
Ana Catarina Miranda Almeida

Development of a platform for generation of icon-based graphic
codes

Dissertation supervised by Professor Nuno Gonçalves and submitted to the Electrical and

Computer Engineering Department of the Faculty of Science and Technology of the University of

Coimbra, in partial fulfillment of the requirements for the Degree of Master in Electrical and

Computer Engineering, branch of Computers.

Supervisor:

Prof. Nuno Miguel Mendonça da Silva Gonçalves, PhD

Jury:

Prof. Vítor Manuel Mendes da Silva, PhD

Prof. Paulo Jorge Carvalho Menezes, PhD

Prof. Nuno Miguel Mendonça da Silva Gonçalves, PhD

Coimbra, July of 2020

2

Acknowledgments

Firstly, I would like to thank my supervisor, Professor Nuno Gonçalves, for his guidance and

advice throughout the development of this dissertation, for giving me the opportunity to learn and

work in such an interesting area as information coding and for the time devoted to completing and

solidifying my academic degree.

I would also like to thank my laboratory colleagues for the availability and help provided for the

success of this project.

Finally, I would like to express a special thanks to my family and friends for the moral support,

without which this dissertation would not have been as successfully completed.

i

ii

Abstract

Machine-Readable Codes (MRC) have been used for several purposes over the years and classic

approaches like the bar code or the QR Code can be seen everywhere in our day-to-day. However,

more recently, a new MRC was created with the ability to combine the communication power of

classical methods with a meaningful improvement on aesthetics and data capacity. This method is

named UniQode.

The UniQode has two major advantages over classical MRCs: aesthetics and larger coding ca-

pacity. Consequently, it opens new possibilities for several purposes such as product identifica-

tion, tracking, marketing and seller-buyer communication. This new MRC method is composed

by several elements, one of them being the Graphic Code (GC). This element can be created in two

different ways, either with pixels or with icons, or, sometimes, both.

The pixel-based GC has been extensively researched and its accomplishments will be presented

in this document. However, the icon-based GC still represents a new concept with a mostly un-

structured creation method.

In this dissertation, the proposed work encompasses not only a formalisation of the generation

method for icon-based GC, but also the creation of a tool for this type of encoding process, in order

to quicken this operation while also generating its formal documentation.

With the achievement of the proposed work, the industrialisation of this type of code is made

possible and facilitated, and future work on this area is widened. Such work could comprise the

development of a corresponding decoding tool, the enhancement of this project’s tools abilities,

among other aspects.

Keywords : Information Coding, Graphic Code, Machine Readable Code, Aesthetic Coding,

Cryptography.

iii

iv

Resumo

Códigos Lidos por Máquinas (Machine-Readable Codes - MRC) têm sido usados para diversas

finalidades ao longo dos anos, e abordagens clássicas como o código de barras ou o código QR

podem ser vistas frequentemente no nosso dia-a-dia. Contudo, mais recentemente, um novo MRC

foi criado com a capacidade de juntar o poder de comunicação dos métodos clássicos com uma

melhoria significativa na estética e na capacidade de codificação. Este método é designado por

UniQode.

O UniQode possui duas grandes vantagens sobre os MRCs clássicos: estética e maior capaci-

dade de codificação. Consequentemente, abre novas possibilidades para diversas finalidades, como

identificação de produtos, rastreamento, marketing e comunicação vendedor-comprador. Esse

novo método MRC é composto por vários elementos, sendo um deles o Código Gráfico (Graphic

Code - GC). Este elemento pode ser criado de duas formas diferentes, com pixéis ou com ícones,

ou por vezes com ambos. O GC baseado em pixéis foi amplamente estudado e os seus resultados

serão apresentados neste documento. No entanto, o GC baseado em ícones ainda representa um

novo conceito, com um método de criação não estruturado.

Nesta dissertação, o trabalho proposto abrange não só a formalização do método de geração de

GC baseado em ícones, mas também a criação de uma ferramenta para este processo de codificação,

de modo de agilizar esta operação e gerar a respetiva documentação formal.

Com a realização do trabalho proposto, a industrialização deste tipo de código torna-se possível

e é facilitada, e o trabalho futuro nesta área é ampliado. Esse trabalho engloba, por exemplo, o de-

senvolvimento de uma ferramenta de decodificação correspondente, o aprimoramento das funções

deste projeto, entre outros aspetos.

