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Abstract

In the last recent years, machine learning techniques have occupied a great space
in order to solve problems in the areas related to perception systems applied to au-
tonomous driving and advanced driver-assistance systems, such as: road users detection,
traffic signal recognition, road detection, multiple object tracking, lane detection, scene
understanding. In this way, a large number of techniques have been developed to
cope with problems belonging to sensory perception field. Currently, deep network
is the state-of-the-art for object recognition, begin softmax and sigmoid functions as
prediction layers. Such layers often produce overconfident predictions rather than
proper probabilistic scores, which can thus harm the decision-making of “critical”
perception systems applied in autonomous driving and robotics. Given this, we propose
a probabilistic approach based on distributions calculated out of the logit layer scores
of pre-trained networks which are then used to constitute new decision layers based
on Maximum Likelihood (ML) and Maximum a-Posteriori (MAP) inference. We
demonstrate that the hereafter called ML and MAP functions are more suitable for
probabilistic interpretations than softmax and sigmoid-based predictions for object
recognition, where our approach shows promising performance compared to the usual
softmax and sigmoid functions, with the benefit of enabling interpretable probabilistic
predictions. Another advantage of the approach introduced in this thesis is that the
so-called ML and MAP functions can be implemented in existing trained networks,
that is, the approach benefits from the output of the logit layer of pre-trained networks.
Thus, there is no need to carry out a new training phase since the ML and MAP
functions are used in the test/prediction phase. To validate our methodology, we
explored distinct sensor modalities via RGB images and LiDARs (3D point clouds,
range-view and reflectance-view) data from the KITTI dataset. The range-view and
reflectance-view modalities were obtained by projecting the range/reflectance data to
the 2D image-plane and consequently upsampling the projected points. The results
achieved by the proposed approach were presented considering the individual modalities
and through the early and late fusion strategies.
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Resumo

Nos últimos anos, as técnicas de aprendizagem de máquina têm ocupado um grande
espaço para solucionar problemas nas áreas relacionadas com sistemas de perceção
aplicados à direção autónoma e sistemas avançados de assistência ao motorista, tais
como: detecção de utilizadores de vias, reconhecimento de sinais de trânsito, deteção
de vias, rastreamento de múltiplos objetos, deteção de pista, compreensão de cena.
Desta forma, um grande número de técnicas tem sido desenvolvido para lidar com
problemas pertencentes ao campo da perceção sensorial. Atualmente, deep network é
o estado da arte para reconhecimento de objetos, iniciando funções softmax e sigmoid
como camadas de previsão. Essas camadas geralmente produzem previsões de excesso
de confiança em vez de pontuações probabilísticas adequadas, o que pode prejudicar a
tomada de decisões de sistemas de perceção “críticos” aplicados em direção autónoma
e robótica. Diante disso, propomos uma abordagem probabilística baseada em dis-
tribuições calculadas a partir dos scores (pontuações da saída) da camada logit de
redes pré-treinadas que são então utilizadas para constituir novas camadas de decisão
baseadas na inferência de Máxima Verossimilhança (ML) e Máxima a-Posteriori (MAP).
Demonstramos que as funções ML e MAP daqui em diante são mais adequadas para
interpretações probabilísticas do que previsões baseadas em softmax e sigmoid para
reconhecimento de objetos, onde a nossa abordagem mostra um desempenho promissor
em comparação com as funções usuais de softmax e sigmoid, com o benefício de permitir
previsões probabilísticas interpretáveis. Outra vantagem da abordagem apresentada
nesta tese é que as chamadas funções ML e MAP podem ser implementadas em
redes já treinadas, ou seja, a abordagem beneficia da saída da camada logit de redes
pré-treinadas. Assim, não há necessidade de realizar uma nova fase de treino, uma vez
que as funções ML e MAP são utilizadas na fase de teste/previsão. Para validar a
nossa metodologia, exploramos modalidades distintas de sensores por meio de imagens
RGB e dados LiDARs (3D point clouds, range-view e reflectance-view) do conjunto de
dados KITTI. As modalidades range-view e reflectance-view foram obtidas projetando
os dados de alcance/refletância para o plano de imagem 2D e, consequentemente,
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upsampling dos pontos projetados. Os resultados alcançados pela abordagem proposta
foram apresentados considerando as modalidades individuais e por meio das estratégias
de fusão “early” e “late”.

Palavras-chave: Predições com excesso de confiança; Arquiteturas de redes neuronais
profundas; Sistemas de perceção; Sistemas de condução autónoma; Reconhecimento de
objetos.
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2 Introduction

1.1 Brief History of Autonomous Driving

In recent years, artificial intelligence and machine learning have achieved remarkable
results in perception systems applied to intelligent vehicles (IV) and/or autonomous
vehicles (AV) domains [49, 25, 177, 218], which allows practical applications for the
automotive industry and beyond. Autonomous driving, as known today, dates back to
the 80’s, namely 1986, when the research groups of Ernst Dickmanns, at the Bundeswehr
University Munich-Germany, and the Navlab at the Carnegie Mellon University-USA
presented the first vehicles capable of autonomous driving. Besides being an actual
vehicle, Navlab was also a ‘living-lab’ navigation system [98, 177, 218].

Some of the fundamental pillars of autonomous driving research, however, arose
well before the 1980s [98, 134, 245, 145]. In 1925, the inventor Francis P. Houdina
presented a prototype of driverless vehicle known as American Wonder1 [98, 145].
Decades later, General Motors presented some prototypes in 1939 and 1956 in addition
to the ones from Radio Company of America Labs in 1960, and so the Citroen DS
19 and Cabinentaxi of Demag/MBB in 1970 [98, 114]. Since then, research activities
involving autonomous driving have reached remarkable achievements, for example:
security drivers to monitor car operation, vehicle driving autonomously, and passenger
transport without a driver [49, 217, 52, 45, 26, 58, 257, 80, 222], including the Drive.ai2,
and Waymo (that has already been deployed as a driverless taxi3).

Some examples of autonomous vehicles are shown in Fig. 1.1. Fig. 1.1a illustrates
the Navlab’s self-driving car [218] proposed in 1986. The Google’s self-driving car
(Toyota Priuses4, in Fig. 1.1b, tested on highways around the years 2010 and 2011) is
equipped with a Velodyne 64-beam laser (LiDAR-Light Detection and Ranging) as
one of the main sensors in addition to the global positioning system (GPS), RADAR
(Radio Detection and Ranging), and wheel encoder5 [80]. Fig. 1.1c shows the Boss
car6 that won the 2007 DARPA Urban Challenge. This car contains several sensors:
LiDARs, GPS, Inertial Measurement Units (IMU), RADARs and cameras. Lastly,
the most recent Waymo car (tested on highways around the years 2020 and 2021),
developed by Google, is shown in Fig. 1.1d.

1http://content.time.com/time/subscriber/article/0,33009,720720,00.html
2Drive.ai was acquired by Apple Inc in 2019.
3https://waymo.com/waymo-one, Accessed on 07/22/2021.
4https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-

car-works, Accessed on 07/22/2021.
5The encoder measures the car movement in order to obtain a better estimation of its position.
6The name Boss is in honor of Charles Boss Kettering, the researcher who developed all-electric

starters for cars, Freon refrigerant and the incubator for premature babies.
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(a) The Navlab’s self-driving car [218]. (b) The Google’s self-driving car [80].

(c) The Boss’s autonomous vehicle [222]. (d) The Waymo’s self-driving car [232].

Fig. 1.1 Landmark examples of autonomous driving vehicles, from 1986 to 2021.

It is evident that the development of autonomous vehicles and the circulation of
such vehicles on highways obey specific and existing regulations of each region7, as
the legislation proposed by the National Highway Traffic Safety Administration-USA8

since 1996 [208], as well as the rules defined by Society of Automotive Engineers (SAE)
in 2014, considering 6 levels of autonomy9 [98]:

• Level 0 (no automation): the driver is responsible for all the driving, additionally,
monitoring all the environment. For example: most of the cars produced in the
previous decades.

7https://path.berkeley.edu/sites/default/files/ahs-milestone_2_report_task-c21.pdf. Accessed on
01/29/2021.

8https://www.federalregister.gov/agencies/national-highway-traffic-safety-administration. Ac-
cessed on 01/29/2021.

9www.sae.org/standards/content/j3016_201806. Accessed on 01/29/2021.
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• Level 1 (driving assistant-DA): the vehicle system provides information to the
driver in order to avoid accidents. For example: parking sensors and automatic
emergency braking.

• Level 2 (partial automation): the driving system includes speed, direct-drive
mechanism, and brake. However, the driver is responsible for monitoring the
environment. For example: Tesla Autopilot, Audi Traffic Jam, and Volvo Pilot
Assistant.

• Level 3 (conditional automation): the driving system may be able to participate
in the driving tasks and also monitors the environment. Nevertheless, the driver
must be attentive and assume when requested. Level 3 requires ideal roads and
limited access. For instance: Audi AL8, Mercedez-Benz S-Class, and Honda
Legend.

• Level 4 (high automation): the system allows the vehicle to perform in driving
activities, such as accelerating, braking, monitoring the environment, operating
actions when detecting certain on-road obstacles, as well as changing lanes.
Nonetheless, such level of autonomy requires highways with ideal conditions. For
example: Google’s Waymo project in the U.S.

• Level 5 (full automation): this level presents, in driving system all the character-
istics of level 4, as well as the ability to decision-making in dynamic environments
(traffic jams) and the system does not actually require human intervention. For
example: Audi’s AI:CON and Google’s Waymo projects under specific conditions
(self-parking).

In addition to the definitions related to the autonomy levels, the IV/AV can be
characterized according to the safety control functions (acceleration and braking) with
regard to the driver and the driving system [51]:

• DA - Driving Assistant: it provides additional and complementary information
to the driver to improving driving performance in terms of safety and efficiency.

• CS - Convoy Systems: the goal is the development of automated delivery convoys
(vehicles “in line”) in which the main vehicle is driven by a human operator, but
the subsequent vehicles on the convoy are autonomously operated.
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• ADS - Autonomous Driving System: the ultimate aim is replacing the human
driver of the driving tasks, and then making the individual vehicle driverless or
autonomous.

• AHS - Autonomous Highway System: the key principle that governs the AHS
is by considering the entire highway as a unified-system which autonomously
controls groups/fleet of vehicles.

On the other hand, a widely used concept in the studies of intelligent and/or
automated vehicles includes, to some extent, the previous categories [98, 247, 43, 99,
41, 144]:

• ADAS - Advanced Driver Assistance System: a system that supports monitoring
and alerting/warning, as well as breaking tasks, based on automated function-
alities including advanced sensors and artificial intelligence/machine learning
(AI/MLear) techniques.

The development of automated driving, whether or not equipped with one or
more ADAS, DA, CS, ADS, AHS systems, typically comprises a combination of four
key modules (or systems): perception (to capture data, including sensor-fusion,
and interpret environment/surrounding conditions), localization (to define its own
position and state), planning (to set the trajectory, plan the mission), and control (to
ensure proper decisions/actions and safety). Among the key modules, this thesis deals
with some of the machine learning components belonging to a perception system and
concentrates on the classification scores (or top-label scores) of detected objects - which
can be related to the confidence level - delivered by an object recognition module. Note
that many studies of perception systems involving object recognition algorithms do not
always provide the level of confidence about the object classification predictions i.e., the
score values do not reflect the certainty or uncertainty of classification, especially when
the object is misclassified. Therefore, perception systems should not (ideally) make
confusion regarding classification-score of a detected object with classification certainty-
level because in extremis a classification error can lead to a fatality. Wherefore, object
recognition inserted in the perception system module needs special attention.

1.2 Perception System

Autonomous driving encompasses several components and modules. It consists of
connecting a “multitude” of hardware and software technologies. In terms of software,
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Fig. 1.2 Autonomous driving system architecture.

generally the architecture of an autonomous driving system can be represented by
modules to process the data, the client system, and the cloud platform, according to
Fig. 1.2 [134]. The software-modules decode information from the sensor data in order
to comprehend the environment around the autonomous vehicle then, enabling decision-
making about current and future events. The client system is responsible for ensuring
that the information’s processing-pipeline is shorter than the sensors’ information
captured in time. Meanwhile, the cloud platform enables offline computing of data
storage, as well as training/updating software, updating data, such as high-definition
maps (HD maps10), and finally improving decision models.

Sensor wise, autonomous vehicles typically comprise several sensors as follows: GPS,
IMU, LiDAR, cameras and RADAR. Both GPS and IMU contribute to localize the
autonomous vehicles themselves (inertial and global position estimation) and do not
contribute directly on perception. Cameras and LiDARs, the standard perception
sensors, can provide information about which objects are in the environment, as well as
their position. Finally, RADAR provide information about object distances and speed
as well. The data obtained from the sensors are processed by a perception system in
order to understand the environment surrounding the vehicle. Simultaneously, it is
able to decode information such as localization, detection, tracking objects, among
others. As the information is gathered, the perception system makes a decision
in “real time”, taking into account path planning, action prediction, and obstacle
avoidance [98, 134, 245, 145].

10Briefly, the pipeline involves processing raw data, depth information, 2D reflectance map, labels
and finally the high-definition map (information about roads and structures, and it allows an accurate
location of the vehicle).
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All information obtained from the sensors should be ideally processed in real time,
that is to say, the system of an autonomous vehicle should guarantee the processing in
a shorter time than the update rates of the information provided by the sensors, and
possibly guaranteeing the robustness during information processing (ability to recover
from possible failures). The processing speed and the robustness of the system depend
on the operating system and the components contained in the hardware platform
(processors, GPUs, and power sources). In addition to the information from sensors
and data processing, autonomous vehicles rely on cloud platforms keeping themselves
updated, which include the use of new algorithms after simulations, production of
high-definition maps and training models (deep learning). In fact, cloud platforms
allow autonomous vehicles to process large amounts of sensor data and make real-time
decisions [98, 134, 245, 145].

Regardless the number of sensors that contributes to the autonomous driving and
decision-making, the development of a sensory perception system, including fusion
strategies based on the information captured by the sensors seems to be essential
to ensure the safety among road users and thus reduce the number of accidents
i.e., avoiding mistakes (fatalities and injuries) that might be caused by a lack of
human perception while driving. Regarding safety, the modern deep learning based
perception algorithms still tend to generalize in overconfident way on out-of-training-
distribution test data. Besides, deep models are prone to providing overconfident results
even for miss-classified objects consequently, which may have critical implications in
safety [146, 81, 63].

1.3 Motivation and the Relevant Aspects of Per-
ception Systems for IV/AV

According to WHO Global status report11, 392.904 car occupants, 40.646 cyclists,
379.356 motorcycles, and 311.614 pedestrians died in 2020. Approximately more than
1,3 million people die every year on road traffic and millions live with several health
problems as consequence of the accidents. Fig.1.3 illustrates the distribution of deaths
among road users [234]. Note that the casualties by car occupants are higher in
almost all regions. In fact, related deaths by occupants of motor vehicles (cars and
motorcycles) are higher in all regions. The death rate among the most vulnerable road

11https://extranet.who.int/roadsafety/death-on-the-roads/#ticker/pedestrians. Accessed on 02/01/
2021.
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Fig. 1.3 Distribution of road traffic deaths by road user. Source [234].

users (pedestrian, cyclist and motorcyclists) is quite aggravating, exceeding 50% of
road fatal losses.

In the last years, 123 countries have adopted regulations and strategies to reduce
road accidents, such as encouraging the seatbelts use, limiting the concentration of
alcohol per liter of blood, speed control rules, the use of helmets by motorcyclists
and regulations on children safety in cars [234]. Nevertheless, although it reduces the
damage caused by road accidents by applying laws or educational campaigns, such
restrictions do not entirely solve the problem. Thus, perception systems and ADAS
technologies with applications in AV/IV are expected to be an important step to avoid
road accidents. Also, such technologies are useful to assist disabled people using these
vehicles (by means of intelligent mobility technologies), to improve road traffics by
reducing distances between vehicles and, lastly, to help drivers to do other activities
during a certain route.

Although valuable and promising to undertake mitigation actions to increase safety,
a sensory perception is not simple. They may suffer from lighting and occlusion,
false positives and missing detection, poor probabilistic interpretation, also lack the
detection of “non-rigid” entities e.g., they may still suffer from articulation of the
pedestrians’ body [142, 4, 53, 160]. Therefore, several studies involving the areas of
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Fig. 1.4 Example of an image containing objects (pedestrians and car categories/classes)
captured from an RGB camera. The first row shows labels in 2D bounding boxes,
while the second row presents labels in 3D bounding boxes. Image obtained from the
Object Detection Evaluation of the KITTI dataset [69].

knowledge of electrical, mechatronics, mechanics and computing engineering, statistics,
and MLear/AI techniques have contributed to vision and LiDAR-based perception
continous achievements [98, 139, 19, 20, 60].

An example of sensory perception is illustrated in Fig. 1.4, that shows information
of objects such as pedestrians and cars, obtained from the camera sensor. Another
example of sensory perception is shown in the Fig. 1.5 from the LiDAR sensor, which
provides 3D information (point cloud) containing detected cars. The two examples
also illustrate the 2D and 3D bounding box of objects.

Image processing has achieved significant results through machine learning and deep
learning algorithms. The algorithms of convolutional neural networks are currently, not
only, responsible for most of the advances in pattern recognition to autonomous driving,
but mainly for processing of 2D images [221, 241, 251, 253, 86, 203, 212, 249, 113, 123],
as well as the 3D data processing [82, 122, 181, 184, 182, 110, 183].

On the one hand, RGB camera has the ability to capture information from objects
(pedestrians, cars, cyclist, trucks, and vans), such as shape (contour patterns), color
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Fig. 1.5 Example of 3D point cloud captured by the Velodyne HDL-64E. 3D Point
clouds were obtained from the Object Detection Evaluation of the KITTI dataset [69].

(pixel values) and texture (pixel arrangement structures). On the other hand, it does
not have the ability to provide directly information regarding object size/height or
depth (these measurements have to be estimated). Besides that, the cameras have
sensitivity to light variation, and some cameras need extra light to capture images at
night [8, 155].

In a different way, LiDAR sensors are capable of operating at night with no need
of extra light-source. The advantage of such sensors is the ability to estimate 3D

information of the environment with a 360 degree horizontal field view, including depth
measurements and reflectance (intensity) of the detected objects, and such sensors can
still capture millions of points per second. The disadvantages of LiDAR sensors are
the limited range, reduced performance in snow, fog, rain and dust conditions [89, 59].
Additionally, the number of points per object can be different at the same time
that such objects are captured, as well as the information can contain missing data
(partially occluded objects), noise (outlier-random position in space), likewise they can
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be corrupted by information from reflective and “transparent” objects [98, 18, 7, 8,
155, 187].

RADAR sensors (radio waves instead of light) are also effective for detecting object
distances and speeds, in addition to the cameras and LiDARs thus, they can be
complementary for detecting objects. RADARs cannot differentiate objects that are
very close to each other but, some RADAR technologies have a wider range compared
to LiDARs. However, RADARs are less accurate than LiDARs as they lose the target
object reference in curves.

Still, many IV/AV systems contain ultrasonic sensors for short distance (parking
assistant), infrared sensors (infrared spectrum) to identify objects in environments
with low light conditions and odometry sensors indicating the distance traveled by the
vehicle, taking wheels rotation into account. GPS, IMU, cameras, LiDARs, RADARs,
infrared, odometry, ultrasonic sensors have advantages and disadvantages. The fusion of
information from different sensors is important to ensure the correct detection of objects.
The data fusion approaches depend not only on the quality of the sensor data but also
on proper formulations of the problem and the implemented algorithms [98, 134].

Generally, pattern recognition algorithms, using machine learning or deep learning,
provide a result (score) associated to the detection or classification of an entity (or
object) without taking into account the model uncertainty during training and/or at
the test phase i.e., “how to guarantee a probabilistic interpretation and how reliable
are these predictions?” is a pertinent question in this context. In plain words, this
question can be answered by computing the uncertainties from the network weights
or the predicted values. To obtain models uncertainties are important to increasing
confidence in order to allow safer decision-making, especially considering that this
decisions are managed by autonomous systems which may pose threat to people’s lives.
Thus, the fact is that adapting the model uncertainties in decision-making helps to
mitigate unpredictable behavior.

The importance of obtaining uncertainty in the prediction might be better under-
stood as follows: consider six networks trained to classify three classes: car, cyclist
and pedestrian. Thus, the scores from the predictive values for each object are always
referred to the training classes through a prediction layer, such as the softmax layer,
according to Table 1.1, considering different types of neural network architectures12.
The results of that table were quite satisfactory, since all objects of the test dataset

12We are not concerned with presenting the formalisms of network architectures, in addition to not
presenting the advantages and disadvantages of each network.
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Table 1.1 Classification results by different models.

Model Car Cyclist Pedestrian Average
LeNet [124] 99.17 89.08 93.79 94.02

AlexNet [113] 99.42 91.41 96.46 95.75
Inception V3 [213] 99.47 91.93 96.29 95.89

EfficientNetB1 [215] 99.84 97.43 98.74 98.67
ViT [47] 99.46 93.56 96.37 96.46

MLP Mixer [220] 98.98 87.47 92.42 92.96

belong to the classes used in the training. However, what happen when the network
classifies an object belonging to a fourth class, similarly to the trees class? In other
words, object of out-of-distribution test data (unseen/non-trained), it is to say that
the fourth class was not used during training. The answer to the previous question can
be obtained by analyzing Fig. 1.6. The trees class object was classified as belonging to
one of the three classes used in the training and with a high score value. In this case,
the results were greater than 90% (value very close to one) i.e., result with extremist
prediction (overconfident result). Others examples of overconfident are possible to be
analyzed by the histograms, Fig. 1.7, which show results of predictions from an unseen
class (person sitting, tree, pole) and separated by the training classes i.e., the number
of unseen objects that were classified as cars, cyclists and pedestrians (from left to
right).

Overconfident results can be detrimental to draw a conclusion, particularly objects
from out-of-distribution test data which appear in the perception system environment.
It shows that the predicted value is not adequate to interpret the model’s confidence.

A considerable complexity in perception systems is in defining the quantity or which
sensors should be used, as well as the mathematical formulations and algorithms in
order to convert the information captured into an information which might possibly
be understood by the control systems and actuators of AV/IV. For this reason, the
development of perception systems is such a quite challenging assignment. New
algorithms or techniques should be developed to avoid possible errors while making
predictions of pattern recognition systems. Therefore, taking into account the relevance
of reducing road accidents and avoiding road user injuries and deaths, this thesis
contributes to AV/IV advances of sensory perception systems, through studies that
involve multi-sensor-modality datasets, focusing on reducing overconfident predictions
for object recognition.
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• learning rate = 0.001;
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Prediction layer:
• SoftMax function;

Car Cyc PedClasses

Fig. 1.6 Example of an object belonging to the trees class. Such class was not used
during the training, where the prediction layer is the softmax function (SM). The
object was classified by six different neural networks. All results were obtained with
overconfident.

1.4 Summary of Contributions

The key contributions of this thesis are techniques to perform multimodality
combination strategies (late and early fusion), and a novel approach to “smooth”
overconfident results through Bayesian inference applied to the classification scores of
the detected objects. To validate the proposed methodology, datasets from different
modalities, such as RGB images, 3D point clouds, range-view and reflectance (intensity)-
view maps have been considered. In summary, the contributions are the following:

• At a first moment, the thesis concentrates on the study of the influence of range-
view (RaV) and reflectance/intensity-view (ReV) maps for objects classification.
Such maps were obtained from the 3D point clouds projections (LiDAR) on
the 2D image-plane, followed by an upsampling of the projected points. The
upsampled map was obtained by using different sizes of masks (7×7, 9×9, 11×11,
13×13 and 15×15) and techniques, such as maximum, minimum, average and
bilateral filter. Based on such map, a classification dataset was built to explore
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(a) LeNet CNN [124]. (b) AlexNet CNN [113].

(c) Inception V3 CNN [213]. (d) EfficientNet B1 CNN [215].

(e) Vision Transform [47]. (f) MLP Mixer [220].

Fig. 1.7 Classification of objects of out-of-distribution test data (person sitting, tree,
and pole classes) and separated according to training classes (car, cyclist and pedestrian-
from left to right).

and study the multimodality approaches aiming to improve the object recognition
capability of a perception system.

• Using the RGB, RaV and ReV modalities, it was possible to formulate early
and late fusion strategies. For the early fusion strategy (training phase), the
objects were concatenated into the entrance of the algorithm combining RGB,
RaV and ReV maps. Regarding late fusion (prediction phase), the classification
scores for each modality were combined using maximum, minimum, average,
normalized-product, support vector machine (SVM), and genetic algorithm.

