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With this work it was possible to:

• Conclude on the importance of a well-rounded dataset;

• Mitigating overfitting, reducing the difference from the best epoch to the average

of the last epochs from 36.57% to 3.63%.

In the future:

• Apply these conclusions in the making of a new model, keeping it as simple as

possible;

• Developing a dataset with as much variety as possible, be it in types of spoof,

individuals and capture condition.
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FeatherNets

• Deep Learning (DL) approaches to liveness detection tend to be heavy in both

computational requirements and data storage;

• The objective is to make these approaches function in any scenario, independent

of system capabilities;

• [3] achieves ACER of 0.00168, with only 0.35 million parameters and 83 million

flops down from CASIA-SURF’s baseline using ResNet18 [4] with an ACER of 0.05

with 11.18 million parameters and 1800 million flops.

Figure 1: Comparison between bonafide and spoof cases
in the WMCA [1] dataset (right) and CASIA-SURF [2] spoof
examples (left)

• Binary cross-entropy loss, often used in liveness detection, results in overfitting

due to the its simplicity;

• The focal loss function [5] extends the base function with a weight parameter to

each of the labels present in the dataset (alpha) and a modulating factor that

down weights easier examples, with a tunable focus parameter (gamma).
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Liveness Detection or Face Anti-Spoofing has been developed in tandem with facial

recognition technology

The interest of liveness detection:

• To provide security to facial recognition applications;

• To be used in the day-to-day applications that already use facial recognition;

Problems:

• These applications do not have access to the grade of equipment used in

the development of the current state of the art methods.

• The simplicity of the loss function results in overfitting;

• The imbalance of the available datasets;

Figure 2: FeatherNet strucuture

Figure 3: Visualization of how a model underfits, overfits and the ideal result.

Results obtained when running FeatherNets with RGB images

Results obtained after adjusting the decision threshold according to a PR curve
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