 0.5906

InsightFace: IResNet100
(MS1MV2)

ACC 71.90% 72.38%
MCC 0.6754 0.6808

Bilinear InsightFace: IResNet100
(MS1MV2)

ACC 74.29% 74.76%
MCC 0.7018 0.7060
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Chapter 6

Discussion

”Disease”, ”disorder”, ”syndrome”, and ”condition” are terms often interchange-

ably used in daily use. However, in medical terminology, they bear slightly dif-

ferent meanings. These definitions are not strict, and their usage can overlap and

vary among medical providers. A disease typically refers to an abnormality in

body function or structure caused by specific etiological factors such as bacteria,

viruses, environmental influences, etc. Diseases usually present with clear symp-

toms and signs that can be definitively diagnosed through medical examination,

such as pneumonia and diabetes. Nevertheless, it’s also important to note that

in some contexts, the term ”disease” may be used more broadly to encompass

various long-term or short-term physical or mental health issues. The term ”con-

dition” is a very general term and can be used to describe any situation that

affects an individual’s state of health, regardless of its severity. Diseases, disor-

ders, and syndromes can all be classified as conditions. Therefore, in this thesis,

we tend to use of the term ”condition”.

In the field of facial diagnosis, the amount of data used in various studies

varies greatly. In most cases, no more than 100 facial images are available for each

condition category. Many studies do not clearly specify the number of images used
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6.1 Ethical Discussion

for training and testing. Furthermore, the majority of the datasets are private

and not publicly accessible. For binary classification tasks, the models reported

in the literature generally perform well. However, for multi-classification tasks,

there is a substantial discrepancy in the publicly reported recognition results,

with accuracy rates ranging from 48% to 93%. Due to these factors, there are

doubts surrounding the findings of many research studies, yet it is not possible

to verify them.

In the field of facial diagnosis, due to the scarcity of training data, we first

proposed and applied transfer learning from facial recognition tasks and achieved

good results. Facial recognition is a relatively mature research field, and many

models have reached recognition accuracies of over 99.5% in various datasets,

leaving limited room for improvement. Inspired by depth estimation, we utilized

pseudo-depth to enhance facial recognition performance with a limited number

of training images. In the expanded facial diagnosis task dataset, the recog-

nition task is more difficult, and using only pseudo-depth does not guarantee

improved results in every experiment. Therefore, we introduced the concept of

fine-grained classification and employed a bilinear model structure. In combina-

tion with pseudo-depth, facial diagnosis performance is improved in most cases.

However, the improvement still has a certain degree of probability. Based on this,

we proposed a simulated multimodal structure, using the same processing model

structure for recognition comparison, to increase the likelihood of improvement.

The research results are reproducible.

6.1 Ethical Discussion

In recent years, computer-aided facial diagnosis has emerged as a promising tool

in the field of healthcare, enabling the identification of various diseases and con-
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6.1 Ethical Discussion

ditions based on facial features. While this technology offers significant benefits

in terms of diagnostic efficiency and accuracy, it also raises a number of ethical

considerations that must be addressed before widespread adoption. These con-

siderations include patient privacy and data security, potential bias in algorithms,

informed consent, overreliance on the technology, transparency, interdisciplinary

collaboration, potential misuse, and accessibility.

To harness the potential of computer-aided facial diagnosis while upholding

the highest standards of patient care and privacy, it is crucial to engage in ongoing

ethical discussions and assessments. This includes monitoring the technology’s

impact on patient care, ensuring diverse and representative datasets, obtaining

consent from patients, fostering transparency in algorithm development, promot-

ing interdisciplinary collaboration among experts, and addressing accessibility

concerns in resource-limited settings. By maintaining an ongoing dialogue and

implementing appropriate safeguards, it is possible to leverage the benefits of

computer-aided facial diagnosis while mitigating potential risks and upholding

the highest ethical standards.
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Chapter 7

Conclusion

In the Deep Facial Diagnosis section, we propose the use of deep transfer learning

from face recognition to perform facial diagnosis, achieving better results than

those obtained using traditional methods. In the Pseudo RGB-D Face Recog-

nition section, we propose a pseudo RGB-D facial image processing framework,

with core components including pseudo-depth generation, RGB-D image fusion,

and feature extraction. To generate more accurate depth maps, we also propose

a generative adversarial network, D+GAN, for multi-conditional image-to-image

translation using face attributes. In the Pseudo RGB-D Face Recognition sec-

tion, the combination of D+GAN and NSST results in an overall improvement

compared to RGB face recognition. In the Pseudo RGB-D Facial Diagnosis sec-

tion, we propose applying the Pseudo RGB-D Face Image Processing to facial

diagnosis. Specifically, we use wavelet-based soft thresholding image fusion in

the image fusion part, and introduce the idea of fine-grained classification in the

feature extraction part. We employ bilinear InsightFace and FaceNet models for

training and testing to further improve the accuracy of facial diagnosis for the

six conditions under consideration.

In order to extract 3D spatial features from 2D RGB images and utilize these
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features, we propose a pseudo RGB-D face image processing framework. The

advantages of this framework include the modular selection of algorithms for core

components, as well as the ability to fully leverage pre-trained models. This is

particularly important in the facial diagnosis task, where training data is scarce.

It is essential to make the most of pre-trained models, originally designed for face

recognition, to obtain a new inference model for facial diagnosis.

In order to more effectively utilize pseudo-depth features, we propose the

Simulated Multimodal Framework, which is an improved pseudo RGB-D facial

image processing framework designed to enhance performance. We introduce

early fusion and late fusion strategies into the Pseudo RGB-D facial image pro-

cessing framework for individual training and prediction of RGB, pseudo-depth,

and pseudo RGB-D images, followed by weighted majority voting. Experimental

results show that this approach significantly improves the performance of RGB

face diagnosis with high probability.

In future work, we plan to collect more real-world data for training and testing

facial diagnosis models and prepare the necessary software and hardware for prac-

tical applications in society. Furthermore, the Simulated Multimodal Framework

proposed is not limited to the field of computer-aided facial diagnosis; we believe

it has significant potential in other domains, such as autonomous driving and

target tracking, for classification and detection tasks. We will collaborate with

various research departments to apply and evaluate the Simulated Multimodal

Framework in these contexts.
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