• By using 3D point clouds, RGB and RaV modalities, we formulated a multisensory-
multimodality weighted-distance fusion strategy for object classification. The
proposed strategy considers the relationship between the models classification
performance and the distance of objects.

• Finally, and not least, it was considered an approach to reduce overconfident
predictions through the concept of Bayesian inference. We model the likelihood
function and the a-prior probability considering normalized histograms and
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Gaussian functions of the training data, respectively. Such approach was applied
both to object classification and detection datasets, presenting satisfactory results.
These results are particularly significant when considering objects belonging to
“unseen" samples which tend to be predicted with high score values by the deep
learning models.

1.4.1 Publications

The results achieved during the doctoral studies have been reported in journals,
conferences and workshop proceedings.

1.4.1.1 Journals: accepted and under-review

• Accepted: G. Melotti, C. Premebida, J. J. Bird, D. R. Faria and N. Gonçalves,
“Reducing Overconfident Predictions in Autonomous Driving Perception”, in IEEE
Access, vol. 10, pp. 54805-54821, 2022, doi: 10.1109/ACCESS.2022.3175195.

• Under-review: G. Melotti, W. Lu, D. Zhao, A. Asvadi and N. Gonçalves, C. Pre-
mebida, “Probabilistic Approach for Road-Users Detection”, in IEEE Intelligent
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Learning for Object Recognition Combining Camera and LiDAR Data. In
IEEE International Conference on Autonomous Robot Systems and Competi-
tions (ICARSC), Ponta Delgada, Portugal, pages 177− 182, doi: 10.1109/I-
CARSC.49921.2020.9096138.

• Melotti, G., Premebida, C., Goncalves, N. M. M. d. S., Nunes, U. J. C., and
Faria, D. R. (2018). Multimodal CNN Pedestrian Classification: A Study on
Combining LiDAR and Camera Data. In IEEE 21st International Conference on
Intelligent Transportation Systems (ITSC), Maui, HI, USA, pages 3138−3143,
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1.4.1.3 Workshop paper

• Melotti, G., Premebida, C., Bird, J. J., Faria, D. R., and Gonçalves, N. (2020).
Probabilistic Object Classification using CNN ML-MAP layers. In ECCV Work-
shop on Perception for Autonomous Driving (PAD). Online.

1.4.1.4 Chapter in a Book

• Premebida C., Melotti G., and Asvadi A. (2019). RGB-D Object Classification
for Autonomous Driving Perception. In: Rosin P., Lai YK., Shao L., Liu Y.
(eds) RGB-D Image Analysis and Processing. Advances in Computer Vision and
Pattern Recognition. Springer, Cham., pages 377−395, doi.org/10.1007/978-3-
030-28603-3_17.

1.5 Structure of the Thesis

The introduction of this thesis presented the basic concepts of autonomous/intelli-
gent vehicles, as well as research motivations purposed. Chapter 2 presents an overview
and discussion of the state-of-the-art on image and LiDAR classification and detection,
fusion strategies, and finally probabilistic networks. Chapter 3 shows the mathematical
formulations incorporated in the perception systems for object recognition, such as
basic definitions of deep learning, activation functions, techniques to reduce overconfi-
dent predictions, as well as probabilistic formulations to obtain model uncertainty. In
addition, Chapter 3 presents formulations about 3D point clouds and object detections.
Chapter 4 explains the methodology adopted in the thesis i.e., formulations using
Bayesian inference to reduce overconfident predictions. The results of the research work
on fusion strategies and reduction of overconfident predictions are shown in Chapter
5. The conclusion and future work are presented in the Chapter 6. Finally, the late
fusion as Bayesian inference and Weighted Object Distance are explained in Appendix,
as well as results from cumulative distribution.
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2.1 Object Recognition in Autonomous Driving

Perception systems for road users recognition is a key field of research and technology
development in the automotive industry and in the academia, as it is the baseline
of object detection and motion planning for ADS (Autonomous Driving Systems),
ADAS (Advanced Driver Assistance System), and automotive protection systems. Such
systems have considered different approaches and input data in order to obtain improve
object detection performance, being cameras and LiDAR together with deep learning
the most prevalent cases [37, 159, 77, 98, 225, 35, 2, 79].

Initially, the perception systems for autonomous driving had been dominated by
the advancement of “traditional" machine learning algorithms and advanced feature-
extractors, such as SVM and HOG-based descriptors [2, 160, 155]. The recent tech-
nological advances on deep networks (DNN), including convolutional neural networks
(CNN), and vision transformers (ViT) [47, 215, 213, 86, 203, 212, 113, 249, 125], have
made the DNNs the state of the art in pattern recognition tasks to process 2D and 3D

data. These tasks consist of features extraction of the objects to be detected, selecting
the most discriminating features, and constructing an end-to-end detector [55, 12]. In
fact, many deep learning algorithms do not need extra algorithms of feature extraction
(to identify a set of points of interest) or features descriptors (to describe a set of
points) [11, 207].

2.1.1 Camera and LiDAR Modalities

Cameras that provide image from multiple domains (light spectra: visible and
infrared) and multiple modalities (RGB, intensity/reflectance-view, depth/range-view,
and motion) [15, 155] are one of the main sensors in autonomous driving applications,
due to their ability to provide richer cues such as colors, shapes, and textures thus,
forming patterns representations which, combined with machine learning techniques,
contribute to the detection of objects by perception systems. However, recognizing
patterns is not such an easy task, especially when there are objects with small dimensions
or partially occluded objects. Therefore, choosing an algorithm to process images is a
very crucial step, as object detection must be done in the shortest possible time and
with the highest level of accuracy, especially for real-time applications, such as robotics
and IV/AVs [55, 12, 98, 140]. Some of the main algorithms for objects detection tasks
using vision/camera modality are:
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• R-CNN [72]: it presented an approach that defined a selective search algorithm to
generate 2000 regions within the image, as being proposed regions i.e., candidate
regions that can contain objects. Such regions are directed to a CNN that extracts
features, and such features are inserted into a SVM, which determines if there
are objects within the candidate regions.

• Fast R-CNN [71]: the approach is similar to R-CNN having the advantage of
a faster object detection . The difference is that the input image goes straight
to a CNN, which generates a convolutional feature map. From such maps, the
proposed regions are obtained. Then the maps go through a pooling layer (region
of interest) and are reshaped to a fixed length. Finally, they are processed through
a completely connected layer (dense layer) and through other dense layers, the
predicted classes and bounding boxes are obtained.

• Faster R-CNN [192]: the two detectors mentioned above use the selective search
algorithm to define the proposed regions, which affects the training and testing
phases. As an alternative, faster R-CNN replaces the search algorithm with a
network that has the ability to learn the proposed regions i.e., a separate network
to predict the proposed regions. These regions are inserted into a pooling layer
and the objects are detected, and finally the respective bounding-box values are
estimated.

• RetinaNet [132]: it is a “simple" and efficient model for detecting small-scale
objects through feature pyramid networks, as well as the introduction of Focal
loss (a formulation that weights data from datasets with unbalanced classes).

• YOLOV4 [189–191, 23]: the ‘You Only Look One’ detector does not use a separate
network to determine the proposed regions nor a search algorithm. YOLO takes
advantage of convoluted networks to predict bounding boxes and detected object
scores. Another difference from the detectors mentioned above is the input image
divided into an S×S grid. Within each grid cell contains a number of defined
bounding boxes (anchors). The network then generates bounding box values and
detected object scores for each cell. Bounding boxes with scores greater than a
threshold are selected to locate the object in the image.

In addition to the models mentioned above, we can cite the Mask R-CNN [84],
R-FCN [42], SSD [137], as well as other more recent approaches defined in [128, 95,
252, 256, 101, 211, 30, 226, 239, 28, 186, 50, 126].
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The approaches to detecting objects is not just restricted to 2D images. Several
methodologies to detect and classify unstructured data like 3D point clouds have
been presented in recent years and currently. The first approaches that achieved very
significant results were through the volumetric and multi-view CNNs architectures, to
classify 3D data obtained from CAD models and RGB-D sensors [183]. However, such
3D point clouds were modified before being processed i.e., such data were transformed
to regular 3D voxel grids or an image collection. This causes a disadvantage, since
modifying the data can lead to loss of information.

To avoid any loss of information from the input 3D data, architectures of neural
networks using 1D convolutions were proposed by [182, 184], having as main tasks
the object classification, and semantic segmentation. Such networks were defined as
PointNet, and PointNet++, and process each point independently of each other, and
can learn features about 3D geometric data. In other words, PointNet, and PointNet++
capture the local structure of neighboring points and the interactions of combinations
between the local structure. The main difference between the two networks is a cluster
structure to capture more information about local features contained in PointNet++.

Currently, several papers presented similar architectures or ideas to 3D object
recognitions from the PointNet and PointNet++, such as Generative PointNet [236]
that proposes a generative model of unordered sets of points, Dynamic Graph CNN [228]
that captures local geometric structure, describing the relationship between a point
and its neighborhood through graphs, and PU-Net [246] that presents a technique of
upsample of points, learning the characteristics in multi-levels per point.

Another model that showed satisfactory results in learning the 3D point clouds
upsample was the PU-GCN [185], a model which considered an upsample learning
structure through a graph convolutional networks (GCNs), which improves the capture
of information on local points from neighboring points. In fact, GCNs show remarkable
results for exploring the point interrelation [29, 238, 216, 200]. The ability to extract
local information between neighboring points is not limited to graph networks, as the
GeoCNN network [121] that extracts local geometric relations through the edge features
extraction between the center and its neighboring points, performing a convolution
operation for each point in its local neighborhood. In addition to the point cloud
processing tasks we can cite PCNN and A-CNN [10, 111]. PCNN is a network that
maps point cloud functions to volumetric functions using operators defined as extension
and restriction, while the A-CNN copes with the sparsity and irregularities of the
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geometric structure of point clouds by proposing a circular convolution network, which
calculates convolution directly in 3D point clouds.

Development of architectures capable of processing 3D information is extremely
important for autonomous driving applications, because many autonomous and in-
telligent vehicles use information obtained by LiDAR sensors [235, 6]. Among the
various models for such applications, we can cite Ensemble Proposals [105], Frustum
PointNets [181], BirdNet [17], MV3D [33], AVOD [115], PointRCNN [201], FastPointR-
CNN [34], Frustum ConvNet [229], 3DIoULoss [254], Point Pillars [122], TANet [138],
HotSpotNet [31], Perspective Point Cloud (PPC) [29], and Recurrent PointPillars [147],
BirdNet+[16], among others [255, 40, 82, 6].

2.1.2 Fusion Strategies to Combining Images and LiDAR Data

Fusion strategies are important components of perception systems, since it is possible
to capture complementary and/or redundant information, both by different learning
algorithms and by different data modalities [181, 168, 178, 3, 197]. We can address
multimodality fusion by considering the possible combination of four components
(layers): feature extraction, deformation manipulation models, occlusion manipulation
models, and classifier. These components can then be combined through a deep model,
in which the layer of deformation is incorporated, for example, into a CNN. Through
the interaction between these independent components, the achieved results tend to
show an improvement in the performance [168]. Considering, for instance, a fusion
strategy that combines different machine learning algorithms, the research of [3] carried
out pedestrian classification by combining the feature-space extracted by the AlexNet,
VGG16 and Inception CNNs. Each extracted feature representation is then propagated
to a hidden layer so that the rating output of each network has the same size. With the
classification vectors of each network, a late fusion was applied through the product,
sum, average, and max operations. The best result was achieved through the sum
operator compared to the other operators and to the networks individually.

Regarding fusion strategies using different modalities, we can mention the works
developed by [178] and [197], where the first performed pedestrian classification with
three network architectures using the intensity, depth and flow modalities as input data.
The first architecture presented three CNNs for each modality, and consequently a single
vector was created with the outputs of each CNN, which was the input of a multilayer
perceptron (MLP) that then provided the final classification. The second architecture
considered one CNN having all modes in a single input vector, and consequently a
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classification output was obtained. The latter architecture, carried out transfer learning
by training a CNN with one modality and transferring the weights to a second CNN,
which was trained with another modality, and likewise transferred the weights of the
second trained model to a third CNN trained on the latest modality. The research
showed that the last architecture, using weight transfer, outperformed the other two
architectures. On the other hand, [197] performed pedestrian detection on two datasets:
RGB and LiDAR data by upsampling the point clouds to obtain dense depth-maps
by employing horizontal disparity (HD), height (H), and angle (A) techniques. Thus,
the input data were the channels corresponding to the RGB images, HD, H, and the
A maps. One fusion strategy involved the combination of the input-channels of such
images and maps, and also an intermediate fusion across the CNN. The results showed
that the fusion performed before the last fully connected layers (i.e., intermediate
fusion) presented better results than the combination of the channels in the network
entrances (early fusion).

Fusion strategies can be further computed for 3D data representations, as described
in [196], where the classification of 3D point clouds can be obtained by the Fisher
encoding method (a measure of similarity between points, based on local shape statis-
tical analysis ) with spatial clusters presented by Gaussian Mixture Models1. Beyond
the encoding method, techniques based on local shape descriptors (Fast Point Feature
Histograms-FPFH, Spin Images-SI and Signatures of Histograms of Orientations-
SHOT), and classification techniques (e.g., kNN and SVM) were applied as well. The
proposed method was then applied to pedestrian classification using artificial (Blender
software) and real-world LiDAR (Stanford Track Collection) datasets involving partial
occlusion, and non-standard shapes and poses. The classification also considered
low-resolution data e.g., a subset out of the set of points belonging to each object. The
performance of the pedestrian classification approach was evaluated by means of the
area under the curve (AUC) of the receiver operating characteristic (ROC) curve.

The combination of 2D and 3D sensor data tends to be crucial in some advanced
perception systems, since images bring rich information related to the shape, color
and texture of the objects, while 3D data (e.g., provided by a LiDAR) brings depth
information into the system, as explored and described in [102], who showed an
alternative for classifying objects through the features obtained from point clouds
and images. For point clouds, the features were geometric ones e.g., height (mean

1They are probabilistic densities that represent normally distributed sub-populations within a
whole population.
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normalized height and height variance), plane (residual of plane fitting), eigenvalues,
and others. After a segmentation stage, the image features were the average values of
the R, G and B channels of all the image pixels, the brightness (calculated as the sum
of the R, G and B average values divided by three), and then the R, G and B ratio
(mean value divided by the sum of the three average values). Thus, the feature vector
of each image was composed of height, plane, eigenvalue, mean values, brightness, and
ratio. Such a vector was the input of a Bayesian Network that was structured by means
of the concepts of mutual information i.e., the entropy between the nodes. Finally, the
classification decision was achieved by the computed posterior information i.e., the
posterior probability.

Alternatively, fusion strategies can be done using point clouds directly and images
data, as presented by [181], who proposed a methodology that consisted of creating
a space to extract a 3D bounding frustum of an object by extruding 2D bounding
boxes from the images. Within each 3D space (frustum), it was performed 3D object
instance segmentation and 3D bounding box regression using PointNet [182] and
PointNet++ [184]. The point clouds passed through three stages before the object
detection. The first step formed the frustum point cloud by projecting the camera
matrix to a frustum, which defined a 3D search space for the object, where such points
were collected. The next step performed the 3D instance segmentation of the point
cloud using PointNet/PointNet++, which provided 3D mask coordinate. From the
segmentation, it was possible to obtain a 3D location. The last step, 3D box estimation,
estimated the coordinates of the object centre, then performed the detection. According
to the authors, the results reached the state of the art when the method was evaluated
on KITTI and SUN-RGB-D2 benchmarks for 3D objects detection.

Another relevant research that combined 2D and 3D information was developed
and described in [237], who showed satisfactory results for modeling 3D box estimation
of cars, cyclists and pedestrians by combining RGB images and 3D point clouds applied
in KITTI datasets (LiDAR and camera in driving scenes) and SUN-RGBD (indoor
environments-RGB-D cameras). The inputs were processed by different networks. The
point clouds were directly inserted into a variant of PointNet [182]. The RGB images
were processed using ResNet pretrained on ImageNet. After the performed processing,
the fusion was applied: point-wise and global features captured from PointNet, and
images feature captured from ResNet-50. The fusion was the input of a MLP network
that provided the 3D boxing and scores e.g., the 3D bounding box for the object.

2SUN-Scene UNderstanding.
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According to the authors the proposed architecture learned to combine image and
depth sensor information, and the proposed methodology had no limitations for scene,
object-specific, type and amount of depth sensors. Besides that, two functions of score
losses were formulated: supervised and unsupervised scoring. The first trained the
network to predict if a point was within the bounding box. The latter trained the
network to choose the point that provided the optimal prediction. The authors showed
that the unsupervised score function performed a bit better than the supervised score
function.

Other early fusion strategies were proposed by [33] and [87]. [33] considered repre-
sentations of point clouds bird’s eye view (BEV), LiDAR front view, and camera front
view. Such representations were processed by convolutional auto-encoder networks, and
then were introduced into the pooling layers to obtain the regions of interest (RoI) of
the detected objects. All these regions were concatenated and processed by a network of
convolutions, which in turn generated the bounding boxes of the detected objects. [87]
considered 3D point clouds and stereo RGB (two camera images of the same scene-right
and left) to classify and detect 3D objects. Two convolution-deconvolution networks
were applied to extract features from the images (one network for the images from the
left camera and another network for the images from the right camera). At the same
time, the corresponding pairs of images from each camera are concatenated and applied
to another network, with the objective of generating 2D object proposals regions for the
images from each camera. Both the outputs of the convolution-deconvolution networks
and the proposed regions are inserted into the RoI pooling layers (one layer for images
from the right camera and another for images from the left camera). RoI outputs are
fused through the mean operation. The fused RoIs are fed into a new neural network
architecture with the segmented 3D point clouds to generate the classifications and
3D bounding boxes.

In addition to the fusion of camera and LiDAR modalities, [48] showed a fusion
strategy with information obtained from the RADAR sensor to detect 3D objects. The
information from each sensor was inserted into a feature pyramid network to extract a
space of individual characteristics of each modality. Such features are transformed into
bird’s-eye-view as a representation for an additive fusion operator, where convolution
layers provide the classification and 3D bounding boxes.
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2.2 Overconfident Predictions

Deep-learning based object detection, which is a key part of perception systems,
tend to provide overconfident scores of the detected objects, regardless of whether
the prediction is right or wrong. This is particularly common in non-calibrated
or non-regularized networks, although even calibrated/regularised models are not
exempt of overconfident behavior. Ideally, a well-calibrated or well-regularized model
is expected to provide accurate predictions when they are right about object detection
and, conversely, provide high uncertainty when they are inaccurate about a detection,
as conceptualized in [242, 112, 44, 103, 219, 63]. Therefore, when a perception system
is not able to provide an accurate determination of the detection of an object [164]
a proper quantification of the uncertainty is desirable. Also, the idea of having a
well-calibrated/regulated model is to guarantee that the resulting scores of the detected
objects’ classifications are actual probability estimates [167].

In general terms, formulations that act with predicted values after training the
machine learning or deep learning algorithm has been defined as calibration techniques,
while formulations that act during the training phase e.g., by modifying the cost function
(weight updates - to improve the generalization ability and, eliminate overconfidence) or
even inserting perturbations into datasets during training, are defined as regularization
techniques [154, 170, 179, 57, 258, 81, 174, 65, 107, 22, 106, 78]. Nevertheless, according
to [68, 112] the name regularization can also be defined as calibration, as well as claim
that such techniques to reduce or mitigate overconfidence still need to be improved. Also,
in [112] introduced a kind of taxonomy based on three categories: (i) post-processing
calibration, (ii) training the model with data augmentation, and (iii) probabilistic
methods using Bayesian and non-Bayesian approaches.

2.2.1 Softmax and Sigmoid Prediction Layers

Softmax, a generalization of the sigmoid function for the multiclass case, is currently
one of the most commonly employed functions to act as the prediction layer in deep
learning. This is explained by the fact that softmax amplifies the weights (exponential
term) of the correct class objects defined by the network, interfering in the updating
of the weights, and thus may guarantees a better result in terms of classification
performance. The price to be paid is that such weighting may contribute to overfitting,
since the model becomes overconfidence on the training data [164, 148, 174]. Moreover,
the softmax function does not provide any reliable confidence measurements for the
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predicted values, and provides non-calibrated scores [38, 81, 90]. Also, it is possible to
find in the literature works where the softmax’s outputs are considered actual likelihood
values [36, 133, 94, 227] (perhaps because they sum up to one) which tends to give an
erroneous probabilistic interpretation about the results.

Softmax, as well as the logistic sigmoid function, are sensitive to adversarial attacks.
In [75, 214], the authors have considered adversarial perturbations applied to the
softmax and sigmoid prediction layers in deep-networks, and their findings have shown
possible problems of underfitting on the weights.

In addition to the fact that softmax and sigmoid functions may providing poorly
calibrated scores and being sensitive to adversarial attacks, such functions also seem
inadequate to cope with detect objects belonging to out-of-distribution training data.
This means that the model is trained on a training set and then evaluated on a set
that does not contain the training classes, as demonstrated experimentally in [150, 44,
129, 90, 120, 63].

As alternatives to mitigate overconfidence, and reduce overfitting, the deep models
can be learned using regulation or calibration technique [148, 174]. Both techniques
have been subject of intensive studies in the last few years and continue to be a hot
topic.

2.2.2 Regularization and Post-Processing Calibration Tech-
niques

The improvement of the predicted values can be obtained by regularization tech-
niques that avoid overfitting and contribute to reduce overconfident predictions [148, 164,
174], such as the transformation of network weights using L1 and L2 regularization [165],
label and model regularization by a process of pseudo-label and self-training [258],
label smoothing [141], knowledge distillation [91], and cost (loss) formulation that
in the optimization process ensure low uncertainty for accurate predictions and high
uncertainty for incorrect predictions [173, 36, 133, 112, 38, 44], as a cost function con-
sidering that each sample (object) can supervise all classes [36], as well as considering
a margin on logit distances inserted in the cost function i.e., the difference between
the highest logit value in relation to the other logits of the same sample [133].

Other well-known regularization techniques are the batch normalization [96], stochas-
tic regularization techniques such as dropout (randomly sets to zero the activation
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function outputs of some neurons) [92], dropconect (randomly sets to zero some network
weights) [224], multiplicative Gaussian noise [206].

Alternatively, highly confident predictions can often be mitigated by calibration
techniques [250, 81] such as Isotonic Regression [248] which fits a piecewise constant
non-decreasing function (piecewise-linear); Platt Scaling [176] which uses classifier
predictions as features for a logistic regression model; Beta Calibration [117] which
uses a parametric formulation that considers the Beta probability density function;
Bayesian Binning performs Bayesian averaging to group multiple histogram binning
calibration maps [162]; Temperature scaling that defines a parameter that rescales the
logits values before applying the softmax function to compute the values of the scores
of each class [194, 61, 81].

2.2.3 Predictive Uncertainty

Many deep learning methods used for perception systems (objects detection and
recognition) do not capture the network uncertainties at training and test times.
Probabilistic networks, such as the Bayesian Neural Network (BNN), can cope with
uncertainties and can be carried out through distinct approaches. One way is to obtain
the posterior distribution using variational inference after defining a prior distribution
to the network weights [179, 202, 78]. Another method is the ensemble of multiple
networks with the same architecture and different training sets for estimating predictive
uncertainty [120].

Generally, uncertainties are defined as aleatory and epistemic uncertainties. Aleatory
uncertainty is related to the inherent noises of observations (uncertainties arising from
sensor inherent noise and associated with the distance of the object to be detected and
the occlusion-model output), while the epistemic ones explain the uncertainties in the
model parameters (uncertainties of the model associated with the detection accuracy
thus, showing the limitations of the model). These uncertainties can be captured
through Bayesian deep learning using probability distribution over the parameters of
the model [103, 63, 65], Shannon Entropy (uncertainty in the prediction output) or by
means of Mutual Information (confidence of the model) to measure the uncertainty of
the classification scores [146, 57, 56].

The uncertainty of a prediction can also be achieved through Monte Carlo dropout
strategy, using the dropout layers at test time i.e., the predicted values depend on the
randomly chosen connections between the neurons according to the dropout rate, that
is, the same test example (an object) forwarded several times in the network can have
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different predicted values (i.e., the predicted values are not deterministic). In this way,
it is possible to obtain the distribution, the average (final predicted value) and the
variance (uncertainty) for each example [65, 64, 107].

2.3 Datasets

In any perception system study, one should consider the type of dataset to be used
in order to decide whether technique is feasible or not, particularly in self-driving car
studies [243]. Among the various datasets, we can cite KITTI-360 [130], ROAD [204],
SensatUrban [93], Berkeley DeepDrive [244], Oxford RobotCar [142], Cityscapes [39],
KITTI [69], nuScenes [27], A*3D [175], APOLLO [205], DrivingStereo [240], H3D [172],
Lyft Level 5 [104], Waymo [232, 230, 231] and Mapillary [163]. Table 2.1 shows the
main characteristics of the datasets mentioned above.

Among these, the KITTI dataset has earned a strong reputation in the AV/IV
perception field, because the KITTI provides mono and stereo camera data, optical flow,
visual odometry, 3D and 2D objects detection, 3D tracking, precise GPS data, high-
resolution color cameras, LiDAR and the respective calibration parameters, providing
raw data and ground-truth, as well as benchmarks for the tasks in rural areas and/or
on highways.

2.4 State of the Art Summary

The tables 2.2, 2.5, 2.6, 2.7, 2.8, and 2.9 show a summary of the papers cited in
State of the Art. In these tables, we can observe the types of data, the approach used
in the papers and the datasets.

2.5 Discussion on the State of the Art

Despite the multitude and variety of sensors technologies used to build the many
datasets mentioned before, we can cite as main sensors available on benchmarks
and public datasets: monocular cameras, stereo, and LiDAR. Therefore, RADAR’s
technology is (presumably) an opportunity for research purposes. Such datasets are
key ingredients to allow continuous research progress on perception systems for AV/IV
applications and robotics. RGB images are crucial because they provide texture
information (uniformity, luminosity, roughness and spatial distribution, etc.), thus
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Table 2.1 Main features of some datasets for intelligent/autonomous vehicles.

Dataset Multiple
cities

Multiple
weathers

Multiple
time of day Sensors

KITTI-360 No No No
Grayscale and color cameras,

optics lenses, GPS/IMU,
Velodyne 64 3D LiDAR

ROAD Yes Yes Yes monocular camera, GPS/INS
Berkeley

DeepDrive Yes Yes Yes Video and GPS/IMU

Oxford
RobotCar Yes Yes Yes

Stereo and monocular camera,
GPS/INS, SICK 2D LiDAR,

SICK 3D LiDAR
Cityscapes Yes No Yes Stereo vision, stereo camera

KITTI No No No
Grayscale and color cameras,

optics lenses, GPS/IMU,
Velodyne 64 3D LiDAR

nuScenes Yes Yes Yes Color cameras, LiDAR,
RADARs, GPS/IMU

LyftLevel5 Yes Yes Yes Color cameras, LiDAR,
GPS/IMU

Apollo Yes −− Yes Color cameras, LiDAR,
GPS/IMU

A*3D No Yes Yes Grayscale and color cameras,
LiDAR

DrivingStereo Yes Yes Yes Color cameras, LiDAR,
GPS/IMU

H3D Yes −− Yes Color cameras, LiDAR,
GPS/IMU

Waymo Yes Yes Yes Color cameras, LiDAR,
IMU

Mapillary Yes Yes Yes Color cameras

contribute to the identification of relevant patterns. On the other hand, point clouds
provide the three-dimensional structure as well as depth and reflectance data.

It is clear that perception systems need formulations (representation) to interpret
the sensory data. The representation depends on the ability of the formulation/s used
to extracting information i.e., feature extraction, from the images as well as from the
point clouds, including the ‘automatic’ feature representation allowed in some deep
learning frameworks (e.g., CNNs) or the handcraft case (such as: LBP, LGP, and
HOG).
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Table 2.2 Summary of the papers cited in the state of the art regarding the camera
and LiDAR modalities.

Reference Title Image Point Cloud
Munder and

Gavrila, [2009]
An experimental study on pedestrian

classification

√

Girshick
et al., [2014]

Rich feature hierarchies for accurate
object detection and semantic

segmentation

√

Miron
et al., [2015]

An evaluation of the pedestrian
classification in a multi-domain

multi-modality setup

√

Girshick, [2015] Fast R-CNN
√

Ren et al., [2015] Faster R-CNN: Towards real-time
object detection with region proposal

networks

√

Dai et al., [2016] R-FCN: Object detection via region
based fully convolutional networks

√

Liu et al., [2016] SSD: Single shot multibox detector
√

Redmon
et al., [2016]

You only look once: unified, real-time
object detection

√

He et al., [2017] Mask R-CNN
√

Redmon and
Farhadi, [2017]

Yolo9000: Better, faster, stronger
√

Qi et al., [2017a] PointNet: Deep learning on point sets
for 3D classification and segmentation

√

Qi et al., [2017b] PointNet++: Deep hierarchical feature
learning on point sets in a metric space

√

Qi et al., [2018] Frustum PointNets for 3D Object
Detection from RGB-D Data

√ √

Atzmon
et al., [2018]

Point convolutional neural networks by
extension operators

√

Redmon and
Farhadi, [2018]

Yolov3: An incremental improvement
√

Lu et al., [2019] A review on object detection based on
deep convolutional neural networks for

autonomous driving

√

Ahmed
et al., [2019]

Pedestrian and cyclist detection and
intent estimation for autonomous

vehicles: A survey

√

Komarichev
et al., [2019]

A-CNN: Annularly convolutional
neural networks on point clouds

√
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Nowadays, recognizing patterns in RGB images is a well-consolidated task with the
concepts of deep learning, particularly the CNN-based approaches. Several architectures
were proposed for classification and detection of objects. However, there is no common
consensus on what is the best CNN architecture. In fact, a good result can be achieved
with a CNN for a dataset and an unsatisfactory result with another dataset, as
illustrated in Section 2.1 through paper [253], which carried out a study with different
CNNs and datasets. In addition, [253] has shown that there are several methodologies
for extracting features and recognizing objects. The advantage of the CNNs is its
ability to extract features such as edges and curves (convolutional layers) and classify
the objects (fully connected layers) with no need to use formulations of handcrafted
feature extractors.

Regarding the LiDAR data, some methodologies have been proposed for perception
systems, achieving good results in objects recognition. The most notably formulations
are the volumetric (voxels), the multi-view and the PointNet CNNs.

The volumetric CNNs subdivide the 3D space into a grid structure i.e., discretizing
the 3D space. We can explain the discretization as follows: if the voxel contains points,
then its value is one; otherwise, its value is zero. The smaller voxel size, the more
precise is its discretization, however, the computational cost is higher. The larger the
voxel size, the less precise its discretization, as well as the loss of information. Thus,
there is a tradeoff in the choice of voxel size and the data accuracy.

Multi-views use several 2D images from projections of the same 3D object in various
views. Some information is lost because of the projections, but the various projections
try to compensate these losses. However, with many 2D images of the same 3D object,
the computational cost also turns out to be high.

Currently, some papers (Section 2.1.1 cf. paper [184] and Section 2.1.2 cf. papers
[181] and [237]) embedded the PointNet network to extract and classify 3D data,
because its architecture is a neural network that applies symmetric functions in several
steps, and thus avoids the problem of ordering points (permutation).

Despite the advances of deep networks, the concepts of feature extraction using
formulations, known as handcraft, which were shown in papers [102, 196] in Section
2.1.2 should not be ignored, since they present good results in the classification tasks.

Regardless of which concept we use to derive features from RGB images or point
clouds, we can combine such concepts to improve the accuracy of classification, in other
words, we can perform fusion with input data at the beginning of perception systems
(early fusion), or with the data after the processing of each input in the perception
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system (late fusion). These combinations are capable of improving the results of object
recognition systems, as presented in the papers of the Section 2.1.2.

The processing of point clouds directly in the deep networks is still a challenge
because the point clouds, which are obtained by the LiDAR sensor, are unstructured
(no grid) and unordered data (a list of points with no order), in addition to the numbers
of points not being fixed. This, we can ask the following question: what is the best
methodology to be developed to insert the point clouds into a neural network, so that
the order of points does not interfere with the results, as well as with the ability to
define a grid and a fixed number of points?

We can state, taking into consideration the papers cited in the previous sections,
that the deep learning models are the state of the art on perceptions systems. However,
we should note that many models using deep learning do not provide uncertainty about
predictions and about the model itself. These uncertainties are important for the
tasks of pattern recognition applied in autonomous/intelligent vehicles, as presented
in [56] and [103]. These papers, and others, have shown the importance of including
Bayesian probability theory in deep learning models, which are known as Bayesian
Deep Learning networks. We can define such networks as being models that are able
to organize a given knowledge through a cause and effect relationship, and can also
provide predictions or decisions even if they do not have complete information of a
given situation; also, we can say they are graphs that relate probabilities between a
group of variables. Thus, such networks provide the perception system output as well
as the uncertainties contained in the model and output, but with relatively higher
computational cost.

Deep models provide satisfactory results in determining classification scores. How-
ever, such results are presented with excessive confidence in the predictions, which can
lead to an erroneous interpretation of the results, mainly when networks misclassify
an object. To mitigate such errors, calibration and regularization techniques such as
temperature scaling, isotonic regression, platt scaling, confidence penalty, and label
smoothing aim to reduce the overconfidence problem when making predictions using
relatively simple formulations. The disadvantage of these techniques is the inability to
directly provide a measure of uncertainty regarding object classification scores.
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Table 2.3 Continuation of Table 2.2.

Reference Title Image Point Cloud
Lan et al., [2019] Modeling local geometric structure of

3D point clouds using GEO-CNN

√ √

Wang
et al., [2019b]

Dynamic graph CNN for learning on
point clouds

√

Chen and
Huang, [2019]

Pedestrian detection for autonomous
vehicle using multi-spectral cameras

√

Baker
et al., [2020]

Local features and global shape
information in object classification by
deep convolutional neural networks

√

Bochkovskiy
et al., [2020]

Yolov4: Optimal speed and accuracy
of object detection

√

Carion
et al., [2020]

End-to-end object detection with
transformers

√

Chen
et al., [2020]

Object as hotspots: An anchor-free 3d
object detection approach via firing of

hotspots

√

Janai
et al., [2020]

Computer vision for autonomous
vehicles: Problems, datasets and state

of the art

√ √

Duan
et al., [2020]

Corner proposal network for
anchor-free, two-stage object detection

√

Lin et al., [2020] Focal loss for dense object detection
√

Qiu et al., [2020] Borderdet: Border feature for dense
object detection

√

Xu et al., [2020b] Segment as points for efficient online
multi-object tracking and

segmentation

√

Qian
et al., [2021]

PU-GCN: Point cloud upsampling
using graph convolutional networks

√

Xie et al., [2021] Generative PointNet: Deep
energy-based learning on unordered

point sets for 3D generation,
reconstruction and classification

√

Dosovitskiy
et al., [2021]

An image is worth 16x16 words:
Transformers for image recognition at

scale

√

Bansal
et al., [2021]

2D object recognition techniques:
State-of-the-art work

√

Chen
et al., [2021]

MonoRUn: Monocular 3D object
detection by reconstruction and

uncertainty propagation

√ √
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Table 2.4 Continuation of Table 2.2.

Reference Title Image Point Cloud
Sun et al., [2021] Sparse R-CNN: End-to-end object

detection with learnable proposals

√

Wang
et al., [2021a]

Depth-conditioned dynamic message
propagation for monocular 3D object

detection

√ √

Feng
et al., [2021]

Deep multi-modal object detection
and semantic segmentation for
autonomous driving: Datasets,

methods, and challenges

√

Zhang
et al., [2021]

Objects are different: Flexible
monocular 3D object detection

√

Li and
Zhao, [2021]

Monocular 3D detection with
geometric constraint embedding and

semi-supervised training

√

Zhou
et al., [2021]

Monocular 3D object detection: An
extrinsic parameter free approach

√

Joseph
et al., [2021]

Towards open world object detection
√

Zhou
et al., [2022]

Leveraging Deep Convolutional Neural
Networks Pre-Trained on Autonomous

Driving Data for Vehicle Detection
From Roadside LiDAR Data

√

Hussain
et al., [2022]

Image Segmentation for Autonomous
Driving Using U-Net Inception

√

Li et al., [2023] Contextual Transformer Networks for
Visual Recognition

√
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Table 2.5 Summary of the papers cited in the state of the art regarding the fusion
strategy.

Reference Title Image Point Cloud
Schlosser

et al., [2016]
Fusing LIDAR and images for

pedestrian detection using
convolutional neural networks

√ √

Akilan
et al., [2017]

A late fusion approach for Harnessing
multi-CNN model high-level features

√

Chen
et al., [2017]

Multi-view 3D object detection
network for autonomous driving

√ √

Pop et al., [2017] Incremental cross-modality deep
learning for pedestrian recognition

√

Ouyang
et al., [2018]

Jointly learning deep features,
deformable parts, occlusion and

classification for pedestrian detection

√

Qi et al., [2018] Frustum PointNets for 3D object
detection from RGB-D data

√ √

Savelonas
et al., [2018]

Spatially sensitive statistical shape
analysis for pedestrian recognition

from lidar data

√

Xu et al., [2018] PointFusion: Deep sensor fusion for
3D bounding box estimation

√ √

Arnold
et al., [2019]

A Survey on 3D Object Detection
Methods for Autonomous Driving

Applications

√ √

Cui et al., [2021] Deep Learning for Image and Point
Cloud Fusion in Autonomous Driving:

A Review

√ √

Wu et al., [2021] Deep 3D Object Detection Networks
Using LiDAR Data: A Review

√ √

Drews
et al., [2022]

Deep 3D DeepFusion: A Robust and
Modular 3D Object Detector for

Lidars, Cameras and Radars

√ √

He et al., [2023] Stereo RGB and Deeper LIDAR-Based
Network for 3D Object Detection in

Autonomous Driving

√ √
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Table 2.6 Summary of the papers cited in the state of the art regarding the overconfident
results.

Reference Title Image Point Cloud
Platt, [1999] Probabilistic outputs for support

vector machines and comparisons to
regularized likelihood methods

Zadrozny and
Elkan, [2002]

Transforming classifier scores into
accurate multiclass probability

estimates
Graves, [2011] Practical variational inference for

neural networks
Hinton

et al., [2012]
Improving neural networks by

preventing co-adaptation of feature
detectors

√

Wan
et al., [2013]

Regularization of neural networks
using dropconnect

√

Srivastava
et al., [2014]

Dropout: A simple way to prevent
neural networks from overfitting

√

Kingma and
Welling, [2014]

Auto-encoding variational Bayes
√

Szegedy
et al., [2014]

Intriguing properties of neural
networks

√

Ioffe and
Szegedy, [2015]

Batch normalization: Accelerating
deep network training by reducing

internal covariate shift

√

Hinton
et al., [2015]

Distilling the knowledge in a neural
network

√

Goodfellow
et al., [2015]

Explaining and harnessing adversarial
examples

√

Blundell
et al., [2015]

Weight uncertainty in neural network
√

Kingma
et al., [2015]

Variational dropout and the local
reparameterization trick

√

Gal, [2016] Uncertainty in Deep Learning
√

Gal and Ghahra-
mani, [2016a]

Bayesian convolutional neural
networks with Bernoulli approximate

variational inference

√

Gal and Ghahra-
mani, [2016b]

Dropout as a bayesian approximation:
Representing model uncertainty in

deep learning

√

Kull et al., [2017] Beta calibration: a well-founded and
easily implemented improvement on

logistic calibration for binary classifiers
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Table 2.7 Continuation of Table 2.6.

Reference Title Image Point Cloud
Hendrycks and
Gimpel, [2017]

A baseline for detecting misclassified
and out-of-distribution examples in

neural networks

√

Pereyra
et al., [2017]

Regularizing neural networks by
penalizing confident output

distributions

√

Guo et al., [2017] On calibration of modern neural
networks

√

Kendall and
Gal, [2017]

What uncertainties do we need in
bayesian deep learning for computer

vision?

√

McAllister
et al., [2017]

Concrete problems for autonomous
vehicle safety: Advantages of bayesian

deep learning

√

Lakshminarayanan
et al., [2017]

Simple and scalable predictive
uncertainty estimation using deep

ensembles

√

Liang
et al., [2018]

Enhancing the reliability of
out-of-distribution image detection in

neural networks

√

DeVries and
Taylor, [2018]

Learning confidence for
out-of-distribution detection in neural

networks

√

Neumann
et al., [2018]

Relaxed softmax: Efficient confidence
auto-calibration for safe pedestrian

detection

√

Feng
et al., [2018]

Towards safe autonomous driving:
Capture uncertainty in the deep neural

network for LiDAR 3D vehicle
detection

√

Corbière
et al., [2019]

Addressing failure prediction by
learning model confidence

√

Zou et al., [2019] Confidence regularized self-training
√

Feng
et al., [2019]

Leveraging heteroscedastic aleatoric
uncertainties for robust real-time lidar

3D object detection

√
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Table 2.8 Continuation of Table 2.6.

Reference Title Image Point Cloud
Mesquita

et al., [2019]
LS-SVR as a bayesian RBF network

Nixon
et al., [2019]

Measuring calibration in deep learning
√

Thulasidasan
et al., [2019]

On mixup training: Improved
calibration and predictive uncertainty

for deep neural networks

√

Shridhar
et al., [2019]

A comprehensive guide to Bayesian
convolutional neural network with

variational inference

√

Zhang
et al., [2020]

Mix-n-Match: Ensemble and
compositional methods for uncertainty

calibration in deep learning

√

Lukasik
et al., [2020]

Does label smoothing mitigate label
noise?

√

Melotti
et al., [2020a]

Probabilistic object classification using
CNN ML-MAP layers

√

Passalis
et al., [2020]

Probabilistic knowledge transfer for
lightweight deep representation

learning

√

Krishnan and
Tickoo, [2020]

Improving model calibration with
accuracy versus uncertainty

optimization

√

Meister
et al., [2020]

Generalized Entropy Regularization or:
There’s Nothing Special about Label

Smoothing
Posch and
Pilz, [2021]

Correlated parameters to accurately
measure uncertainty in deep neural

networks

√

Wang
et al., [2021b]

Energy-Based Open-World
Uncertainty Modeling for Confidence

Calibration

√

Cheng and Vas-
concelos, [2022]

Calibrating Deep Neural Networks by
Pairwise Constraints

√

Liu et al., [2022a] The Devil is in the Margin:
Margin-based Label Smoothing for

Network Calibration

√

Frenkel and
Gold-

berger, [2022]

Network calibration by temperature
scaling based on the predicted

confidence

√
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Table 2.9 Continuation of Table 2.6.

Reference Title Image Point Cloud
Yeung

et al., [2022]
Calibrating the Dice Loss to Handle
Neural Network Overconfidence for

Biomedical Image Segmentation

√

Roitberg
et al., [2022]

Is My Driver Observation Model
Overconfident? Input-Guided

Calibration Networks for Reliable and
Interpretable Confidence Estimates

√

Patra
et al., [2023]

Calibrating Deep Neural Networks
using Explicit Regularisation and

Dynamic Data Pruning

√
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Fig. 3.1 Diagrams of two neural networks.

3.1 Artificial Neural Networks

Artificial neural networks (ANNs) were originally inspired on concepts of animals
biological neurons. The formulation of a neural network was then defined by means of
synaptic connections which bind input information to neurons. Mathematically, such
connections are formulated as synaptic weights and measure the information on the
neurons, as illustrated in Fig. 3.1a and Fig. 3.1b. Such weights are computed during an
optimization process that minimizes the error between predicted and expected values.
Typically, an ANN is composed of two stages: feedforward (which processes the input
data and provides a prediction - from input to output), and backpropagation (feedback
process to update the referred weights through the error - from output to input) [74].

3.1.1 Feedforward and Backpropagation in Neural Networks

A simple neural network model (NN), as the Fig. 3.1a and expressed by (3.1), is
composed of a layer for data processing (perceptron) [195], an observation matrix with
the input data of the network, and an output vector denoted by

ŷ = σ (Xw + b) (3.1)

where X represents the observation matrix, each observation contains N inputs for the
network, b is the bias value, σ(·) is an element-wise non-linearity function, ŷ is the
model output, and w = {w1, · · · ,wN} represents the model weights. Equation 3.1 can
be better understood considering only one observation x, let us say x = {x1, · · · ,xN},
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according to (3.2)

ŷ = σ

(
N∑

i=1
xiwi + b

)
, (3.2)

where the perceptron receives x1, · · · ,xN , and it provides the weights for the inputs,
sum the inputs with weights, and generates the output after the non-linearity function.

The network weights can change their values according to a cost function. Generally
for classification, the simplest cost function is determined by (3.3), while for regression
is established by (3.4)

Ew,b
cl =− 1

No

No∑
i=1

yilog(ŷi) (3.3)

Ew,b
rs = 1

2No

No∑
i=1
||yi− ŷi||2, (3.4)

where No represents the outputs for the observed inputs, yi is the label (target), and
ŷi is the predicted value by the neural network [63].

The best result of a prediction is the smallest difference (error) between the output
value of the neural network (predicted value) and the real value. Therefore, the result
takes into account the minimization of the errors in virtue of a relation including the
predicted value in each parameter of the network. Such relationship is formulated by
means of derivatives using the chain rule, for the reason that neural networks work with
sequences of inputs and outputs through intermediate layers (or not) until reaching
the final output. Thus, after determining the error and the gradient value, the network
weights are updated according to (3.5)

w = w−η
∂E

∂w
. (3.5)

The training phase of a NN may suffer of overfitting, which impairs a good per-
formance of the final prediction. An alternative to mitigate the overfitting is through
regularization techniques, as L2 regularization, by weighing the NN’s parameters by a
decay rate λi, resulting in an optimization process to minimize the cost function given
by (3.6)

L(w,b) = Ew,b +λ1||w||2 +λ2||b||2. (3.6)



44 Background

Briefly, the mechanism for calculating the predicted value from input to output
is designated as the feedforward process, while the backpropagation is a method of
calculating partial derivatives from the cost function with respect to all parameters
of the model, while the process of minimizing the cost function is performed by an
optimization method.

The model structure expressed by (3.2) can be extended to models with more
neurons and layers, as shown in Fig. 3.1b and expressed by (3.7), with an intermediate
layer (hidden layer) and K outputs

ŷK(x,W) = σ

 M∑
j=1

w
(2)
Kjh

(
N∑

i=1
w

(1)
ji + b

(1)
i

)
+ b

(2)
j

 , (3.7)

where ŷ1...K are the predicted values, x is vector of a given observation with N

inputs, W = {w(1),w(2)} is weights matrix, begin w(1) = {wM1,wM2, . . . ,wMN} and
w(2) = {wK1,wK2, . . . ,wKM} vectors, M is the amount of neurons in the hidden layer,
h(·) is the activation function, and σ(·) is the prediction function.

Considering Fig. 3.1b, with only two inputs and two neurons in the intermediate
layer, the relationships of parameters w

(1)
11 and w

(2)
11 with the predicted values ŷ1 and

ŷ2 are given by

∂L(W )
∂w

(1)
11

= ∂L(W )
∂σ1

∂σ1

∂z
(2)
1

∂z
(2)
1

∂h1

∂h1

∂z
(1)
1

∂z
(1)
1

∂w
(1)
11

+ ∂L(W )
∂σ2

∂σ2

∂z
(2)
2

∂z
(2)
2

∂h1

∂h1

∂z
(1)
1

∂z
(1)
1

∂w
(1)
11

(3.8)

∂L(W )
∂w

(2)
11

= ∂L(W )
∂σ1

∂σ1

∂z
(2)
1

∂z
(2)
1

∂w
(2)
11

, (3.9)

where σ1 and σ2 are the prediction functions for outputs ŷ1 and ŷ2 respectively,
index (1) refers to the hidden layer and index (2) refers to the output layer, z

(1)
1 , z

(2)
1 ,

z
(2)
2 are the linear combinations between the inputs and the weights of the network,

as z
(1)
1 = w

(1)
11 x1 + w

(1)
12 x2. To update all the weights in the example above with 8

parameters (w(1)
11 , w

(2)
11 , w

(1)
21 , w

(1)
12 , w

(2)
21 , w

(2)
12 , w

(1)
22 , w

(2)
22 ), 52 partial derivative terms

are required.

3.1.2 Convolutional Neural Networks

From the work presented in [113], the convolutional neural networks (CNNs) became
the state of the art in image recognition [74, 253] which, among other scientific fields,
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Convolutional layer:
filters (depth), padding
and activation function

Pooling layer Fully connected

Input image Features maps Features maps Classifier

Output

Y1

Y2

Feature extraction from image Classification

Output class
predictions:

activation function

Fig. 3.2 Example of a basic CNN structure showing feature extraction and the classi-
fication, as well as the respective layers. The quantity of feature maps indicates the
number of filters applied to the image during the convolution process.

have significantly contributed to the advances in perception systems for autonomous
vehicles [9] and robotics. An example of a basic CNN structure, that contains the
feature extraction and classification layers, is showed in Fig. 3.2. Within the feature
extraction part, there are layers corresponding to the image input, the convolution
layer (depth filters, padding and activation function), and the pooling layer, while the
classification part corresponds to fully connected layers and output (final result-scores).
In a “high-level” perspective, the convolutional part, including feature extraction, seeks
to learn a local representation of the input data, while the fully connected part seeks
to learn and make a decision with “global” characteristics.

Concisely, the key concepts and characteristics of a CNN structure can be explained
as follows:

• Deep: represents the number of hidden layers.

• Depth: the number of feature maps also representing the number of filters
(kernel).

• Stride (S): is the number of elements (cell of the image-row/column) that slides
over the image.

• Padding (P): occasionally, we need to fill the matrix with zeros at the edges in
order to perform the filter. It enables to prevent the filter from passing through
a region out of the image.
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• Convolution: refers to the idea of the mathematical concept of convolution,
e.g., an operation between two functions to generate a third function, in other
words, convolution is the integral/sum (continuous/discrete) of the point-to-point
multiplication of the two functions, where one function is translated in time.
Posterior to the convolutions, the feature maps are obtained.

• Activation function: this allows the network to learn more characteristics, in
addition to the linear relationships of dependent and independent variables,
according to Subsection 3.2.

• Pooling: reduces the convolution scaling while maintaining relevant image’s
information. Some functions of pooling are: maximum, minimum, average, sum,
among others.

• Fully connected layer: all neurons connected to all neurons i.e., each neuron in
the previous layer is connected to each neuron in the next layer.

• Output layer: provides the classification scores by means of the activation
function.

3.2 Activation Functions

When building a neural network, it is essential to define which activation function
should be used, both in the hidden layers and in the prediction layer. The activation
function has the ability to control how the neurons will be activated.

In fact, a neural network without an activation function is equivalent to a linear
regression model, and therefore it loses the ability to learn features of more complex
tasks. Thus, the activation function aims to introduce a non-linearity in the neuron
output, and this contributes to decrease the error between the true value (label) and the
predicted value during training, as well as ensuring a more accurate value of prediction
with data not used during training.

Currently, several activation functions have been proposed [5], such as Tangent-
Hyperbolic (TanH), Exponential Linear Unit (ELU), Gaussian Error Linear Unit
(GELU), Rectified Linear Unit (ReLU), Leaky Rectified Linear Unit (LReLU), Scaled
Exponential Linear Unit (SELU), Swish (Sh), Hard-Swish (HSh), Mish (Mh), Sigmoid
(SgM), Softmax (SM), and Softplus (SP ). Such functions are defined according to
the expressions below,
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• Tangent-Hyperbolic

TanH = ez− e−z

ez + e−z
; (3.10)

• Exponential Linear Unit:

ELU =
{

z, if z > 0
α(ez−1), if z ≤ 0;

(3.11)

• Gaussian Error Linear Unit:

GELU = 0.5z

(
1+ tanh

(√
2
π

(z +0.044715z3)
))

; (3.12)

• Rectified Linear Unit:

ReLU =
{

0, if z ≤ 0
z, if z > 0;

(3.13)

• Leaky Rectified Linear Unit:

LReLU =
{

0.01z, if z < 0
z, if z ≥ 0;

(3.14)

• Scaled Exponential Linear Unit:

SELU = λ

{
α(ez−1), if z < 0

z, if z ≥ 0;
(3.15)

• Swish:

Sh = z
1

1+ e−βz
; (3.16)

• Hard-Swish:

HSh = z
min(max(0, z +3),6)

6 ; (3.17)
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• Mish:

Mh = ztanh(ln(1+ ez)); (3.18)

• Sigmoid:

SgM = 1
1+ e−z

; (3.19)

• Softmax:

SM(ẑj) = e(ẑj)

K∑
k=1

e(ẑk)

, (3.20)

where j = 1, . . . ,K;

• SoftPlus:

SP = ln(1+ ez). (3.21)

Figures 3.3a and 3.3b illustrate the behavior of the outputs of the activation
functions mentioned above. Note that for input values greater than zero, most of the
activation functions behave similarly, with the exception of the Sigmoid, Softmax, and
TanH functions. So far, it has not been possible to find a formulation or a method
that define which activation function should be used in a CNN to obtain the best
performance. However, softmax and sigmoid functions are already well accepted by
the machine learning community as activation functions on the prediction layers, due
to the fact that they tend to present better prediction results than the other activation
functions.

From the normalized histograms, shown in Fig. 3.4, it is possible to see the behavior
of these activation functions when they are employed as prediction functions. Note
that the second, third, and last graphs on the second row of the Fig. 3.4b represent an
overconfident prediction, which is good when the predicted objects belong to the same
classes as the trained objects i.e., when all predictions are correct. However, it can
be problematic when an object is considered to be out-of-distribution test data [94]
(class objects that were not considered during the training phase) or when objects are
misclassified.
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(a) The plots, from left to right, correspond to ELU , GELU , ReLU , SELU , HSh, LReLU
activation functions.
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functions.

Fig. 3.3 Behavior of activation functions.

3.3 Overconfident Predictions

Oftentimes, regardless of the network architecture or input modalities, most object
recognition techniques from deep learning models provide normalized prediction scores
(the outputs) via a softmax layer [209] i.e., the prediction values are in the interval of
[0,1]. Furthermore, such models are often implemented through deterministic neural
networks, and the prediction itself does not consider uncertainty for the predict class of
an object during the decision-making [199]. In fact, in most cases, the decision-making
takes into account only the prediction value provided directly by a deep learning
algorithm i.e., disregarding a proper level of uncertainty of the prediction (unavailable
for most networks). Therefore, evaluating the prediction confidence or uncertainty
is crucial in decision-making whereas an erroneous decision may lead to a fatality,
especially considering the autonomous driving, where the safety of human lives depends
on the automation algorithms.
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(a) The histograms from left to right correspond to ELU , GELU , ReLU , SELU , HSh,
LReLU activation functions.

(b) The histograms from left to right correspond to Mh, SgM , SM , SP , Sh, TanH activation
functions.

Fig. 3.4 Histograms corresponding to the activation functions on a test sample.

In this regard, the main techniques to mitigate the overconfident results in deep
networks are calibration [81, 118, 1, 153] and regularization [179, 258, 1, 153]. Calibra-
tion acts directly in the network output result, while regularization aims at penalizing
network weights through a variety of methods, adding parameters or terms directly to
the network cost/loss function [179, 258, 174]. Consequently, the latter demands that
the network should be retrained. However, the papers proposed by [133, 36, 68, 112]
define regularization techniques as a type of calibration.

3.3.1 Out-of-Distribution Test Data

Generally, neural networks are trained considering that test data are similar to
training data. However, in real situations the data can vary greatly when compared
to the training data, for example objects that do not belong to the training classes,
which are defined as out-of-distribution data or unseen data [94, 63], and sometimes
defined as data that are far from the training data [81, 63, 21]. Such variation can
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Table 3.1 KITTI dataset: objects from the out-of-distribution test data.

Unseen Objects
Tram/Truck/Van Tree/lamppost Person-sitting

Training - - -
Validation - - -

Testing 511/1094/2914 45 222

significantly compromise the results provided by the perception systems, as illustrated
in Fig. 1.7 in Subsection 1.3. Thus, training systems must be able to generalize to
out-of-distribution test data.

From the out-of-distribution test data as an alternative to validate the proposed
methodology of reducing overconfident predictions, we considered object from the tram,
truck, van, tree (stem), lamppost and person-sitting classes i.e., object classes not used
during the training. The objective, in this case, is to avoid that erroneously classified
objects have a prediction with high score value. The number of objects that make up
the unseen dataset is shown in the Table 3.1.

3.3.2 Model Calibration

In [81] states that “confidence calibration is the problem of predicting probability
estimates representative of the true correctness likelihood”. Mathematically, the idea
of calibration can be defined as follows: let h to be a model of machine learning, where
h(X) = (Ŷ , P̂ ), considering a distribution generated over the K possible classes of the
model for a given input X, begin Ŷ the predicted class with a associated predicted
confidence defined as P̂ . The perfect calibrationis given by:

P(Ŷ = Y |P̂ = p) = p, ∀ p ∈ [0,1], (3.22)

whereas the probability is over a joint distribution. The formulation (3.22) can
be better understood by the example given by [81]: “given 100 predictions, each
with confidence of 0.8, we expect that 80 should be correctly classified.” Thus, for
every subset of predicted samples of a given class with score values equal to S, the
proportion of samples that are actually of that class is S too. Nonetheless, the
calibration formulation is an approximation process that depends on a calibration



52 Background

0 0.2 0.4 0.6 0.8 1

Confidence

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

Gap

Outputs

(a) Example using RGB modality.

0 0.2 0.4 0.6 0.8 1

Confidence

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

Gap

Outputs

(b) Example using range view modality.

Fig. 3.5 Example of reliability diagrams on the testing set from the KITTI dataset,
considering Inception V3 CNN using the softmax layer (SM ) as the prediction layer.

measure, which can be obtained by separating the predictions into multiple bins, as
reliability diagram [116, 81, 166, 61, 136, 73, 88].

3.3.2.1 Reliability Diagram

Typically, predictions are analyzed in the form of reliability diagram representation,
which illustrate the relationship of the model’s prediction scores in regard to the true
correctness likelihoods [116, 81, 166, 61], as shown in Fig. 3.5. Reliability diagrams
show the expected accuracy of the samples as a function of confidence.

The scores (predicted values) are grouped into M bins (histogram) in the reliability
diagrams [81, 73, 88]. Each sample (classification score of an object) is allocated within
a bin, according to the maximum prediction value (prediction confidence). Each bin
has a range Im =

( (m−1)
M , m

M

]
, where m = 1, ..,M i.e., range Im set to the score values

in the range (0,1]. The accuracy1 acc(BM) = 1
BM

∑
i 1(ŷi = yi) is calculated in each

range Im, where ŷi and yi are the predicted value and true class label for sample i, as
well as the average confidence conf(BM) = 1

BM

∑
i p̂i, where p̂i is the confidence for

sample i and BM is the amount of objects in each Im. Thus, a perfect calibration will
have acc(BM) = conf(BM) for all m ∈ 1, ...,M . In addition, a gap can be obtained
i.e., the difference between accuracy and average confidence in each range (Im). Thus,
the greater the gap, the worse the calibration result in the respective bin. Furthermore,
through reliability diagrams, it is possible to obtain calibration errors, such as the

1True fraction of positive cases.
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Expected Calibration Error2 (ECE) and the Maximum Calibration Error3 (MCE):

ECE =
M∑

m=1

BM

n
|acc(BM)− conf(BM)|, (3.23)

MCE = max
m∈{1,...,M}

|acc(BM)− conf(BM)|, (3.24)

where n is the number of samples, and |acc(BM)−conf(BM)| represents the difference
between the predict confidence and model accuracy.

Moreover, the reliability diagrams illustrate the identity function (diagonal-dashed
line) that represents a perfectly calibrated output, while any deviation from the diagonal
represents a calibration error. In other words, a perfectly calibrated model has all
points on the identity function i.e., for each bin the average predicted score is equal to
the fraction of true positive samples [116, 81, 166, 61, 136, 73, 88].

3.3.3 Post-Processing Calibration Techniques

An efficient way to mitigate poorly calibrated models is through predictions after
training. Among the methods capable of such calibration, we can mention Platt scaling,
isotonic regression and tempaerature scaling [176, 248, 81]. Post-processing calibration
techniques present the advantage of being easily applied to pre-trained models.

3.3.3.1 Platt Scaling

Platt Scaling [176] uses classifier predictions as features for a logistic regression
model (sigmoid function). In fact, the idea is to transform the outputs of a classifier
into posterior probabilities by passing them through the sigmoid function:

P (y = 1|f(x)) = 1
1+ exp(Af(x)+B) , (3.25)

where f(x) is the output of a given model, A and B are parameters to be fitted with
the training set (f(x),y) by minimizing the negative log likelihood.

2Weighted average of the distance from the model calibration curve to the identity function
(diagonal).

3Maximum distance between the model calibration curve and the identity function.
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3.3.3.2 Isotonic Regression

This method determines that the function is isotonic (increasing monotonically).
Given the model outputs (predicted values) and the respective labels, the isotonic
regression [248] is defined as:

yi = m(fi)+ ϵi, (3.26)

where m is the isotonic function determined by minimizing
∑n

i=1(fi(xi)−yi)2, where
fi is the prediction value from a function to be learned for each training xi, and yi is
the label.

3.3.3.3 Temperature Scaling

An alternative to reduce overconfident predictions was proposed by [81] and defined
as temperature scaling (TS). The value of TS is obtained by minimizing the negative
log likelihood (NLL) on the validation set. All the values of the logit vector (before
the prediction layer) are multiplied by scalar parameter 1

T S with TS > 0 during the
prediction at test time. Simply, the temperature scaling parameter can be included in
the softmax function (SM) according to (3.27)

Softmax(ẑj) = e(ẑj/T S)

K∑
k=1

e(ẑk/T S)

, (3.27)

where k ∈ {1, . . . , j, . . . ,K}, K is the number of classes, ẑj is the output of the predicted
logit layer.

The score results after the classification using temperature scaling is showed in the
Fig. 3.6b, where the first column represents scores of classified objects such as car,
cyclist and pedestrian, while the second column represents scores for unseen (out-of
the training distribution) datasets. Note that distributions from SM , Fig. 3.6a, are
more extreme than distributions from temperature scale with SM .

3.3.4 Regularization Techniques

Different from the post-processing techniques, several regularization techniques,
which act on the updates of the neural network weights, have been proposed to
avoid overfitting, including L1/L2 regularization, dropout, early stopping and batch
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(a) Classification result without calibration and regularization techniques.

(b) Result after applying the temperature scaling calibration with TS = 1.8174.

Fig. 3.6 Distribution of scores obtained from Inception V3 CNN training, considering
the scores of objects belonging to the classes used during training (comprising the car,
cyclist and pedestrian classes together) in the first column, while in the second column
are the unseen dataset scores.

normalization. However, these techniques are not enough to get smoother output
distributions. To mitigate overconfident outputs, mathematical formulations such as
confidence penalty [148, 174], and label smoothing [127, 161, 174] have been applied
to neural networks in order to acquire a smoother prediction output.
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3.3.4.1 Loss Function

For classification problems, the label is defined as Y = {0,1, . . . ,K} for object i

from the training dataset with the input variable X = {x1,x2, . . . ,xN} i.e., (xi,yi) for
object i, with the label defined as one-hot encoding vector, and the loss function, L,
for N objects with K classes is given by

L=−
N∑
i

[p(yi|xi)log(p(ŷi|xi)] , (3.28)

where p(yi|xi) is the distribution of the label (ground-truth), and p(ŷi|xi) is the
predicted distribution. Equation (3.28) was defined for multiclass classification (more
than 2 classes). When the number of classes is 2, the loss function is definde by

L=−
N∑
i

[p(yi|xi)log(p(ŷi|xi))+(1−p(yi|xi))log(1−p(ŷi|xi))] . (3.29)

The cost function L can also be represented by the average, which is multiplied by
the factor 1

N
.

3.3.4.2 Confidence Penalty

Models that provide overconfident distributions of outputs have such distributions
with low entropy [133, 148]. Thus, the formulation of confidence penalty, expressed in
(3.30), includes a weighting term in the cost function given in (3.28). Mathematically,
the additional term is the entropy of the predicted values, and β is the parameter that
controls the confidence penalty [174, 148],

L=− 1
N

N∑
i=1

[p(yi|xi)log(p(ŷi|xi))−βp(ŷi|xi)log(p(ŷi|xi))] . (3.30)

The confidence penalty term can contribute to the model output distribution being
more entropic [133, 148]. An example of the result considering confidence penalty on
object classification is shown in Fig. 3.7a, that illustrates an overconfident result.
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(a) Inception V3 trained with confidence penalty, considering β = 0.3.

(b) Inception V3 trained with label smoothing, considering ϵ = 0.2.

Fig. 3.7 Distribution of scores obtained from Inception V3 CNN training, considering
the pedestrian, car and cyclist classes in the first column, and unseen dataset in the
second column.

3.3.4.3 Label Smoothing

Unlike confidence penalty, the label smoothing technique does not directly interfere
with the mathematical formulation of the cost function (entropy), making the model
less certain about the provided predictions. In fact, label smoothing modifies the values
of the one-hot encoding vector, as defined in (3.31) [213, 174],

ynewi,k
= (1− ϵ)yi,k + ϵ

K
(3.31)
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Fig. 3.8 The figure on the left represents the structure of a neural network where the
weights are point-estimates, while the one on the right illustrates the weights with
probability distributions.

where yi,k is the object i in the class k, ynewi,k
is the new label value, ϵ is the smoothing

parameter arbitrarily defined, and K is the number of classes. Label smoothing reduces
the difference between the values of the labels of the correct class against the values of
the other classes, interfering in the updating of the weights of the network. In other
words, label smoothing prevents the network from assigning the total score value to a
single class, maintaining a reasonable distance between the values of the ground-truth
class scores and the other classes, as well as contributing to the network provide a
better calibrated result [36, 148, 133, 174]. According to [213], not using the label
smoothing technique may result in overfitting, and thus reduces the ability of the
model to adapt. This happens because the model becomes too confident about its
predictions.

Considering the vector Y = {[0,0,1], [0,1,0], [1,0,0]} as the classification label
(one-hot encoding), and the smoothing parameter as 0.2, the new label is given
by the vector Ynew = {[0.066,0.066,0.868], [0.066,0.868,0.066], [0.868,0.066,0.066]} and

3∑
k

ynewi,k
= 1. The result using label smoothing is shown in Fig. 3.7b, which still

shows overconfident behaviour.

3.4 Probabilistic Model and Confidence

A probabilistic model has the ability of informing how certain/uncertain is the
prediction value, as well as the model confidence..
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The model confidence can be captured by mathematical formulations that consider
the networks weights as distributions instead of single values [74, 22, 21], such as the
probabilistic network shown in Fig. 3.8 on the right, considering Bayesian neural
network. Other formulations consider the results from deterministic networks in order
to calculate the model’s uncertainty, such as Monte Carlo Dropout [65, 103] and
Ensemble Modeling [120].

3.4.1 Probabilistic Modeling

The relationship between input data X and output data Y, defined by Data =
(X,Y), with learning parameters W from a supervised classification system, can be
formulated according to a random experiment by considering a sample space S. The
numerical outcome obtained from each element of S is related to a real number, defined
by the random variable (rv) D which relates the input and output i.e., the input and
output data are conditioned to the rv W. Formally, the rv is a function that maps
each element of the sample space with a real number of the set R, which can be simply
expressed as D : S→ R. In other words, a rv is a function D that outputs a real
number D(ζ) for each element ζ ∈ S of a random experiment. From the sample space,
an event (subset of S) can be defined and associated with a probability P between
the interval [ξ, ξ +∆ξ]. Such probability is a distribution function and its derivative
is the probability density function (PDF) fD(D = ξ|W) i.e., the density function is
conditional to W, as in (3.32) [169],

fD(D = ξ|W) = lim
∆ξ→0

P{ξ ≤D≤ ξ +∆ξ|W}
∆ξ

(3.32)

where fD(D = ξ|W)≥ 0 ∀ ξ, considering ξ continuous. The integral of (3.32) represents
the probability P with the random variable D contained in the interval. Consequently,
if the interval [ξ, ξ + ∆ξ] is sufficiently small of specific length ∆ξ, the probability
will be P{ξ ≤D≤ ξ +∆ξ|W} ≃ fD(D = ξ|W)∆ξ i.e., the probability of the random
variable D is proportional to fD(D = ξ|W). Thus, the probability will be maximum if
the interval [ξ, ξ +∆ξ] contains the most likely value of D, where fD(D = ξ|W) will
be maximum. If the random variable is discrete, a probability mass function (PMF) is
used instead of a probability density function (PDF) [169].
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3.4.1.1 Probabilistic Inference

Assuming that the class-conditional probability P (D|W) (likelihood) is known from
(3.32), the posterior probability P (W|D) is obtained through Bayes’ rule (also known
as Bayes’ theorem). Actually, Bayesian approach depends on a prior distribution,
P (W), which expresses the uncertainty about the value W before any observed
data [74, 21, 169], considering W to be the neural network weights [74, 21].

The aforesaid Bayes’ rule determines the relationship between distributions, in
which the posterior distribution is obtained according to (3.33)

P (W|D) =
P (D|W)P (W)

P (D) , (3.33)

where P (D) ̸= 0 is the model evidence. Thus, the posterior distribution captures the
most likely parameters given the observed data [83].

3.4.1.2 Bayesian Neural Networks

Bayesian Neural Networks are modelled using Bayesian inference (3.34) to assign
probabilities to events, and thus capturing uncertainties in model predictions [103, 65,
120, 21], by considering the network weights as a probability distribution parameter
instead of a deterministic value (like in traditional deep neural networks). The posterior
probability of the weights given the input (X) and the output (Y-target/class) data
can be formulated by Bayes’ rule, which determines the relationship between the prior
and the conditional probabilities defined by

P (W|X,Y) =
P (Y|X,W)P (W)

P (Y|X) , (3.34)

where p(Y|X,W) is the class conditional density (likelihood function), P (Y|X) ̸= 0
acts as a normalizing constant for P (W|X,Y).

The calculation of the posterior P (W|X,Y) is not trivial, due to the fact that the
density function P (Y|X) may not have a known analytical form, whereas the prior
P (W) can be specified from some previous knowledge and the likelihood conceivably
obtained from the data. For this reason, in complex models - like deep neural net-
works - the posterior becomes intractable. Thus, a possible solution is to perform an
approximation by means of variational inference [106, 233, 66, 157, 74, 22, 107, 21].
Nonetheless, variational inference still presents some challenges in terms of computa-
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tional complexity, specially when dealing with large models and large quantities of
data.

3.4.1.3 Variational Inference

As stated in Subsection 3.4.1.2, the posterior distribution may not have an analytical
solution due the model evidence [21] is not known. Thus, a possible solution is to
perform an approximation by means of a variational inference [106, 233, 157, 74, 22,
107, 21] that defines a new distribution qθ(W), over the weights W and parameterized
by θ i.e., an approximation for the true posterior distribution qθ(W)≈ P (W|X,Y),
where qθ(W) can be assumed to be a Gaussian and θ includes mean and variance for
each weight (weights are independent) [22, 78].

The difference between the approximate distribution and the true posterior distri-
bution is measured by Kullback-Leibler (KL) divergence (P (W|X,Y) from qθ(W)),
considering the parameter θ to be optimized i.e., the mean and variance parame-
ters are estimated by minimizing the KL [74]. Thus, the smallest divergence be-
tween qθ(W) and P (W|X,Y) is obtained as a result of an optimal θ defined as
θopt = arg minθ KL[qθ(W)||P (W|X,Y).

An example of the Bayesian Convolutional Neural Networks (BCNN) to classify
cars, cyclists and pedestrians, using Inception V3 CNN with Bayesian layers from
TensorFlow4, is shown in Fig. 3.9. The results were analyzed through standard
deviation of prediction scores from the car, cyclist, pedestrian, and unseen classes.

3.4.1.4 Point Estimation

From probabilities over a categorical distribution, P (Y|X,W), to an extent that
the weights are the result of a learning process in order to explain the data, being
X = {x1, . . . ,xN} the model input, and Y = {y1, . . . ,yN} the model output, where yi

is output corresponding to the input xi, the result can be a point estimate obtained
through the Maximum Likelihood and Maximum a-Posteriori.

4The platform/library to train Inception V3 BCNN was TensorFlow 2 and TensorFlow Probability,
using the concept of flipout [233], where the formulation of the Bayesian neural network creates
perturbations in the weights, and the expected negative log likelihood is computed by sampling the
weights by means of Monte Carlo (approximation of the distribution integrating over the weights and
bias), while KL divergence is approximated by the regularization term [106, 157, 22, 107]. For the
sake of computational cost, the Inception V3 BCNN training has considered only dense layers (fully
connected) as Bayesian layers.
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(a) Classification scores for car, cyclist and pedestrian classes.

(b) Classification scores for unseen class.

Fig. 3.9 Classification using Inception V3 BCNN. For each classified object, 300
prediction samples were performed. The final result is these average of the predictions
for each object. In the first line, the graphs represent the uncertainty in the predictions
for the classes used in the training (car, cyclist and pedestrian), while in the second
line represents the uncertainty and the overconfident prediction for the unseen class
(person sitting, tree and stem) through the histogram.

The weights that maximize P (Y|X,W) through the Maximum Likelihood Estima-
tion (MLE) is given by wMLE = argmax

w
P (Y|X,W). Thus, the formulation of the
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wMLE can be defined as [74]

wMLE = argmax
w

N∏
i=1

P (yi|xi,W). (3.35)

Training to maximize the posterior P (W|X,Y) is also possible. In this way, the
model learns Maximum a-Posteriori (MAP ), wMAP = argmax

w
P (W|X,Y), which in-

cludes the prior distribution over the weights. Thus, wMAP = argmax
w

P (Y|X,W)P (W)
is given by

wMAP = argmax
w

N∏
i=1

P (yi|xi,W)P (W). (3.36)

From the obtained weights by MLE and MAP functions, the predictions might
be calculated by the model using the weights learned as P (ŷ|x̂) = P (ŷ|x̂,wMLE)
or P (ŷ|x̂) = P (ŷ|x̂,wMAP). Notice that, although the Bayesian formulation takes
distributions into account, MLE and MAP compute a single estimate rather than a
distribution.

3.4.2 Monte Carlo Dropout

Dropout is a regularization technique [74, 206, 63], which might potentially be
included in a neural network, contributing to avoid overfitting. It is usually used during
training, but therefore emerges the question about what occurs if the dropout shall
be used during test time? The answer is simple. The predicted values will not be
deterministic i.e., such values depend on which connections between the neurons will
be chosen at random in procedure to perform the prediction. In fact, the same test
sample forwarded several times in the network can have different predicted values.

The idea of applying dropout at test time is to obtain a probability distribution
for each sample. According to the authors in [103, 66, 65], the multiple prediction
values from the same sample can be analyzed as the model confidence i.e., the model
confidence is given by the predicted values variance and average, as illustrated in Fig.
3.10a, where 300 predictions were made for each object at test time using Inception V3
CNN.

Notably, Fig. 3.10a shows classes with scores around 85% and prediction uncer-
tainties about 25% i.e., predictions with high scores and low certainty in the result
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(a) Classification scores for car, cyclist and pedestrian classes.

(b) Classification scores for unseen class.

Fig. 3.10 Monte Carlo Dropout to calculate the uncertainties in the predictions by
means of standard deviation. For each classified object, 300 prediction samples were
performed. The final result is these average of the predictions for each object. In the
first line, the graphs represent the uncertainty in the predictions of objects classified as
car, cyclist and pedestrian, while in the second line represents the uncertainty and the
overconfident prediction for the unseen class (person sitting, tree and stem) through
the histogram.

presented by the network. In addition, Fig. 3.10b highlights the scores from the unseen
dataset. Such scores are values with excessive confidence and low uncertainties (scores
around 100%). The ideal model should provide low score values and low uncertainty
for objects in the unseen class, as well as not recognizing such objects. Interestingly,
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Fig. 3.11 Example of an image generated from the HDL-64E Velodyne 3D LiDAR.
Image obtained from the Object Detection Evaluation of the KITTI dataset [69, 70].

the dropout approach at test time presents the robustness of the trained model, in
other words, how reliable the model is. The disadvantage is the execution time because
many forward passes have to be executed for each sample.

3.5 3D Point Cloud

The LiDAR is a sensing mechanism composed mainly of a laser and a scanner
(scanning system), which outputs a set of measurements of objects in the surrounding
environment. Such mechanism rotates 360◦ [69, 70, 98], allowing full-covered horizontal
field of view. The lasers are vertically stacked creating multiple beams, consequently
allowing the observation of the scenery at different heights and providing a set of 3D

point cloud in 360◦, as shown in Fig. 3.11.
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The operating principle of LiDAR is based on the emission of laser pulses and
their reflection after illuminating an object. The differences between the emissions and
returns of pulses, both related to times and wavelengths, can be used to obtain a 3D

representation of the objects that received and reflected the laser pulses.
The LiDAR sensor output (or scan) is a set of 3D points clouds (PCs) defined in a

coordinate system as P3R = {pc1, . . . ,pcn}, where each element pci=1,...,n = (xL,yL, zL)i

is a LiDAR measured point that can be represented in Cartesian coordinates. In
addition to the coordinate points (xL,yL, zL), the LiDAR sensor can provide the
reflectance value (intensity) [69, 70, 98].

3.5.1 Projecting 3D Point Cloud on the 2D Image-Plane

The set P is projected in the 2D image-plane reference system (RGB camera) i.e.,
pci can be transformed into image pixel coordinates (u,v)i, according to (3.37) and
(3.38), considering that the calibration matrices between LiDAR and RGB camera are
known [69, 70, 98].
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where u and v represent the position of the pixel coordinates, P i
rect is projection matrix,

R
(i)
rect is rotation matrix from camera reference, T cam

Lidar is the matrix containing the
rotation and translation matrices (LiDAR to camera), fu and fv are focal lengths, cu
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Fig. 3.12 Example of an image obtained through a passive sensor (RGB camera) in the
first row, while the second row shows the same image in 3D point clouds, obtained by
an active sensor (HDL-64E Velodyne 3D LiDAR). The last row shows the projection of
the 3D point clouds in the 2D image-plane. Image obtained from the Object Detection
Evaluation of the KITTI dataset [69].

and cv are principal point coordinates, and b
(i)
x denotes a baseline (in meters) with

respect to camera zero reference. An example of projection of the 3D point clouds in
the 2D image-plane is illustrated in Fig. 3.12.
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3.5.2 Range-view and Reflectance-view Maps

The Range-view (RaV) and Reflectance/Intensity-view (ReV) maps - which are
forms of representation - are constructed from (i) the depth and reflectance data of the
3D point clouds and (ii) the projected points on the 2D image-plane i.e., the desired
Rav/ReV maps have to approximate the image resolution (in pixels). However, the
number of positions on the image-plane without projected points is high due to the data
sparsity characteristic of the LiDAR. Therefore, in order to obtain a high-resolution
map, it is necessary to estimate the values of RaV and ReV in unsampled positions
of the maps. Such estimates can be performed by considering a mask Cmask of size
c× c pixels, and by using the sliding window principle. The sampled point, center of
Cmask, is weighted by the number of neighboring points defined by the mask size i.e.,
the formulation combines the intensity and distance values of a pixels group which are
inside the mask Cmask, being c0 = (ch, cv) the M center, which is the localization of
interest, and r̂0 the value to be estimated at c0 from the ri (RaV or ReV), where ch

and cv are the positions in the horizontal and vertical directions respectively [180].
Unsampled points estimate were performed using the Average (Ave), Minimum

(Min), Maximum (Max), Inverse Distance Weighting (IDW), and Bilateral Filter (BF)
formulations as described in [180]. The formulations for BF and IDW are given in
(3.39) and (3.42) respectively, as follows

• BF:

r̂0 = 1
WBF

n∑
i=1

Gσs(||c0− ci||)Gσr(|r0− ri|)ri, (3.39)

where ci is the sample located in the local region of interest, W =
n∑

i=1
Gσs(||c0− ci||)

×Gσr(r0− ri) is a normalization factor that ensures the weighting terms sum to
one, Gσs weights the point ci inversely proportional to a distance (we used the
Euclidean distance) to the position of interest c0, and Gσr weights the sampled
points from their values ri. Gσs and Gσr were considered as

Gσs = 1
1+(||c0− ci||)

(3.40)

Gσr = 1
1+(|r0− ri|)

. (3.41)
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• IDW:

r̂0 = 1
WIDW

n∑
i=1

Wi(x)ri, (3.42)

where WIDW =
∑n

i=1 Wi(x), ci is the sample located in the local region of interest,
Wi(c) = d−p

i , d = ||c0− ci|| is the Euclidean distance and p is a power parameter
(positive real number).

For both IDW and BF we use the notation | · | for the absolute value and ∥ · ∥ for
the Euclidean distance between pixel locations.

Figure 3.13 shows the RaV and ReV maps from the Ave, Min, Max, IDW, and BF
formulations with respect to Fig. 3.12. In this case, the mask size M is 13×13.

3.6 Object detection

Currently, the state-of-the-art in pattern recognition are defined by object detection
models, which has become one of the most important areas of computer vision. Such
models have as main objective to estimate the objects bounding boxes and the associated
class/category scores, as illustrated in Fig. 3.14. Generally, such models estimate
the 2D bounding boxes considering the coordinates of the center (CW ,CH), width
(W ) and height (H) of the boxes. To be more precise, detection models also estimate
the classification score, the predicted class, and (in some approaches) an objectness
score (confidence threshold). The formulations to define the bounding boxes and the
classification of objects depend on comparisons across thresholds between predicted
and ground-truth bounding boxes. In summary, the formulations to determine the
positions of the bounding boxes, classes, and confidence levels of the classes are direct
or indirectly built upon the following concepts [189–191, 23],

• Anchor boxes: a bounding boxes set with predefined values. Such anchors may
be defined with many ‘fixed’ sizes, in order to capture objects having different
sizes, according to the central image of Fig. 3.15.

• Classification score: a score value for each class, or category, of the detected
object.

• Objectness score (OS): parameter which defines whether a region in the image
contains an object or not (c.f., grid of the image on the left in Fig. 3.15). For
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(a) RaV-Average. (b) ReV-Average.

(c) RaV-Bilateral Filter. (d) ReV-Bilateral Filter.

(e) RaV-Inverse Distance Weighting. (f) ReV-Inverse Distance Weighting.

(g) RaV-Maximum. (h) ReV-Maximum.

(i) RaV-Minimum. (j) ReV-Minimum.

Fig. 3.13 Range-view and reflectance-view maps using a mask size M = 13×13.

each grid in the image, the network provides a set of bounding box with a given
class but, such network will have to compute which is the best bounding box that
represents a given object through a objectness threshold (τObj). In other words,
OS is used to evaluate which bounding box centered on a grid best represents
the detected object. Depending on the τObj value, some detected objects will
still have more than one bounding box.

• Intersection over union (IOU): relationship between the area of intersection over
the area of union between two boxes (overlap measure), for example, measure
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Fig. 3.14 Example of classified and detected objects with their respective 2D bounding
boxes.

the predicted bounding box (Bp) with the ground-truth bounding box (Bgt), as
expressed by

IOU = area(Bp∩Bgt)
area(Bp∪Bgt)

, (3.43)

where IOU measures the similarity between two sets and must be a value between
0 and 1. The closer IOU to 1, the better the detection result. However, a detected
bounding box is said to be correctly if the value of the IOU is greater than a
given threshold. Otherwise, the prediction is incorrect (i.e., when the IOU is
less than the threshold). Since the detectors also classify the detected object,
then the IOU is calculated only for the detected bounding boxes that correspond
to the same ground-truth class.

• Non-maximum suppression: the model can predict some candidate bounding
boxes for the same object (according to the τObj), so the model needs to filter the
candidates through the criterion, as non maximum suppression (NMS), which
suppresses the candidates least likely using the IOU metric, and considering
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Fig. 3.15 Images with anchor boxes, and bounding boxes after NMS threshold. Source:
https://pjreddie.com/darknet/yolov1/

a threshold (τnms). In fact, NMS loops through all classes, and for each class
it checks for overlap (IOU) between all bounding boxes. After the NMS, the
numbers of bounding boxes are reduced to obtain the best bounding box for each
detected object, as the image on the right in Fig. 3.15.

After the NMS step, the detection of each object is defined as being positive or
negative, and true or false, according to the following definitions:

• true positive (TP ): a correct detection i.e., ground-truth bounding box detected
correctly.

• false positive (FP ): wrong detection of an existing object or an wrong detection
of a non-existent object.

• false negative (FN): a ground-truth not detected i.e., the model failed to detect
an object considered as ground-truth.

• true negative (TN): would be all bounding boxes that were not correctly detected,
that is because this concept does not apply to object detection.

In short, such concepts are defined from the correct or incorrect detections (non-existing
object or the erroneous detection of an existing object) of bounding boxes, as well as
unidentified ground-truths.

The concepts of TP , FP and FN enable define metrics such as:

• Precision (Pr): relationship between true positives (TP ) with the sum of detected
positives (TP +FP ).

• Recall (Rc): relationship between true positive (TP ) with the total ground-truth
positives (TP +FN).
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• Precision-Recall Curve: curve which computes the precision-recall pairs for
different thresholds, calculating the values of the accumulated TP and FP

detections.

Among the various detection models, we chose to use YoloV4, which has become
the state of the art in the COCO dataset [23].

YoloV4 “backbone” (feature extraction) considers cross-stage-partial-conections
(CSP) i.e., feature maps are divided into two parts, one part goes straight through
the dense block, and the second part concatenates with the final result of the dense
block, having as main network the Darknet53 [188, 189]. Even at the beginning of the
network, just after generating the first feature maps, the “backbone” contains a layer
designated as a spatial attention module (SAM), that is used to refine such maps.

The output of the last dense block is directed to the spatial pyramid pooling layers
(SPP) [85] i.e., a maximum pooling is applied with different filter sizes (sliding kernel),
and generated feature maps are concatenated. Then such maps undergo convolution
layers that perform upsample (top-down stream) and downsamples (bottom-up stream)
in terms of maps sizes i.e., the network contains feature map information coming from
bottom-up and top-down streams, and this step is known as path aggregation network
(PAN) [135], and such maps are concatenates from the different layers and goes through
a fusion layer using max operation. The entire structure involving SSP and PAN is
known as “neck”.

The result of the fusion layer, aforementioned, is directed to the prediction layer,
defined in the same way as YoloV3 [191] i.e., the predictions consider the anchor
boxes. This last step in the YoloV4 architecture is named “head”, and the prediction
output (sigmoid function to get the classification score values, and objectness scores)
are three matrices with different sizes (Ym×Ym×3 with m being an integer), as the
first part in Fig. 3.16.

In fact, the final detection needs to encode the information from the matrices
output through the concepts of intersection over union, NMS, and class threshold.
Each position of the three matrices bring information of the bounding boxes (center,
height and width measurements, OS, and classification score), according to the second
part in Fig. 3.16.

The differences between YoloV4 and previous versions are the formulations such
as dropout in the convolution layers (DropBlock regularization), and the types of
connections between the different layers, such as cross-spatial-partial connections,
pyramid pooling layers, path aggregation network.
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Fig. 3.16 Summary structure of YoloV4 considering the prediction layers, as well as
the step of encoding to get bounding boxes, objectness scores, and classification scores.
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Table 4.1 KITTI dataset for classification: number of objects per class and subsets.

KITTI dataset - 7481 Frames
Car Cyclist Pedestrian

Training 18103 1025 2827
Validation 2010 114 314

Testing 8620 488 1346

4.1 Datasets from Maps and 3D Point Clouds

A key contribution to the growing improvement of perception systems for au-
tonomous driving is the availability of representative datasets, considering different
modalities such as RGB, LiDAR, and RADAR [27, 175, 205, 240, 172, 163] with several
objects from different classes. Particularly, the classes of interest in this research are
pedestrians, cars, and cyclists. In addition, some extra objects belonging to unseen/non-
trained classes (object classes not used during training), for instance, “a person sitting”,
“tram”, “truck”, “van”, “tree”, “lamppost”, “signpost”, “bus”, and “motorcycle” will
be considered in the test/prediction phase, to verify the erroneous overconfidence from
the prediction layers of the trained networks. The unseen classes can be understood as
“adversarial” cases. Note, however, that this research does not target, in particular,
adversarial network architectures.

4.1.1 Cropped Range-View and Reflectance-View Maps

From the range-views and reflectance-views maps [149, 151], new datasets were
created using different mask size Cmask, as shown in Fig. 4.1. The maps only used the
3D point clouds data i.e., the camera calibration data were solely used to visualize the
projected 3D points on the 2D image-plane.

Each line in Fig. 4.1 represents a configuration to perform the upsample of the
projected 3D point clouds on the 2D image-plane, as described in Subsection 3.5.1.
From left to right, the masks size were Cmask = 9×9, Cmask = 11×11, Cmask = 13×13
and Cmask = 15×15, respectively.

From the RGB images, RaV, and ReV, a total of 41 new sub-datasets of objects
were generated (five formulations for upsample and four mask sizes, and RGB images).
The number of objects per class in each dataset is shown in Table 4.1, considering
KITTI dataset as baseline.
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(a) RaV-Average. (b) ReV-Average.

(c) RaV-Bilateral Filter. (d) ReV-Bilateral Filter.

(e) RaV-Inverse Distance Weighting. (f) ReV-Inverse Distance Weighting.

(g) RaV-Maximum. (h) ReV-Maximum.

(i) RaV-Minimum. (j) ReV-Minimum.

Fig. 4.1 Range-view and reflectance-view maps obtained from the BF, IDW, AVE,
MAX and MIN formulations using different mask sizes: Cmask = 9×9, Cmask = 11×11,
Cmask = 13×13 and Cmask = 15×15, from the left to right, respectively.

4.1.2 Cropped and Upsampled 3D Point Clouds

The crop of the 3D objects (point clouds) is obtained through the 2D bounding
boxes, after the projections of the point clouds into pixel-coordinates frame [152]. The
LiDAR points, and so the respective bounding boxes, that have been lying outside the
camera’s field of view were eliminated from the image-plane as shown in Fig 4.2. Thus,
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Fig. 4.2 Example obtained from KITTI 2D Object Detection Dataset showing the
environment as “observed” by AV/IV sensors. The 3D point clouds are coloured
proportionally to the measured range. In the last row, we can see the projected point
sets in the neighbor region of pedestrians, vehicles, and a cyclist.

using Algorithm (1), the 3D points that have generated the projected points i.e., inside
the bounding boxes, are then considered for the upsampling phase. Nonetheless, there
are 3D points that do not belong to the cropped 3D objects therefore, such points are
defined as backgrounds or foregrounds points, as illustrated in Fig. 4.3, and can be
removed through a clustering technique based on the distance between points in order
to define which points belong to the respective object, as indicated in Algorithm (2).
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Algorithm 1: Cropped 3D Point Cloud.
Input: Data from the LiDAR sensor and 2D bounding boxes.
Output: Cropped 3D point clouds without cluster.
Getting the 3D point clouds
pc←OpenLiDAR(data);
indices← pc(:,1) < 5; /* Points that do not belong to the 2D image-plan are
removed (the value is an approximation) */

pc(indices, :)← [ ];
Project PC for image-plane
pcproj ← PrectRrectT

Cam
LiDARPC; /* Equation 3.38 */

pcproj(:,1)← pcproj(:,1)/pcproj(:,3);
pcproj(:,2)← pcproj(:,2)/pcproj(:,3);
Defining the points inside the bounding box
Boxes = [xmin ymin xmax ymax];
indices← [ ];
for i← 1 : Size(pcproj) do

if (pcproj(i,1) >= Boxes(1) and pcproj(i,1) <= Boxes(3)+
1) and (pcproj(i,2) >= Boxes(2) and pcproj(i,2) <= Boxes(4)+1) then

indices← [indices; i]
end

end
PCW ithoutCluster = pc(indices, :);

An elemental disadvantage of LiDAR mapping is the inability to provide the same
number of points for the detected objects, because the distance to the objects varies.
So, to standardize the number of range points that characterizes the objects, six
upsampling strategies have been carried out (after the clustering step), with different
number of points: 64, 128, 256, 512, 1024 and, 2048. Consequently, six additional point
cloud datasets were created and then used for training separately. Figure 4.4 shows an
example of the upsampled output obtained for an object (a pedestrian).

The LiDAR-points upsampling approach was performed using the k-nearest neigh-
bors, initially considering k equal to three and the Euclidean distance of the point-
coordinates (x, y, z), (x, y), (x, z) and (y, z) i.e., the upsample was performed after
calculating four different values of distances. The sampled point is obtained from the
average of the coordinates. The upsampling implementation controls the value of k;
therefore, k increases gradually if the object’s upsample does not reach the maximum
quantity of points determined. On the other hand, if an object has the number of
points higher than the predetermined, then a downsample is randomly applied to the
cluster of points.
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Fig. 4.3 Example of cropped 3D object without cluster at the top of the figure,
presenting background and foreground points. At the bottom of the figure, there is the
object after the clustering operation.
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Algorithm 2: Cluster.
Input: Cropped 3D point cloud and distance between points.
Output: 3D point clouds with a cluster.
Compute the distance
reference← 0;
Distpc← EuclideanDistance(PCW ithoutCluster, reference);
indice← [1 : 1 : Size(PCW ithoutCluster)];
Dist← [Distpc indice];
Dist← SortRows(Dist,1); /* Shortest distance to longest distance */
Compute the cluster
distance← 0.25;
idcluster← Zeros([Size(PCW ithoutCluster), 1])
idmaster(1)← 1;
for i← 2 : Size(PCW ithoutCluster) do

if Dist(i,1)−Dist(i−1,1) <= distance then
idcluster← idmaster;

else
idmaster← idmaster +1;
idcluster← idmaster;

end
end
Check the cluster and compute the histogram count
Cluster← Unique(idcluster);
HC←HistogramCount(idcluster,Cluster);
confidence← 1 /* Confidence level */
cl← Size(HC) /* Number of clusters in the sample */
for i← 1 : Size(cl) do

HC(i)←HC(i)∗
(

confidence− (i−1)
cl

)
end
[ClusterCount Position]←Max(HC);
ct← 1;
for i← 1 : Size(idcluster) do

if idcluster(i) == Cluster(Position) then
PCCluster(ct, :)← PCW ithoutCluster(Dist(i,2), :);
ct← ct+1;

end
end
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Fig. 4.4 Point cloud after the upsample. The same object (pedestrian) with 64, 128,
256, 512, 1024 and, 2048 points.
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4.2 Probabilistic Inference

This section presents the formulations to reduce overconfident predictions, through
Maximum Likelihood (ML) and Maximum a-Posteriori (MAP) functions, based on the
Bayes’ rule (3.33), and using expressions (3.35) and (3.36) presented in Section 3.4.1.4,
including non-parametric and parametric modeling to define the posterior probability,
likelihood function, and prior probability as well.

Similarly to (3.32), the output scores of a classification system, denoted Sc =
{sc1, . . . , scnc}, with nc classes, can be defined as a rv, considering C = {c1, . . . , cnc} as
the set of classes i.e., Sc is dependent on the variable C for the formulation of ML and
MAP. Therefore, the density function is conditional to C [169] and, from the (3.32)
yields

fSc(Sc = ξ|C) = lim
∆ξ→0

P{ξ ≤ Sc≤ ξ +∆ξ|C}
∆ξ

. (4.1)

Through the Bayes’ rule, the posterior probability P (C|Sc) is given by

P (C|Sc) =
P (Sc|C)P (C)

P (Sc) , (4.2)

where P (Sc|C) is the likelihood, P (C) is the prior probability and P (Sc) ̸= 0 is the
model evidence, considering the pior and likelihood known. From the law of the total
probability [21], (4.2) can be rewritten using the per-class expression,

P (ci|Sc) =
P (Sc|ci)P (ci)

nc∑
i=1

P (Sc|ci)P (ci)
. (4.3)

Given (4.3), an inference can be made on the test set about the “unknown” rv
C from the dependence with Sc i.e., the value of the posterior distribution of C is
determined after observing the value of Sc.

4.2.1 Softmax and Sigmoid as Posterior Probability

Softmax and Sigmoid functions are generally used as prediction functions to classify
a given input i.e., they act as decision-making. Such non-linear functions can be taken
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in the probabilistic context [21], considering the concept of Bayes’ theorem, according
to (4.3), and the decision problem for problems of two or more classes [21].

Defining a two-class problem, the posterior probability can be defined for each class
as follows,

P (c1|Sc) =
P (Sc|c1)P (c1)

P (Sc|c1)P (c1)+P (Sc|c2)P (c2), (4.4)

P (c2|Sc) =
P (Sc|c2)P (c2)

P (Sc|c1)P (c1)+P (Sc|c2)P (c2). (4.5)

Dividing the numerator and denominator of (4.4) by P (Sc|c1)P (c1), the posterior
for class 1 is given by:

P (c1|Sc) =

P (Sc|c1)P (c1)
P (Sc|c1)P (c1)

P (Sc|c1)P (c1)
P (Sc|c1)P (c1)+

P (Sc|c2)P (c2)
P (Sc|c1)P (c1)

=
1

1+
P (Sc|c2)P (c2)
P (Sc|c1)P (c1)

. (4.6)

Considering the exponential function and natural logarithm, the expression (4.6) is
given by (4.7),

P (c1|Sc) =
1

1+ e−ξ
= σ(ξ), (4.7)

where ξ = ln

(
P (Sc|c1)P (c1)
P (Sc|c2)P (c2)

)
, and σ(ξ) is defined as the logistic sigmoid function,

while the inverse of such a function is given by ξ = ln
(

σ
1−σ

)
and is defined as logit

Function [21]. Note that (4.7) is the posterior probability rewritten in an alternative
form, and can also be deduced in the same way for P (c2|Sc).

For a classifier with more than two classes, the posterior probability in (4.3) can be
rewritten based on a softmax function, re-applying the exponential and the natural
logarithm [21]. Thus, the posterior probability can be expressed as,

P (ci|Sc) =
eξi

nc∑
i=1

eξi

= σ(ξi), (4.8)
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where ξi = ln(P (Sc|ci)P (ci)) and σ(ξi) is defined as softmax function (normalized
exponential) i.e., P (ci|Sc) was rewritten as being an exponential. Furthermore, (4.8)
is considered a multiclass generalization of the logistic sigmoid function [21].

Expressions (4.7) and (4.8) were obtained considering probabilistic generative
models in classifications1 i.e., the class-conditional densities and the prior are modeled,
and then the posterior probabilities are computed through the Bayes’ theorem [21].
In other words, first we have to determine the class-conditional density P (Sc|ci) for
each class ci individually and then the class prior probability P (ci). Equivalently, the
joint distribution P (Sc|ci) can be directly modeled and later normalized to obtain the
posterior probability. In fact, the classification result is given through two stages, the
first being inference2 and the second being decision-making3.

Alternatively, many traditional approaches to classification problems are of the
type called discriminative models4 or discriminant functions5 [21]. The first tries to
model a posterior P (ci|Sc) directly using a parametric model in the inference stage,
and consequently optimizing such parameters through the training set. Given the
posterior model, for each new entry, it assigns a top-class label. The second case i.e.,
discriminant function, the approach defines a function which uses the training data
to map each entry directly to a certain class (input-output mapping), and according
to Bishop [2006] the “probabilities play no role” i.e., it is not possible to access posterior
probabilities P (ci|Sc). In this case the inference and decision stages are into a single
learning algorithm.

The result achieved by a machine learning algorithm, such as a classifier considering
the prediction as the logistic function or softmax function, should be carefully analyzed,
so that the prediction result is not considered as a probabilistic value. To obtain proba-
bilistic results, the structure of the learning algorithms must encompasses probabilistic
formulations. Through Bayesian inference it is possible to define the predicted values
as being probabilistic, using the training data to model the class-conditional density
(likelihood function) and a prior probability. An example of this was proposed in this
thesis considering neural networks trained with the softmax function. However, the
modeling of likelihood functions and prior probabilities of each class were obtained with

1Naive Bayes, Bayesian networks and Hidden Markov Models.
2Distribution modeling.
3Classification.
4Logistic regression and support vector machine.
5Traditional neural networks and k-nearest neighbors.
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Fig. 4.5 Probability density functions (PDFs), using normalized histograms, for the
logit layers data on the training sets of the KITTI datasets. The graphs are organized
from left-right by classes (pedestrian, car and cyclist, where the positives are in orange)
using the RGB modality.

the values before the prediction layers and after the trained i.e., before the softmax
function (SM) or sigmoid function (SgM).

4.2.2 ML and MAP Functions

Generally, the distribution over the values at the logit layer are far more appropriate
to represent a PDF, as shown in Fig. 4.5, rather than the score values out of the
softmax/sigmoid. Therefore, the basis argumentation is that ML and MAP functions
are more adequate to perform probabilistic inference in regard to permitting decision-
making under uncertainty, which is particularly relevant in autonomous driving and
robotic perception systems. Thus, the ML and MAP functions make inference based on
PDFs obtained from the logit layer prediction scores, where the densities are extracted
by using the training set. This is illustrated in Fig. 4.6, where the horizontal axes
represent the random variable Sc (from the logit layer) and the vertical axes are
proportional to the class-conditional probability.

As expressed in (4.3), the posterior probability depends on the class-conditional
probability (likelihood function) and on the prior probability i.e., the MAP estimation
is dependent on a distribution of both densities, while ML only depends on P (Sc|C)
because, in the ML case, P (C) is usually assumed to be uniform and identically
distributed.

The probabilities P (Sc|C) are modeled by means of non-parametric estimates over
the predicted scores of the logit layer for each class on the training set, as showed
in the first column of Fig. 4.6. Each predicted value in the test set from the logit
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Fig. 4.6 From left-right respectively, normalized histograms and Gaussian distributions
were calculated with the logit layer values for each class on the training set (RGB
modalities from KITTI Dataset).
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Fig. 4.7 Example of probability values of a normalized histogram generated with the
training data of the logit layer.

layer has a score value corresponding to its bin range in the respective class histogram
(normalized histogram from the training set), which is illustrated in Fig. 4.7.
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(a) Bins=5. (b) Bins=15.

(c) Bins=20. (d) Bins=40.

Fig. 4.8 The greater the number of bins, the greater the number of variations i.e., the
greater the number of bumps.

Histograms are graphical ways of summarizing or describing a variable in a simple
way, in other words, histograms show how variables (in this case, the network’s
logits) are distributed, also histograms provide information about the frequencies of
observations. The number of bins (nbins)6 determines the smoothness of the histogram
[198], as seen in Fig. 4.8. As in C. Bishop [21], “we can view the histogram as a simple
way to model a probability distribution given only a finite number of points drawn
from that distribution”.

For our methodology, we have chosen nbins empirically to guarantee a result very
close to or better than the results provided by the SM and SgM layers, in order to
maintain a smooth histogram.

6Often, the number of bins of a histogram are chosen to have the same width.
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Regarding the MAP function, the prior is modeled by a Gaussian distribution
that guarantees prediction values to be smoother as well, as observed within the
second column of Fig. 4.6. Thus, P (c)∼N (Sc|µ, σ2) with mean µ and variance σ2 is
calculated per class, using the training set comprising the variable Logits.

The normal distribution is feasible for modeling an unknown distribution, by
reason of its maximum entropy7. Hence, the greater entropy might guarantee a
more informative distribution and, simultaneously, less confident information around
the mean, that is, it contributes to the reduction of the overconfident inferences.
Therefore, a Gaussian distribution was defined for prior P (ci) to express a high degree
of uncertainty in the value of variable C before observing the data. Furthermore,
a prior distribution with high entropy is said to be a prior distribution with high
variance [21].

The use of different densities to represent the distributions, Gaussians and normal-
ized histogram in this case, aims at capturing potentially complementary information
from the training data as shown in Fig. 4.6.

Additionally, to avoid the “zero” probability problem, as well as to incorporate
some controlled uncertainty levels in the final prediction, the Additive Smoothing
method [223, 32, 131] is implemented during the ML and MAP predictions. The value
assigned for the Additive Smoothing, λ (selected as a value not too great or small),
does not depend on specific information from the training dataset. This value was
determined empirically i.e., by observing which value would preserve approximately
the “original” distribution without compromising the final result. The estimated
probabilities with the Additive Smoothing are shown in (4.9) and (4.10) i.e., a small
correction is incorporated into the ML and MAP estimate. Consequently, no prediction
will have a “zero” probability, despite being unlikely.

ML function is straightforwardly calculated by normalizing P (Sc|C) by the P (Sc)
during the prediction phase, as in (4.9), since the priors P (C) are set uniformly and
identically distributed for the set of classes C,

ML = arg max
i

(P (Sc|ci)+λ)
nc∑

i=1
(P (Sc|ci)+λ)

. (4.9)

7In the case of continuous distribution, the distribution that maximizes the entropy is a Gaussian
distribution. Thus, entropy increases as the variance increases [21].
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Fig. 4.9 Inception V3 CNN representation with logit and softmax layers, Maximum
Likelihood (ML) and Maximum a-Posteriori (MAP) functions. CNN’s training was
done with the softmax layer. After training, the softmax layer was replaced by the ML
and MAP functions i.e., the CNN was not trained with the ML and MAP functions.

Alternatively, the inference using MAP function is given in (4.10) as follows,

MAP = arg max
i

(P (Sc|ci)P (ci)+λ)
nc∑

i=1
(P (Sc|ci)P (ci)+λ)

. (4.10)

The sequential steps for calculating the ML and MAP are summarized in the
Algorithm 3, where class-conditional P (Sc|C) is modelled by a normalized histogram.
On the other hand, to get the maximum posterior probabilities (MAP) the priors
are modelled by normal N (testLg|µtrain, σ2

train). The subscript Lg in the Algorithm 3
indicates that the data is obtained from the logit layer (i.e., the layer before the network
prediction layer) i.e., both likelihood and prior are extracted from the logit layer using
the training data8. In addition to the results considering probability density functions,
we consider cumulative distribution functions, as can be seen in the Appendix A.1
Appendix A.1.

The experiments reported throughout the remainder of this work are based on the
premise that, after training the network, the proposed ML and MAP functions then
replace the softmax and sigmoid prediction layers on the test set only, according to
Fig. 4.9.

Another alternative to model the prior probability is through the Kernel Density
Estimation (KDE), given in (4.11), which computes the average of several probability

8The code for training the network, obtaining the logit layers, and computing the ML and MAP
function is available at github.com/gledsonmelotti/ML-MAP-Layers-for-Probabilistic.
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Algorithm 3: compute ML and MAP.
Input

• Number of classes used in training (nc);

• Number of histogram bins (nbins);

• Values of the logit layer on the training set (trainLg);

• PDF’s parameters (normalized histogram and normal on the training set, see
Fig. 4.6);

• Values of the logit layer on the testing set (testLg).

• Additive smoothing (λ).

Output

• Maximum Likelihood (ML) and Maximum a-Posteriori (MAP).

Getting the normalized frequency histograms:
hc← histogram(ScoresLogitsTrain(classes));
Getting the edge values of each bin of each histogram:
BinLow←BinEdgesLow(hc);
BinHigh←BinEdgesHigh(hc);
Getting the normalized frequency values of each bin of each histogram:
V alues← V alues(hc);
Getting the likelihood:
P (Sc|C)← zeros(size(testLg),nc);
Y ← ScoresLogitsTest;
for k← 1 : size(testLg) do

for cla← 1 : nc do
for i← 1 : size(V alues) do

if (BinLow(cla, i) ⩽ Y (k,cla))&(Y (k,cla) < BinHigh(cla, i)) then
P (Sc|c)(k,cla)← V alues(cla, i);

end
end

end
end
Getting the Prior:
P (C)←N (testLg|[µtrain, σ2

train]);
Calculating the ML and MAP:
ML← P (Sc|C)+λ;
ML← (ML/sum(ML));
MAP ← P (Sc|C)P (C)+λ;
MAP ← (MAP/sum(MAP ));

density function to obtain a kernel estimate of the probability density function [198].

f̂ker(d) =
1

nh

n∑
i=1

K

(
d−Sci

h

)
, (4.11)
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where h is a smoothing parameter9 called window width or bandwidth (bw)10, n is
the number of observations (number of samples - scores), d is a value set (domain)
that evaluates the function f̂ker(d), Sci are the predicted values (scores) of each object,

K

(
d−Sci

h

)
= K(t) is the kernel, having the condition that

∫
K(t)dt = 1 to ensure

that the estimate in (4.11) is a proper probability density function. Such function is
computed at each data point and then taking the average of them. Often the kernel is
set to a standard Normal density.

Considering a univariate kernel estimator, the procedure to obtain the estimation
is given by the following steps:

• define a kernel and the window width h;

• defines a set of d values to evaluate the f̂ker function;

• obtain the predicted values of each object (scores), Sci, which will generate the
estimated probability density functions;

• for each Sci, evaluate the kernel for all values in domain d:

Ki = K

(
d−Sci

h

)
, i = 1,2, . . . ,n (4.12)

where the result is a set of n curves, one for each point Sci;

• weight each curve by the factor
1
h

;

• for each value of d, compute the average of the weighted curves.

• the average of the weighted curves is the prior probability, P (C).

Figure 4.10 illustrates a KDE example, considering n = 10 random variables,
generating 10 individual curves that are averaged together to obtain an estimate of the
probability density function, according to Algorithm (4). The kernel and estimated
function are defined according to the (4.11), (4.13) and (4.15).

9This smoothing parameter is not related to the smoothing parameter of Bayesian inference
functions (ML and MAP).

10Small values generate rough curves, while larger values generate smoother curves.
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Fig. 4.10 Kernel density estimation considering n = 10 random variables and kernel as
the probability density function.

K(t) = 1√
2π

e− t2
2 , (4.13)

K(t) = 1√
2π

e−

(
d−Sci

h

)2

2 = 1√
2π

e
−
(

1
2h2

)
(d−SCi)2

, (4.14)

f̂ker(d) = 1
nh

n∑
i=1

1√
2π

e
−
(

1
2h2

)
(d−SCi)2

, (4.15)

where t = d−Sci
h , h = 1.06n(−1

5 ) as proposed by [198], and each kernel function is
evaluated at d centered at data Sci.

4.3 Fusion Strategies

The choice of a sensor depends on the design constraints, accuracy, range, calibration,
hysteresis, linearity, dimension, weight, cost, energy consumption, among others. The
restrictions presented by one type of sensor may not be demonstrated by another, and
vice-versa. It means that, suing a single sensor is very difficult or even impossible to
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Algorithm 4: compute the estimated probability density function.
Input

• Data Sci normally distributed with length n = 10;

• d is the set of values to evaluate f̂ker with 50 values linearly spaced;

• h = 1.06∗n
−1
5 ;

• kernel function defined as probability density function.

Output

• The average of the individually estimated probability density functions.

fhat← zeros(size(d)); /* take the average of weighted curves */
for k← 1 : n do

f ← 1
n∗h

∑n
i=1

1√
2π

e
−
(

1
2h2

)
∗(d−SCi)2

f ← f/h /* weight each curve by 1/h */

fhat← fhat +f/n

plot(d,f/(n∗h))
end
plot(d,fhat)

obtain complete, consistent or accurate data [158, 54]. Therefore, combining information
from different sensors is crucial to improve robustness and reliability of decision-making
in applications such as perception systems for autonomous driving.

In fact, perception systems that benefit from multisensory data fusion may reduce
the uncertainties of information captured from different sensors [67, 143, 109, 76],
caused by the limited resolution and measurement of noise. In addition, the fusion
of information from different sensors may reduce uncertainties of a dynamic scenario
(past information is no longer present in the environment), because each sensor may
provide data from different regions of the environment, leading to greater confidence
and reducing ambiguity in decision-making, meaning that it also contribute to such
systems being less prone to perturbations.

Currently, the fusion strategies widely used in deep learning are the early and late
fusion applied in different fields of science [143, 171, 109, 210, 156]. Such strategies
are illustrated by Fig. 4.11, where early fusion combines information from different
modalities (RGB camera and 3D point cloud) after processing the features extraction
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Fig. 4.11 Representation of two types of sensor fusion. The one on the left represents
the early fusion strategy, while the other on the right represents the late fusion strategy.

(feature descriptors), while late fusion combines information/data of the top-class
scores out of the output layer. In other words, the early fusion strategy combines the
information at the input of learning algorithms, while the late fusion combines the
information in the prediction layers or at the test stage i.e., combining the predicted
values on the test phase.

Before applying a fusion strategy, we have performed the classification of objects
using a series of sub-sets separately, as described in Section 4.1.1. The datasets
that generated the best range-view and reflectance-view results, considering the F-
score metric11, were considered as baseline datasets for the study of fusion strategies.
Therefore, the final number of datasets has been reduced to three depending on the
sensory modalities: RGB images, LiDAR-based range-view (RaV - or front-view) and
reflectance-view (ReV) obtained through Bilateral Filter using a mask size Cmask =
13×13.

4.3.1 Early Fusion

The early fusion strategy considered concatenating the images/maps at the begin-
ning of the deep network. Thus, four classification results were obtained through the
concatenation of the RGB images, RaV, and ReV maps channels i.e., images with two,
four and five channels, as illustrated in Fig. 4.12.

11F-score= 2(P.R)/(P + R), where P is defined as precision and R is defined as recall, P =
TP/(TP +FP ) and R = TP/(TP +FN).
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Fig. 4.12 Representation of early fusion strategies. The images were concatenated at
the beginning of the deep network.

4.3.2 Late Fusion

For this strategy, we have implemented non-learning formulations, considering
traditional formulations as maximum, minimum, average, normalized product [108, 119]
as in (4.16)-(4.19), assuming the learning models are independent.

Smax = maxm(Sm) (4.16)
Smin = minm(Sm) (4.17)

Saver = 1
M

M∑
m=1
Sm (4.18)

Sprod =

M∏
m=1
Sm

M∏
m=1
Sm +

M∏
m=1

(1−Sm)
, (4.19)

where M is the number of models and Sm is the top-class score of a given model i.e.,
the score is the actual output value predicted by the network.
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98 Evaluation and Results

5.1 Bayesian Inference: ML and MAP

The CNN output scores indicate a degree of certainty of the given prediction. The
level of certainty can be defined as the confidence of the model in a given prediction, and
in an object recognition problem, represents the maximum value within the prediction
layers. However, the output scores may not always represent a reliable indication of
certainty with regard to a given class, especially when unseen (non-trained i.e., out-of-
training distribution) objects occur in the prediction (test) stage; this is particularly
relevant for real world application domains involving autonomous robots and vehicles,
since unpredictable objects are likely to be encountered which may be misclassified by
prediction layers; even worst when such objects are misrecognized with a high degree
of certainty. With this in mind, in addition to the trained classes (pedestrian, car, and
cyclist), a set of unseen objects were introduced on the classification dataset, according
to Subsection 3.3.1. Regarding the objects detection, the unseen classes are already
present in the test dataset’s own frames. The object detection results are presented by
means of precision-recall curves considering the easy, moderate and hard cases (based
on object size, occlusion state, and truncation level), according to the devkit-tool
provided by the KITTI benchmark.

5.1.1 Classification

All classes, on the training dataset, were extracted directly from the KITTI Vision
Benchmark Suite-2D object, with the exception of the “tree”, “lamppost” and “signpost”
classes which were manually extracted from the data for this study. The rationale
behind this is to evaluate the prediction confidence of the networks on objects that do
not belong to any of the trained classes, and as such the consistency of the models can
be assessed. Ideally, if the classifiers are perfectly consistent in terms of probability
interpretation, the prediction scores would be identical (equal to 1/3) for each class
in each sample on the unseen dataset. Results on the testing set are shown in Table
5.1 in terms of F-score, False Positive Rate (FPR), the average (Ave.ScoresF P ) and
variance (V ar.ScoresF P ) of the False Positives (FP ). The average (Ave.Scoresunseen)
and the variance (V ar.Scoresunseen) of the predicted scores are also shown for the
unseen testing set.

In reference to Table 5.1, where the results are reported based on the KITTI-
classification test set, it can be observed that the FPR, Ave.ScoresF P and V ar.ScoresF P

values of the ML and MAP are considerably lower than the results presented by the
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Table 5.1 Comparison between the classifications obtained by the SM layer, ML and
MAP layers in terms of average F-score and FPR (%). The performance measures on
the unseen dataset are the average and the variance of the prediction scores.

KITTI Dataset

Modalities F-score FPR Average
ScoreFP

Variance
ScoresFP

Average
Scoreunseen

Variance
Scoresunseen

SMRGB 95.89 1.60 0.853 0.021 0.982 0.005
MLRGB 94.84 1.19 0.487 0.018 0.708 0.025
MAPRGB 95.22 1.15 0.355 0.002 0.388 0.003
SMRaV 92.40 2.12 0.878 0.029 0.961 0.014
MLRaV 92.07 1.73 0.495 0.024 0.721 0.049
MAPRaV 92.17 2.12 0.371 0.007 0.672 0.077
SMReV 92.82 1.73 0.824 0.031 0.967 0.009
MLReV 92.52 1.61 0.692 0.039 0.889 0.029
MAPReV 92.10 1.66 0.442 0.023 0.515 0.016

Table 5.2 Number of bins for ML and MAP functions.

Modality RGB RaV ReV
Bins per class Ped Car Cyc Ped Car Cyc Ped Car Cyc

ML layer 25 25 25 5 10 7 9 4 26
MAP layer 30 30 30 5 3 8 6 8 35

softmax layer (SM ) for both of the sensor modalities. Regarding the F-scores of the
proposed approach (ML and MAP) compared to the SM, the methodology resulted
in a reduction of 1,10% (ML) and 0.70% (MAP) (percentage point) for the RGB
modality, 0.36% (ML) and 0.25% (MAP) for RaV modality, and for the ReV modality
a reduction of 0.32% (ML) and 0.78% (MAP). Such reductions of the F-scores are
relatively small and thus did not compromise the classification ability. The parameters
assigned for the number of bins and additive smoothing are shown in Table 5.2 and
Table 5.3. Such parameters do not depend on previous information of the training
set. These parameters were determined empirically i.e., by observing which value
would preserve approximately the “original” distribution without compromising the
final result.

Further experiments have been carried out as a complementary analysis concerning
the network’s overconfident behaviour, on a so-called unseen test set, by means of the
network’s average scores defined as Ave.Scoresunseen. Note that for ML and MAP
functions, the results are smaller than the SM layer as can be seen in Table 5.1.
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Table 5.3 Smoothing parameter (λ) for ML and MAP functions.

Modality RGB RaV ReV
Layer Additive Smoothing Additive Smoothing Additive Smoothing
ML 1×10−2 1×10−6 1×10−4

MAP 1×10−2 1×10−6 1×10−4

This indicates that the probabilistic inference are significantly better balanced i.e.,
enabling more reliable decision-making, when “new” objects of “non-trained” classes
are presented to the CNNs.

The distributions of the score for the pedestrian, car, and cyclist classes (columns
from left to right) obtained through the ML and MAP functions are illustrated by the
histograms in Fig. 5.1, Fig. 5.2, Fig. 5.3, while Fig. 5.4 represents the distribution for
the unseen dataset. We can see that the aforementioned graphs show less “extreme”
results than those provided by the softmax layer.

Another way of analyzing the results is through reliability diagrams, as shown in
the Fig. 5.5, considering uncalibrated, ML and MAP data. Furthermore, as a way of
validating our methodology, we compared our results achieved with the temperature
scaling calibration technique. Note that the results presented in the reliability diagrams
are shown through the MCE and ECE metrics. From these metrics we cannot say
which is the best calibration technique, because for a given technique the lowest value
for the MCE was obtained, while for another technique the lowest value for the ECE
was obtained. However, we show that the proposed approach contributed to reduce
the calibration errors i.e., to reduce the values of the MCE and ECE metrics when
compared to the uncalibrated data, and consequently we provide a more reliable result,
as well as the contribution to reduce the overconfident predictions.

The results from Kernel Density Estimation (KDE) are shown in Table 5.4. Note
that the reduction of F-scores does not compromise the results already achieved by the
traditional SM layer. In the case of RGB modality, the reduction was 0.49% for MAP.
For the RaV dataset the reduction was 0.04% for MAP, while for the ReV dataset the
MAP had a reduction of 1.11%. Values assigned for bandwidth from KDE are shown
in Table 5.5, as well as the additive smoothing for MAP. The score distributions from
the proposed methodology (MAP) using KDE are illustrated in Fig. 5.6 - Fig. 5.8.
Regarding the calibration metrics, the results were not significant. In fact, the MAP
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(a) Softmax function scores.

(b) ML function scores.

(c) MAP function scores.

Fig. 5.1 From the RGB modality, the prediction scores were calculated using the
softmax function, ML and MAP functions on the KITTI dataset test set.

achieved a better result than the uncalibrated scores when analyzed with the MCE
metric. The results of such a calibration are illustrated in Fig. 5.9.

In addition to the results presented in the Table 5.4, through the F-scores, the Fig.
5.10 presents the distributions of the scores through the histograms of the unseens
datasets, being possible to observe the reduction of the values of the scores.
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(a) Softmax function scores.

(b) ML function scores.

(c) MAP function score.

Fig. 5.2 From the LiDAR (RaV) modality, the prediction scores were calculated using
the softmax function, ML and MAP functions on the KITTI dataset test set.
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(a) Softmax function scores.

(b) ML function scores.

(c) MAP function score.

Fig. 5.3 ReV modality from the LiDAR sensor, the prediction scores were calculated
using the softmax function, ML and MAP functions on the KITTI dataset test set.
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(a) SM, ML, MAP scores on the RGB unseen KITTI-set.

(b) SM, ML, MAP scores on the RaV unseen KITTI-set.

(c) SM, ML, MAP scores on the ReV unseen KITTI-set.

Fig. 5.4 Prediction scores on the unseen/non-trained data (comprising the classes:
person sitting, tram, tree/lamppost/signpost, truck, van), using SM layer (left side),
and the proposed ML (center) and MAP (right side) functions, where the likelihood
functions were defined as normalized histograms, and the priors were modelled by
Gaussian distributions.
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(a) Reliability diagrams for RGB images from KITTI dataset, considering the number of
bins = 15 and TS = 1.31.
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(b) Reliability diagrams for RaV images from KITTI dataset, considering the number of
bins = 15 and TS = 2.26.
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(c) Reliability diagrams for ReV images from KITTI dataset, considering the number of bins
= 15 and TS = 1.61.

Fig. 5.5 The graphs, from left to right, represent uncalibrated score values, followed by
score values calibrated through Temperature Scaling, then scores obtained by the ML
and MAP layers respectively.
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Table 5.4 Comparison between the classifications obtained by the SM layer, ML and
MAP functions in terms of average F-score and FPR (%), considering the prior
probability estimated from KDE. The performance measures on the unseen dataset
are the average and the variance of the prediction scores.

KITTI Dataset

Modalities F-score FPR Average
ScoreFP

Variance
ScoresFP

Average
Scoreunseen

Variance
Scoresunseen

SMRGB 95.89 1.60 0.853 0.021 0.982 0.005
MLRGB 95.09 0.97 0.526 0.024 0.650 0.023
MAPRGB 95.42 1.41 0.809 0.037 0.740 0.055
SMRaV 92.40 2.12 0.878 0.028 0.961 0.013
MLRaV 92.07 1.73 0.495 0.024 0.721 0.049
MAPRaV 92.36 1.89 0.376 0.012 0.508 0.048
SMReV 92.82 1.73 0.824 0.031 0.967 0.009
MLReV 92.52 1.61 0.692 0.039 0.889 0.029
MAPReV 91.79 1.46 0.397 0.021 0.393 0.010

Table 5.5 Smoothing parameter (λ) for MAP function, and bandwidth for KDE.

Modality RGB RaV ReV

Layer Bandwidth Additive
Smoothing Bandwidth Additive

Smoothing Bandwidth Additive
Smoothing

MAP 0.500 1×10−2 0.105 1×10−2 0.104 1×10−3
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(a) Softmax function scores.

(b) ML function scores.

(c) MAP function scores.

Fig. 5.6 From the RGB modality, the prediction scores were calculated using the
softmax function, ML and MAP functions, considering KDE on the KITTI dataset
test set.
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(a) Softmax function scores.

(b) ML function scores.

(c) MAP function score.

Fig. 5.7 From the LiDAR (RaV) modality considering KDE, the prediction scores were
calculated using the softmax function, ML and MAP functions on the KITTI dataset
test set.
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(a) Softmax function scores.

(b) ML function scores.

(c) MAP function score.

Fig. 5.8 ReV modality from the LiDAR sensor, the prediction scores considering KDE
were calculated using the softmax function, ML and MAP functions on the KITTI
dataset test set.
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(a) Reliability diagrams for RGB images from KITTI dataset, considering the number of
bins = 15 and TS = 1.31.
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(b) Reliability diagrams for RaV images from KITTI dataset, considering the number of
bins = 15 and TS = 2.26.
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(c) Reliability diagrams for ReV images from KITTI dataset, considering the number of bins
= 15 and TS = 1.61.

Fig. 5.9 The reliability diagrams considering KDE, from left to right, represent uncali-
brated score values, followed by score values calibrated through Temperature Scaling,
then scores obtained by the ML and MAP layers respectively.
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(a) SM, ML, MAP scores on the RGB unseen KITTI-set.

(b) SM, ML, MAP scores on the RaV unseen KITTI-set.

(c) SM, ML, MAP scores on the ReV unseen KITTI-set.

Fig. 5.10 Prediction scores on the unseen/non-trained data (comprising the classes:
person sitting, tram, tree/lamppost/signpost, truck, van), using SM layer (left side),
and the proposed ML (center) and MAP (right side) functions, considering the KDE
as estimate for the prior probability.
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Fig. 5.11 Yolo V4 representation with logits and sigmoid (SgM ) layers, Maximum
Likelihood (ML) and Maximum a-Posterior (MAP) functions. After training, the
predicted values from the sigmoid layer were replaced by the scores from ML and MAP
functions. Notice that the Yolo V4 was not trained or re-trained with the ML/MAP
functions.

5.1.2 Detection

The prediction layer in the detection algorithm was the sigmoid (SgM) function,
instead of the softmax (SM) function. The procedure for reducing the values of
the prediction scores with overconfidence (false positives) is the same as for object
classification, as shown in Fig. 5.11.

The results on the per-modalities test sets are shown in Figures 5.12, 5.13, and
5.14 through precision-recall curves (Pr-Rc) for YOLOV4. Note that the curves are
presented to the three different difficulty levels (easy, moderate and hard), according
to the KITTI dataset methodology for object detection.

To facilitate the comparison analysis from the results given by the Pr-Rc curves,
we further present a quantitative comparison, between the baseline (designated by
sigmoid, or simply SgM ) and the proposed ML, and MAP functions, using the areas
under the curve (AUC), as shown in Table 5.6. Note that the most expressive result
was achieved for the cyclists class (Cyc), both for the RGB, RaV and ReV modalities
in the three difficulty levels. With respect to the car (Car) and pedestrians (Ped), the
proposed approach also showed some improvement.

Additionally, the graphs in figures 5.15 and 5.16 show, when using the YOLOV4
detector, the distribution of the output-scores for the proposed approach and the
baseline (i.e., using sigmoid). We can see that the baseline results achieved by
YOLOV4 (shown in the first row) present many false positives (FP) with overconfident
scores, while the ML and MAP layers have reduced the overconfidence on the FPs,
whereas the performance on the true positives (TP) is relatively unaffected, according
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Fig. 5.12 Precision-recall curves for car, cyc. and ped. classes using the RGB modality,
with λML = 1.6×10−6, BinsML = 22, λMAP = 1.0×10−8, and BinsMAP = 24.

to Table 5.7. Furthermore, the proposed approach can be compared quantitatively
with the baseline through the ECE metric, as shown in Table 5.8 (RGB, RaV and
ReV modalities). Based on such results, we can see that the ECE was reduced for the
proposed methodology.

Note that the proposed methodology is dependent on the number of bins (nbins)
and the parameter λ. Thus, the values of the scores may vary according to the values of
these parameters. For the particular case of the cyclist class, the proposed methodology
achieved better performance compared to the baseline (results in Table 5.6). In this
search, we have chosen to use a single set of parameters for all the three cases (i.e., the
same values of λ and nbins for each class). Given the proposed approach, we note that
a set of tailored parameters for each class can be used instead, as the distributions
(PDF’s) are carried out individually.
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Fig. 5.13 Precision-recall curves for RaV modality, with λML = 1.3×10−3, BinsML = 20,
λMAP = 1.7×10−5, and BinsMAP = 24.



5.1 Bayesian Inference: ML and MAP 115

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Car-Easy

SG

ML

MAP

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Car-Moderate

SG

ML

MAP

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Car-Hard

SG

ML

MAP

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Cyc-Easy

SG

ML

MAP

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Cyc-Moderate

SG

ML

MAP

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Cyc-Hard

SG

ML

MAP

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Ped-Easy

SG

ML

MAP

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Ped-Moderate

SG

ML

MAP

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Ped-Hard

SG

ML

MAP

Fig. 5.14 Precision-recall curves for ReV modality, with λML = 1.3×10−3, BinsML = 23,
λMAP = 8.0×10−5, and BinsMAP = 5.
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Table 5.6 Comparison of the areas under the curves (%) between the sigmoid layer
(SgM ), ML and MAP functions from the precision-recall curves.

RGB Modality
Easy Moderate Hard

Case SG ML MAP Case SG ML MAP Case SG ML MAP
Car 75.48 75.93 75.95 Car 70.67 70.90 71.00 Car 63.04 63.36 63.36
Cyc 45.47 47.20 47.20 Cyc 45.47 46.83 46.99 Cyc 40.94 42.09 42.22
Ped 61.84 63.05 63.05 Ped 52.27 51.25 51.24 Ped 45.65 44.52 44.52

RaV Modality
Easy Moderate Hard

Case SG ML MAP Case SG ML MAP Case SG ML MAP
Car 82.99 81.13 83.21 Car 71.07 72.16 71.78 Car 62.97 62.80 63.53
Cyc 40.48 44.80 44.73 Cyc 32.28 32.74 32.43 Cyc 28.13 30.39 29.99
Ped 66.27 66.45 66.60 Ped 52.56 52.22 52.22 Ped 45.57 44.93 44.96

ReV Modality
Easy Moderate Hard

Case SG ML MAP Case SG ML MAP Case SG ML MAP
Car 74.42 72.68 73.92 Car 58.13 56.14 56.35 Car 50.83 50.69 50.52
Cyc 30.80 31.00 31.25 Cyc 24.65 26.46 26.86 Cyc 22.73 24.21 24.53
Ped 43.51 44.35 44.26 Ped 33.62 35.44 35.45 Ped 29.32 30.88 30.87

Table 5.7 The average of the scores after the proposed approach, considering the results
from the YOLOV4.

True
Positives

Modality RGB RaV ReV
Approach SG ML MAP SG ML MAP SG ML MAP
Average 0.947 0.950 0.950 0.974 0.940 0.955 0.970 0.934 0.951
Variance 0.007 0.006 0.006 0.004 0.010 0.011 0.005 0.011 0.012

False
Positives

Modality RGB RaV ReV
Approach SG ML MAP SG ML MAP SG ML MAP
Average 0.788 0.806 0.806 0.867 0.780 0.786 0.872 0.795 0.817
Variance 0.013 0.013 0.013 0.015 0.037 0.044 0.014 0.034 0.030

Table 5.8 ECE on the different modalities, when using YOLOV4 as detector.

Modality RGB RaV ReV
Approach SgM ML MAP SgM ML MAP SgM ML MAP

ECE 0.007 0.005 0.005 0.0367 0.013 0.027 0.031 0.013 0.031
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(a) RGB modality.

(b) RaV modality.

(c) ReV modality.

Fig. 5.15 Score distributions considering TP objects from YOLOV4 detector.
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(a) RGB modality.

(b) RaV modality.

(c) ReV modality.

Fig. 5.16 Score distributions considering FP objects from YOLOV4 detector.
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Table 5.9 Classification of objects without fusion strategies (Ped-Pedestrian, Car-Car,
Cyc-Cyclist).

F-score
Modalities Image 3D Point Cloud

Classes RGB RaV ReV 64 128 256 512 1024 2048
Ped 96.29 93.33 94.46 84.67 85.21 84.36 84.14 80.30 84.70
Car 99.47 99.30 99.31 97.84 98.03 98.00 97.97 97.85 97.86
Cyc 91.93 84.56 84.70 64.97 67.07 64.29 66.06 52.23 62.51
Ave 95.89 92.40 92.82 82.43 83.44 82.22 82.72 76.79 81.69

5.2 Sensor Fusion Strategies

One of the best ways to increase confidence in decision-making is to combine data
from different sensors (fusion strategies - early and late multimodal sensor fusion)
i.e., data from different sensors contains different information, such as cameras and
LiDARs. In other words, the fusion of different modalities generally tend to improve
the performance of object recognition systems. It is evident that the improvement of
the result does not depend only on the data, but on the formulations of the algorithms,
both non-learning and learning methods. This means that fusion strategies will not
always provide better results than individual sensor information [62, 24, 14, 3, 100, 46].

Before presenting the results on fusion strategies, we need to emphasize that we
work with the RGB, RaV, ReV, and 3D point clouds modalities. The results of the
classifications using single modalities are shown in the Table 5.9.

5.2.1 Early Fusion

Early fusion fuses the data at the beginning of the machine learning/deep learning
algorithm. Some data can be fused directly without any pre-processing, while other data
need feature extractions before starting the training of a given algorithm [62, 24, 100, 46].

From the definition of early fusion presented in the previous paragraph, considering
the combination of data without any pre-processing, we define the combinations between
RGB images, RaV and ReV modalities, according to Fig. 4.12 (Subsection 4.3.1). The
best result was achieved considering the RGB_RaV fusion strategy, according to the
results presented in the Table 5.10.
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Table 5.10 Classification of objects with early fusion strategies (Ped-Pedestrian, Car-Car,
Cyc-Cyclist).

F-score
Classes RaV_ReV RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 94.91 97.40 95.19 94.31
Car 99.49 99.66 99.50 99.36
Cyc 86.02 94.34 87.96 87.25
Ave 93.48 97.14 94.22 93.64

5.2.2 Late Fusion

Generally, late fusion strategies are simple, combining the final results after pro-
cessing the training algorithms, such as the strategies presented by the equations
(4.16), (4.17), (4.18), (4.19) i.e., maximum, minimum, average, and product1 respec-
tively [108, 119, 62, 24, 14, 3, 100].

Taking into account the fusion strategies by the equations presented in the previous
paragraph, we show the late fusion results in the Table 5.11, Table 5.12 and Table 5.13
where the best result was achieved through the product late fusion strategy, using the
RGB, RaV, ReV and PC modalities.

5.2.2.1 ML and MAP

Taking advantage of the idea of late fusion, the results achieved by ML and MAP
approach were fused according to the equations (4.16), (4.17), (4.18), (4.19). The best
result achieved was through Average/Product Late Fusion, as shown in Table 5.14 and
Table 5.15, considering the fusion with the RGB and RaV modalities. Furthermore,
the results considering KDE as estimate for the prior probability are presented in the
Table 5.16, being the Minimum strategy as the best result.

5.3 Discussion

Within the experiments performed in this thesis, a probabilistic approach for
CNNs was addressed as distributions in the logit layer to best represent the outputs
classification. The results reported here in the experiments are very promising, given

1In Appendix A.3 other late fusion results using Bayesian inference are presented.
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Table 5.11 Classification of objects with late fusion strategies (Ped-Pedestrian, Car-Car,
Cyc-Cyclist).

F-score
Average Late Fusion

Classes RaV_ReV RGB_RaV RGB_ReV RGB_RaV_ReV
Ped 95.60 96.89 97.50 97.62
Car 97.21 99.65 99.61 99.67
Cyc 87.74 92.68 93.76 93.08
Ave 94.43 96.41 96.85 96.79

Maximum Late Fusion
Classes RaV_ReV RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 95.48 96.67 97.42 97.09
Car 99.48 99.61 99.58 99.61
Cyc 88.03 92.34 93.63 92.72
Ave 94.33 96.21 96.88 96.47

Minimum Late Fusion
Classes RaV_ReV RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 95.76 97.16 97.54 97.35
Car 99.57 99.69 99.63 99.68
Cyc 88.56 93.02 93.28 92.91
Ave 94.63 92.62 96.81 96.65

Product Late Fusion
Classes RaV_ReV RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 95.57 96.97 97.68 97.58
Car 99.52 99.66 99.61 99.65
Cyc 88.41 93.00 93.97 94.02
Ave 94.50 96.55 97.09 97.08

that ML and MAP noticeably reduced the classifier overconfidence, providing a more
significant distribution in terms of probabilistic interpretation.

The improvement is not as significant when analyzing objects defined as true
positives. However, our concern was to develop a methodology that might reduce the
values of false positives (mainly objects of the unseen class: which may be critical in
robotics and autonomous driving applications) without degrading the results achieved
by true positives. Note that, we have included two metrics in Table 5.1 and Table 5.4,
in order to show the reduction of score values for the unseen class (in particular) and
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Table 5.12 Classification of objects with late fusion strategies considering the point
cloud modality (Ped-Pedestrian, Car-Car, Cyc-Cyclist).

F-score
Average Late Fusion

Classes RGB_PC RaV_PC ReV_PC RGB_RaV_PC
Ped 96.83 94.46 95.58 97.22
Car 99.47 99.25 99.41 99.54
Cyc 91.72 86.00 88.48 93.60
Ave 96.01 93.24 94.82 96.79

Maximum Late Fusion
Classes RGB_PC RaV_PC ReV_PC RGB_RaV_PC

Ped 96.82 94.31 96.27 96.73
Car 99.46 99.25 99.38 99.52
Cyc 91.45 86.00 88.29 91.96
Ave 95.91 93.19 94.64 96.07

Minimum Late Fusion
Classes RGB_PC RaV_PC ReV_PC RGB_RaV_PC

Ped 96.91 94.72 96.48 97.04
Car 99.52 99.35 99.46 99.58
Cyc 91.98 86.62 88.75 92.19
Ave 96.13 93.56 94.89 96.27

Product Late Fusion
Classes RGB_PC RaV_PC ReV_PC RGB_RaV_PC

Ped 96.90 94.67 96.54 97.46
Car 99.50 99.31 99.43 99.58
Cyc 92.29 86.53 888.84 93.66
Ave 96.23 93.51 94.94 96.90

also demonstrating that the overconfident behavior has been mitigated for TPs and
FPs.

To assess the classifier’s robustness or the model uncertainty when predicting
objects, we consider the ones obtained from the unseen dataset. Overall, the results
are promising, since the prediction distributions were not extremities related to the
results from the SM layer. In other words, the average scores using ML and MAP
layers were significantly lower than the softmax prediction layer (the baseline), and
thus, the CNNs are less prone to overconfident.
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Table 5.13 Continuation of Table 5.12 (Ped-Pedestrian, Car-Car, Cyc-Cyclist).

F-score
Average Late Fusion

Classes RGB_ReV_PC RGB_RaV_ReV_PC
Ped 97.46 97.80
Car 99.57 99.60
Cyc 93.18 93.10
Ave 96.74 96.84

Maximum Late Fusion
Classes RGB_ReV_PC RGB_RaV_ReV_PC

Ped 97.80 97.31
Car 99.51 99.54
Cyc 93.12 92.23
Ave 96.81 96.36

Minimum Late Fusion
Classes RGB_ReV_PC RGB_RaV_ReV_PC

Ped 97.77 97.35
Car 99.58 99.60
Cyc 93.56 92.59
Ave 96.97 96.51

Product Late Fusion
Classes RGB_ReV_PC RGB_RaV_ReV_PC

Ped 97.83 98.25
Car 99.56 99.66
Cyc 93.89 94.42
Ave 97.09 97.44

One potential way to improve the F-scores achieved by the ML and MAP layers
would be to obtain a “perfect” match between the smoothing parameter (λ) and the
number of bins in the histograms. As a consequence of the Additive Smoothing (λ),
the score values equal to 0.0 and 1.0 are excluded from the prediction values. The
influence of the λ parameter on the data distribution can be seen from the figures in
Appendix A.2, particularly with respect to objects of the unseen class.

The results for calibration were presented through reliability diagrams, taking into
account the MCE and ECE metrics. In fact, such metrics indicate the amount of
predicted score values calibrated, that is, the best calibration has to present the lowest
value for the MCE and ECE. However, we observed that depending on the dataset
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Table 5.14 Classification of objects with late fusion strategies considering ML.

F-score
Average Late Fusion

Classes RGB_RaV RGB_ReV RGB_RaV_ReV
Ped 97.07 95.79 96.77
Car 99.65 99.47 99.62
Cyc 92.88 88.30 91.20
Ave 96.53 94.52 95.86

Maximum Late Fusion
Classes RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 96.99 95.71 95.94
Car 99.68 99.44 99.51
Cyc 92.67 87.08 88.02
Ave 96.45 94.08 94.49

Minimum Late Fusion
Classes RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 97.00 95.65 95.76
Car 99.68 99.45 99.47
Cyc 93.06 88.69 87.23
Ave 96.58 94.60 94.78

Product Late Fusion
Classes RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 97.07 95.60 96.20
Car 99.65 99.43 99.51
Cyc 92.88 88.13 89.92
Ave 96.53 94.39 95.21

and sensor modality, our approach obtained the best result in only one of the metrics
i.e., either the lowest value for the MCE metric or the lowest value for the ECE metric.
Such fact can also be compared against the temperature scaling calibration - served as
baseline and still one of the most used state-of-the-art calibration technique.

Additionally, another key factor, which contributes to validate the proposed ap-
proach, is the use of different datasets in terms of both RGB, Range-view, and
Reflectance-view (3D point clouds-LiDARs) modalities, considering that the sensors of
the datasets have different resolutions, mainly the LiDAR sensor.

The proposed methodology also obtained good results for object detection, without
degrading the results when compared to the SgM prediction layer, presenting better
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Table 5.15 Classification of objects with late fusion strategies considering MAP.

F-score
Average Late Fusion

Classes RGB_RaV RGB_ReV RGB_RaV_ReV
Ped 97.07 94.09 94.27
Car 99.66 99.21 99.22
Cyc 92.67 80.22 80.78
Ave 96.47 91.17 91.42

Maximum Late Fusion
Classes RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 97.03 94.05 94.05
Car 99.66 99.21 99.21
Cyc 92.58 80.15 80.15
Ave 96.42 91.13 91.13

Minimum Late Fusion
Classes RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 96.96 94.35 94.43
Car 99.66 99.20 99.23
Cyc 92.47 81.18 81.52
Ave 96.36 91.58 91.72

Product Late Fusion
Classes RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 97.07 94.12 94.27
Car 99.66 99.21 99.22
Cyc 92.67 80.33 80.78
Ave 96.47 91.22 91.41

results in all cases. The improvement is more evident for the cyclist class, which
contains the least number of examples. This is an interesting result that could be
further investigated in future work.

Regarding the formulations of probabilistic distributions, the prior modeling by a
Gaussian distribution was shown to guarantee a smoother distribution for the prediction
values. Unlike the prior, the likelihood function was modeled by means of a normalized
histogram i.e., by a non-parametric formulation showing the probability distributions.
If both the prior and the likelihood function were modeled by a uniform distribution,
the final result would be similar to those achieved by the SM and SgM layers, giving
that it would not offer any smoothing for the prediction values. In fact, a uniform
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Table 5.16 Classification of objects with late fusion strategies considering KDE as
estimate for the prior probability (MAP).

F-score
Average Late Fusion

Classes RGB_RaV RGB_ReV RGB_RaV_ReV
Ped 97.33 95.36 95.70
Car 99.64 99.33 99.50
Cyc 93.56 83.98 86.95
Ave 96.84 92.89 94.05

Maximum Late Fusion
Classes RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 97.29 95.32 95.47
Car 99.64 99.33 99.35
Cyc 93.56 83.90 84.23
Ave 96.83 92.85 93.02

Minimum Late Fusion
Classes RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 95.89 93.38 94.57
Car 99.40 99.28 99.17
Cyc 90.98 84.42 81.63
Ave 96.95 92.87 93.04

Product Late Fusion
Classes RGB_RaV RGB_ReV RGB_RaV_ReV

Ped 97.33 95.36 95.48
Car 99.64 99.33 99.38
Cyc 93.56 83.98 84.73
Ave 96.84 92.89 93.20

prior or likelihood would add constancy to the training data modeling, which would
have little effect on the prediction values obtained by the ML and MAP. In addition
to the results considering probability density functions (normalized histograms and
Gaussian distributions), we present classification results considering the cumulative
distribution function, as can be seen in the Appendix A.1.

The prior probability was also modeled using the KDE methodology. The results
through KDE were very significant (F-score and FPR), both for RGB, RaV, and ReV
modalities, as well as to the results achieved with the unseen (out-of-training) dataset.



5.3 Discussion 127

In order to improve the classification results provided by neural networks, we present
early and late fusion strategies. In fact, we verified how much the fusion of information
from different modalities (sensors) contributes to the improvement of individual results
provided by neural networks. The best result of the early fusion strategy was the
combination of RGB and RaV modalities with an F-score of 97.14% i.e., a gain of
1.3% when compared to the individual result for the RGB modality, according to the
Table 5.9 and Table 5.10. Regarding the late fusion strategy, the best result was with
an F-score of 97.44%, with a gain of 1.61% when compared to the RGB modality. This
result was obtained through the product late fusion strategy considering the RGB,
RaV, ReV, and point cloud modalities, as shown in Table 5.13.

It is interesting to note that the late fusion strategy presented a significant result
when combined to the individual results provided by the proposed methodology in this
thesis i.e., the results obtained through the ML and MAP layers with an average gain
of 0.64% of F-score, when compared to the RGB modality individually, according to
tables 5.9, 5.14, and 5.15.

In conclusion, our results present an alternative to reduce overconfident predictions,
providing a smoother prediction, especially with respect to the misclassified objects.
In addition, fusion strategies also present alternatives to improve the results already
achieved by neural networks.
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6.1 Conclusion

In this chapter we discuss the main conclusions drawn from the thesis, including
the experiments and developments on multimodality datasets, fusion strategies, as
well as strategies to reduce the score values of overconfident predictions, focusing on
perception systems for autonomous/intelligent vehicles. Modern perception systems
have achieved satisfactory results with recent advances in deep learning and sensory
technology, through data such as RGB cameras, LiDAR, RADAR, stereo, and RGB-D.
The work carried out in this thesis mainly deals with object recognition and detection
using deep network learned on dataset comprising RGB and LiDAR modalities.

The thesis reflects the research work and studies conducted using camera and
LiDAR technologies to classify cars, cyclists, and pedestrians based on deep networks.
The modalities, and their respective representations, are RGB images, range-view
(RaV) and reflectance-view (ReV) maps, where range and reflectance representations
have been obtained from the 3D point clouds projections (LiDAR sensor). For the
last two modalities, different techniques have been employed (maximum, minimum,
average, inverse distance weighting and bilateral filtering) to upsample the projected
3D points cloud on the 2D mapping coordinates, resorting by varying mask sizes (7×7,
9×9, 11×11, 13×13, and 15×15) - as detailed in the Subsection 4.1.1. The objects
captured by the LiDAR sensor contain sparse points and different amounts of points
(because of the distance to the objects and their dimension), making it difficult to
upsample both the 3D points and the projected 3D points on the 2D image-plane.
It cannot be overlooked that a perfect technique to sample the projected 3D points
on the 2D image-plane is still an open challenge. In other words, there is no explicit
closed-form technique, as far as the author knows, that upsamples the projected 3D

points on the 2D image-plane.
From the different modalities we run the convolutional networks AlexNet, Inception

V31 and PointNet to classify cars, cyclists, and pedestrian. We observed that the
best result achieved was attained by Inception V3 with RGB images. However, the
object classification using the range-view and reflectance-view modalities showed very
satisfactory results. Unlike AlexNet and Inception V3 networks, PointNet directly runs
the 3D point clouds. Thus, we have studied datasets containing objects having 64, 128,
256, 512, and 1024 points i.e., five different datasets of 3D point clouds representing the

1In this thesis we only present the results achieved by Inception V3 CNN, because such results
were better than the results achieved by AlexNet CNN. However, results with AlexNet CNN have
been presented at conferences [149, 151].
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objects of interest. Such datasets were generated according to the approach described
in Subsection 4.1.2: i) objects are cropped from each frame of the 3D point clouds; ii)
for each object, a clustering technique is performed to eliminate the points that do not
belong to the object i.e., background returns; iii) through upsample or downsampling
step, the desired amount of points for each object is then interpolated.

In the second part of this study, fusion strategies have been addressed as an
alternative to combine features of different modalities and potentially improve the
performance of the models. Such strategies are known as early fusion and late fusion.
In the case of early fusion we concatenate RGB with RaV images channels, RGB with
ReV images channels, RGB with RaV and ReV images channels, and RaV with ReV
images channels, before inserting them into the convolutional neural network i.e., we
obtain images with 4 (RGB and RaV), 4 (RGB and ReV), 5 (RGB, RaV, and ReV) and
2 (RaV and ReV) channels, being the combination of RGB with RaV image channels
the best result using early fusion, according to the results reported in Subsection
5.2.1. With respect to late fusion strategies, we use Average, Maximum, Minimum and
Normalized Product with the scores obtained from the individual classifications. The
best result was achieved considering the scores of the classifications of RGB images,
RaV images, ReV images, and point clouds, using the product formulation, as shown
in Subsection 5.2.2. Both combining strategies achieved better results than individual
classifications using single modalities.

After the classification studies, the last part of this thesis, object detection have
been explored through deterministic deep neural networks, often, we observed that the
top-class classification scores were overconfidence, regardless of the type of network
architecture or input modalities.

In particular, the research focused on deep networks where the output represents
normalized prediction scores through the softmax and sigmoid layers i.e., the prediction
values are in a range of [0,1]. In other words, normalized prediction values by softmax
and sigmoid layers generate values that are very close to zero or one (‘extreme’ results),
which are very satisfactory results indeed but, as long as the predictions are correct. The
problem with getting ‘extreme’ results - overconfident behaviour - is particularly critical
concerning the mispredictions i.e., false positives with high score values. Furthermore,
most of the traditional deep networks do not consider the model’s actual confidence for
the predicted class in the decision-making phase. In fact, in most cases, the decision-
making takes into account only the prediction value provided directly by a deep
learning algorithm disregarding a proper level of confidence of the prediction (which
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is unavailable for most networks) i.e., quantification of uncertainty on the prediction
is often overlooked. Thus, after a careful study of overconfident predictions, this
thesis proposed a methodology based on Bayesian inference, considering the Maximum
Likelihood (ML) and Maximum a-Posteriori (MAP) formulations, as described in
Chapter 4. Such methodology provides a alternative for the scientific community, as
a technique that smoothes the values of the scores provided by the prediction layers
(softmax and sigmoid functions), mainly for objects detected as false positives. Unlike
many calibration techniques that reduce the values of overconfident predictions, our
methodology allows for a more adequate probabilistic interpretation of the predicted
scores.

Additionally, we observed that the problem related to overconfidence is not related
to the fact that deterministic networks do not provide an estimate of uncertainty, but
because the networks are poorly calibrated. Several researches have been proposed to
overcome problems related to overconfidence, as well as to identify sources of uncertainty
(model uncertainty and data uncertainty) and quantify such uncertainties (Bayesian
neural networks, ensemble of neural networks, and Monte Carlo Dropout). Generally,
despite some overlap and controversy, such recent field can be categorized as belonging
to calibration or regularization techniques. Calibration techniques act directly with the
predicted values i.e., after training. Differently, the regularization techniques act on the
cost/loss function of the network during the training stage i.e., regularization interferes
with the updating of the network weights and consequently it is more complicated to
perform on complex and deeper models. However, some researches emphasize that
regularization techniques are also defined as calibration techniques.

An important fact regarding regularization techniques is the need for a cost/loss
function, which does not follow a fixed formulation i.e., the function can vary accord-
ing to the type of network/model and its implementation. Thus, the cost function
applied during the training of the networkshould be well suited to not compromise the
uncertainty estimates and/or in the reduction of overconfident predictions. In the same
way, calibration techniques must guarantee a reduction of overconfident predictions
without compromising classification results.

The estimation of the prediction uncertainty of a deep neural network model can take
into account the aleatoric uncertainty i.e., uncertainties in the data (data acquisition
process), and epistemic uncertainty i.e., the network structure itself (number of layers,
number of neurons, and activation functions, optimization algorithm, regularization,
batch size, learning rate, number of training epochs, and so on). Evaluating the
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prediction confidence or uncertainty is crucial in decision-making because an erroneous
decision can lead to disaster, especially in autonomous driving where the safety of
human lives are dependent on the automation algorithms.

6.2 Future Work

During the PhD study, it has been verified that the output of the softmax and
sigmoid functions do not provide any measure of uncertainty of the predictions, as
explained in the Subsection 3.3, where we presented different formulations to reduce
overconfident predictions, as well as different formulations to determine uncertainties
in deep neural networks. Basically, both the softmax and sigmoid functions provide a
direct measure of classification through the maximum class score.

The prediction functions mentioned above also do not provide any information
regarding the certainty that the model itself has about the predictions. Therefore,
some networks consider a posterior distribution on the parameters of the learned
model, and thus obtain an estimate of the uncertainty of the model with the prediction
i.e., considering a posterior distribution, the outputs of the previously referred layers
become a random variable, and so one can have a measure of uncertainty (evaluate the
output variation). In this case, the most common measures are Mutual Information,
Kullback-Leibler Divergence, and the predictive variance. However, evaluating the
quality of uncertainty estimates is still a challenge for the following reasons:

• uncertainty estimates depend on sophisticated methods that tend to become
intractable for deep models containing millions of parameters thus, many ap-
proaches are performed by means of approximations;

• uncertainty estimates depend on the sample size as well i.e., the sample size can
provide a certain degree of confidence that such a sample is representative but,
representativeness of a dataset seems to be an open problem in many domains -
including perception systems;

• it is not easy to obtain a ground truth about uncertainty estimates of the datasets.
In fact, during the studies that conducted this thesis a satisfactory/reliable ground
truth about uncertainty estimates were not found;

Although the uncertainty measures, such as entropy, mutual information, Kullback-
Leibler Divergence, and predictive variance, can be captured using Bayesian neural
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networks, ensemble methods, or test-time data augmentation methods. However,
the uncertainty obtained from out-of-distribution data (unseen data) is an open
challenge. Thus, research on measurements/quantification of uncertainties in such out-
of-distribution data have not been backed yet by solid formulations, and therefore further
studies concerning this research direction deserve to be pursued by the community.
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Table A.1 Comparison between the classifications obtained by the SM layer, ML and
MAP layers in terms of average F-score and FPR (%). The performance measures on
the unseen dataset are the average and the variance of the prediction scores.

KITTI Dataset

Modalities F-score FPR Average
ScoreFP

Variance
ScoresFP

Average
Scoreunseen

Variance
Scoresunseen

SMRGB 95.89 1.60 0.853 0.021 0.982 0.005
MLRGB 95.84 1.49 0.646 0.019 0.868 0.022
MAPRGB 95.92 1.50 0.426 0.022 0.681 0.068
SMRaV 92.40 2.12 0.878 0.029 0.961 0.014
MLRaV 92.18 1.81 0.634 0.032 0.804 0.055
MAPRaV 92.27 2.07 0.436 0.029 0.709 0.083
SMReV 92.82 1.73 0.824 0.031 0.967 0.009
MLReV 92.56 1.64 0.724 0.019 0.871 0.018
MAPReV 92.02 1.58 0.495 0.029 0.722 0.046

Table A.2 Number of bins for ML and MAP functions.

Modality RGB RaV ReV
Bins per class Ped Car Cyc Ped Car Cyc Ped Car Cyc

ML Layer 7 6 26 14 7 35 6 8 17
MAP Layer 9 4 10 4 3 30 5 5 20

A.1 Cumulative Distribution Function

As an alternative to the probability density functions presented in Subsection 4.2.2,
cumulative distribution functions (CDF) were defined for the calculations of the ML
and MAP functions. The CDF of a real valued random variable Scis defined the
probability that Sc will take a value less than or equal to Sc.

For the proposed approach, the likelihood functions were considered to be the
cumulative values from the normalized histograms. However, for the prior function,
we determine the cumulative distribution functions from Gaussian distributions. The
results are shown in the Table A.1, while the bin numbers and the smoothing parameter
are shown in Table A.2 and Table A.3, respectively.
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Table A.3 Smoothing parameter (λ) for ML and MAP functions.

Modality RGB RaV ReV
Layer Additive Smoothing Additive Smoothing Additive Smoothing
ML 1×10−2 1×10−2 1×10−2

MAP 1×10−2 1×10−2 1×10−2

A.2 Smoothing Parameter Influence

Additionally to the results presented in Subsection 5.1.1, we have implemented the
proposed methodology on another state-of-the-art network, the EfficientNetB1. The
performance achieved by the EfficientNetB1 to classify RGB images was a F-score of
98.67% using the softmax layer (as baseline). The result achieved through the ML
layer is equivalent to the baseline i.e., F-score = 98.67%, while using the MAP layer
the network achieved 98.66% (almost the same). By keeping nbins = 19 for both cases,
we have performed several runs by changing the values of λ, and the resulting F-score
stabilized around 98.66% i.e., very close to the F-score provided by the softmax layer
(baseline). A way to choose the best values for nbins and λ could be, for instance, by
reducing the values of the scores of the objects classified as false positives without
degrading the results of the true positives, as illustrated by figures A.1, A.2, and A.3,
where the distributions in each row were obtained through a given value for the λ

parameter, considering classifications from the unseen dataset. Note that as the value
of λ increases, the distributions tend to move away from the extreme values (0.0 and
1.0).
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(a) λML = 1.0×10−6 and λMAP = 1.0×10−6.

(b) λML = 9.1×10−5 and λMAP = 9.1×10−5.

(c) λML = 2.91×10−4 and λMAP = 2.91×10−4.

(d) λML = 3.91×10−4 and λMAP = 3.91×10−4.

Fig. A.1 Prediction scores on the RGB unseen/non-trained data (untrained data),
using SM layer (left side), and the proposed ML (center) and MAP (right side). The
SM case, that does not depend on λ, serves as baseline for comparison.
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(a) λML = 7.91×10−3 and λMAP = 7.91×10−3.

(b) λML = 9.91×10−3 and λMAP = 9.91×10−3.

(c) λML = 2.991×10−3 and λMAP = 2.991×10−3.

(d) λML = 3.991×10−3 and λMAP = 3.991×10−3.

Fig. A.2 Prediction scores on the unseen data (RGB modality), for the SM layer (left
side), and the variations in the ML (center) and MAP layers for different values of λ.
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(a) λML = 5.491×10−3 and λMAP = 5.491×10−3.

(b) λML = 6.991×10−3 and λMAP = 6.991×10−3.

(c) λML8.991×10−3 and λMAP = 8.991×10−3.

(d) λML = 9.591×10−3 and λMAP = 9.591×10−3.

Fig. A.3 Further results, in terms of the prediction scores (RGB modality), showing
the influence of different values of λ on the ML (center) and the MAP (right side).
The results using the SM layer in the left-hand side, serve as baseline for comparison.
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A.3 Bayesian Inference As Late Fusion

Considering the classification problem from the different modalities (RGB images
and LiDAR - 3D point clouds, RaV, and ReV maps), we defined such modalities as
being an input vector m = {m1,m2, . . . ,mn−1,mn} ∈M, where M is the modalities
set for classes set c = {c1, . . . , cj} ∈ C, with j representing the number of classes and n

being the number of modalities.
Since the problem is being considered as a classifier for three classes, the fusion

between the modalities involves estimating the probabilities according to (A.1)-(A.3):

P (c = c1|m1,m2, . . . ,mn−1,mn) (A.1)
P (c = c2|m1,m2, . . . ,mn−1,mn) (A.2)
P (c = c3|m1,m2, . . . ,mn−1,mn), (A.3)

at every point (m1,m2, . . . ,mn−1,mn) ∈M. Thus, the fusion strategy is developed
based on the joint probability of the classes, also by applying the Product Rule (Chain
Rule) as in:

P (m1,m2, . . . ,mn−1,mn,c) = P (m1)Πn
i=2P (mi|m1, . . . ,mn−1,c), (A.4)

∀ m1,...,n ∈ M and c1,...,j ∈ C.
Considering conditional independence, the conditional probability distribution over

m1...n factorized for every value of c is given by:

P (m1,m2, . . . ,mn−1,mn|c) = P (m1|c)P (m2|c) . . .P (mn−1|c)P (mn|c), (A.5)

where m1, m2, . . ., mn−1, mn are conditionally independent given c. In this way, the
conditional probability decomposition by means of the Product Rule is given as:

P (m1,m2, . . . ,mn,c) = P (m1,m2, . . . ,mn|c)P (c) (A.6)
P (c,m1,m2, . . . ,mn) = P (c|m1,m2, . . . ,mn)P (m1,m2, . . . ,mn) (A.7)
P (m1,m2, . . . ,mn,c) = P (c,m1,m2, . . . ,mn), (A.8)
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and the Bayes’ Rule is derived as:

P (c|m1,m2, . . . ,mn) =
P (m1,m2, . . . ,mn|c)P (c)

P (m1,m2, . . . ,mn) . (A.9)

Considering that m1, m2, . . ., mn are independent, the model evidence is defined
as P (m1,m2, . . . ,mn) = P (m1)P (m2), . . . ,P (mn) ̸= 0. The term P (c|m1,m2, . . . ,mn)
is the posterior probability, P (m1,m2, . . . ,mn|c) is the likelihood function and, P (c) is
the prior probability.

As the classification consists of three classes, (A.9) is formulated for each class:

P (c1|m1,m2, . . . ,mn) =
P (m1,m2, . . . ,mn|c1)P (c1)

P (m1,m2, . . . ,mn) (A.10)

P (c2|m1,m2, . . . ,mn) =
P (m1,m2, . . . ,mn|c2)P (c2)

P (m1,m2, . . . ,mn) (A.11)

P (c3|m1,m2, . . . ,mn) =
P (m1,m2, . . . ,mn|c3)P (c3)

P (m1,m2, . . . ,mn) , (A.12)

where P (m1,m2, . . . ,mn) is often determined by the total probability law. In such
manner, (A.10)-(A.12) can be rewritten using the per-class expression, with the added
smoothing parameter (λ):

P (ci|m1,m2, . . . ,mn) =
P (m1,m2, . . . ,mn|ci)P (ci)+λ

nc∑
i=1

P (m1,m2, . . . ,mn|ci)P (ci)+λ

. (A.13)

Considering three modalities which are conditionally independent, the (A.13) can
be written as:

P (ci|m1,m2, . . . ,mn) =
P (m1|ci)P (m2|ci)P (m3|ci)P (ci)+λ

nc∑
i=1

P (m1,m2, . . . ,mn|ci)P (ci)+λ

. (A.14)

The smoothing parameter has a significant influence on the result (average F-score)
of the fusion strategy in A.13, as shown in Table A.4, where the prior in (A.13) was
obtained by fitting a multi-Gaussian with the training data of the RGB modality, as
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Table A.4 Influence of the λ parameter on the Bayesian inference late fusion strategy.

Parameter Average F-score (%)
λ RaV_ReV RGB_RaV RGB_ReV RGB_RaV_ReV

10−1 94.66 96.63 97.06 97.24
10−2 95.01 96.83 97.11 97.37
10−3 95.51 97.11 97.20 97.41
10−4 95.70 97.18 97.17 97.58
10−5 95.72 97.18 97.17 97.58
10−6 95.72 97.18 97.17 97.58
10−7 95.72 97.18 97.17 97.58

defined in:

PriorGaussian = a1 e− (b1−x)2

c12 +a2 e− (b2−x)2

c22 +a3 e− (b3−x)2

c32 . (A.15)

considering a1 =−0.004092, b1 = 7.71, c1 = 0.06866, a2 = 0.4323, b2 = 7.346, c2 = 1.281,
a3 = 0.23, b3 = 4.619, and c3 = 0.8774.

A.4 Weighted Object Distance

As stated in Section 1.3, the disadvantage of LiDAR sensor is the limited range,
which interferes in the number of the captured objects at a given distance, as shown
in Fig. A.4 [69], that was computed from the vehicle (cars, vans, and trucks), cyclist
and pedestrian classes, where the training dataset has 24484 objects (vehicles=20632,
pedestrians=2827 and cyclists=1025), 2721 samples on the validation dataset (vehi-
cles=2293, pedestrians=314 and cyclists=114), and 11659 samples on the test dataset
(vehicles=9825, pedestrian=1346 and cyclists=488).

Thus, taking into account the relationship between the number of objects and
the distance of each object from the LiDAR sensor, we propose a new late fusion
strategy [152] taking the form of a weighted average (w) obtained from distances of the
RaV maps, and PCs with the normalized classifiers F-scores on the training dataset,
as in Fig. A.5 i.e., Fig. A.5a shows the normalized average F-score with maximum
value of 0.5, therefore we guarantee that the RGB model outputs (yRGB) will have a
maximum weight equal to 0.5, while the Fig. A.5b was normalized with a maximum
value of 0.333.



A.4 Weighted Object Distance 143

Fig. A.4 The bar-graph (top-left) shows the number of samples per class (vehicles,
cyclists, and pedestrians) on the training, validation and testing datasets, respectively.
The others graphs show the distribution of samples, separated by the categories and
by the distance in meters.

The motivation comes from the fact that the LiDAR deep-models performance
decrease as the distance to the objects increase. Unlike models that process data from
the LiDAR sensor, models that process information from RGB modality maintain a
relatively uniform performance with respect to the distance from objects.
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(a) Curves for two modalities: (1−w(P C))y(RGB) and (1−w(RaV ))y(RGB).
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(b) Curves for three modalities: (1−w(P C)−w(RaV ))y(RGB).

Fig. A.5 These curves show the normalized average F-scores obtained from the LIDAR-
based model (RaV and PC) for increasing distance of objects. The curves on the left
figure represent the weights for the RaV and PC modalities, while the curves on the
right figure are the weights for the RGB modality i.e., the weight wi.

The new strategy takes into account the scores of the RGB, PC and RaV modalities,
according to the equations (A.16)-(A.18):

Y(RGB,P C) = (1−w(P C))y(RGB) +w(P C)y(P C) (A.16)
Y(RGB,RaV ) = (1−w(RaV ))y(RGB) +w(RaV )y(RaV ) (A.17)

Y(RGB,P C,RaV ) = (1−w(P C)−w(RaV ))y(RGB) +w(P C)y(P C) +w(RaV )y(RaV ), (A.18)
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Table A.5 F-score, for single modalities, on the test dataset.

Modalities RGB RaV PC
F-score 96.24 89.55 88.46

Table A.6 Classification results on the training, in terms of F-score (in %), for the 3D
point clouds using the PointNet model.

Classes PC
64 128 256 512 1024

Ped. 75.65 86.85 95.70 91.93 86.10
Veh. 96.45 98.42 99.41 99.01 98.04
Cyc. 16.90 72.63 91.74 82.41 70.43
Ave. 63.00 85.97 96.62 91.12 84.86

where y(RGB), y(RaV ), and y(P C) are the scores of each classified object, and y(RGB,P C),
y(RGB,RaV ), and y(RGB,P C,RaV ) are the scores after the fusion, and the w is the
relationship between normalized F-score and object distance obtained according to the
curve shown in Fig. A.5 (F-score × distance).

The scores y(RGB), y(RaV ) were obtained from the Inception V3 CNN, while y(P C)
were obtained from the PointNet CNN. All networks were trained from the scratch.
The training results are given through the F-score metric, considering the average of
the F-scores of the classes, as presented by Table A.5. However, the classification result
for 3D point clouds was computed for different amounts of points that integrate the
3D objects, according to Section 4.1.2, in order to define which point cloud dataset
presents the best result, and thus, consider such dataset in the fusion strategies. In
this case, the best result in the classification of 3D objects was achieved through the
dataset of 256 points for each object, as showed in Table A.6.

The proposed approach, defined as Average Weighting Range (AWR), was compared
with the fusion strategies defined in (4.16)-(4.19) i.e., formulations of late fusion as
maximum (Max), minimum (Min), average (Ave), normalized product (N-Prod), as
well as learning strategies based on a SVM (support vector machine) [97] and a GA
(genetic algorithm) [193, 13]. However, SVM received features from CNNs, while
GA determined the parameters that maximized the F-score according to the fitness
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Table A.7 Average F-score, using late fusion and multimodality representations on the
testing set.

Late
Fusion

Modalities
RGB_RaV RGB_PC RGB_RaV_PC

Max 96.88 96.91 96.75
Min 97.03 96.95 96.97
Ave 96.88 97.00 96.52

N-Prod 97.14 97.10 97.01
GA 97.05 97.03 97.27

SVM 96.46 96.59 96.24
AWR 97.22 96.98 96.26

functions (A.19)-(A.21):

Y(RGB,P C) = I1y(RGB) + I2y(P C) (A.19)
Y(RGB,RaV ) = I1y(RGB) + I2y(RaV ) (A.20)

Y(RGB,P C,RaV ) = I1y(RGB) + I2y(P C) + I3y(RaV ), (A.21)

where I1, I2, and I3 are individuals (“chromosomes”), and y values are the modalities
scores RGB, RaV, and PC.

The results using late fusion strategies are shown in Table A.7, where the overall
classification performance surpassed the single modalities. The traditional methods
of late fusion, as Max, Min, Ave, N-Prod, SVM and GA, have presented satisfactory
performances, mainly for the fusion modalities Y(RGB,P C) and Y(RGB,P C,RaV ) using
N-Product and GA, respectively, which have represented the best overall performance
for those two modalities. However, the result achieved by the proposed methodology
was very close to that achieved by GA.

The present study is promising and it is worth to pay more attention, particularly
on the idea of a performance measure, regarding object distances which can be taken
into consideration in multi-classifiers combination.
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