Palavras − chave : Codificação de informação, Código gráfico, Códigos lidos por máquina,

Codificação estética, Criptografia.

v

vi

Acronyms

GC Graphic Code.

GU Graphic Unit.

GUI Graphic User Interface.

IDE Integrated Development Environment.

INCM Imprensa Nacional-Casa da Moeda.

ISR Instituto de Sistemas e Robótica da Universidade de Coimbra.

LSB Least Significant Bit.

MRCMachine-Readable Codes.

MVPMinimum Viable Product.

PEQRC Picture-Embedded QR Codes.

UML Unified Modelling Language.

VI Visual Identity.

vii

viii

List of Figures

1.1 Machine-Readable Codes. 2

1.2 Size comparison between 1D bar-code and QR Code [26]. 2

1.3 QR Code Modules [26]. 3

1.4 Validation stamp of Portuguese tobacco - composing elements of the UniQode [16]. 3

1.5 Types of Graphic Codes. 4

1.6 INCM’s first example of a possible icon-based Graphic Code in the UniQode setting. 6

2.1 Several PEQRC examples. 9

2.2 Quantization of greyscale pixels into 10 levels of 3*3 black and white pixels (used

in dithering) [19]. 10

2.3 Halftone-based Stenography (both with the complementary images first and the

encoded image at the end). 11

2.4 Comparison between the graphic code and other machine-readable methods [19]. 12

2.5 Encoding and decoding pipeline [17]. 13

2.6 Adaptation of the Shannon encryption model [25]. 15

2.7 Asymmetric cryptosystem with a public key setting. 16

3.1 Use-Case Diagram for the icon-based Graphic Code (GC) platform. 21

3.2 Graphical representation of icon-based Graphic Code taxonomy [14]. 22

3.3 Graphical representation of a Graphic Code dictionary, adapted from [14]. 22

3.4 Icon-based GC Example. 24

3.5 Developed cryptosystem with the separate private keys. 26

3.6 Exemplification of a dictionary’s icon sequences. 30

3.7 Encryption model of the developed cryptosystem. 30

3.8 Possible cryptosystem encryption model with added data redundancy and com-

pression. 31

ix

Generation of Icon-based Graphic Codes

4.1 Created user interface with Qt Creator’s Graphic User Interface (GUI) tool. . . . 34

4.2 GUI message boxes. 35

4.3 Typical workflow - creation of a Visual Identity (VI) with an input message. . . . 35

4.4 Alternative workflow - creation of configuration and dictionary files. 36

4.5 Alternative workflow - creation of multiple output codes from an input message file. 37

4.6 Example 1. 38

4.7 Grouping of the example code’s icons by cells. 39

4.8 Exemplification of a code’s icon sequences. 39

4.9 Input images. 40

4.10 Final code example. 41

4.11 Input images. 42

4.12 Final code example. 42

4.13 Input images. 43

4.14 Final code example. 44

4.15 Industrial design use-case Unified Modelling Language (UML) example. 45

4.16 Industrial design use-case GUI example. 46

x

Contents

Acronyms vii

List of Figures ix

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 4

1.3 Goals . 5

1.4 Implementations and key contributions . 6

1.5 Structure of the dissertation . 6

2 State of The Art 8

2.1 Machine-Readable Codes . 8

2.1.1 Types of MRCs . 9

2.1.2 Comparison between MRCs . 11

2.1.3 Code Generation and Decoding . 12

2.2 Code Security and Further Data Processing . 14

2.2.1 Cryptography as a security mechanism 14

2.2.2 Further Data Processing for Cryptographic Systems 17

3 Program Development Process 20

3.1 Program Creation . 20

3.2 Graphic Code Taxonomy . 21

3.3 Developed Algorithms . 22

3.3.1 Quantification of Code Information . 22

3.3.2 Check Digit . 24

xi

Generation of Icon-based Graphic Codes

3.4 Security and Validation Aspects of Icon-based GC 25

3.5 Implementation Tools . 31

4 Discussion of Results 33

4.1 Graphic User Interface . 33

4.2 Analysis of Generated Visual Identities Examples 37

4.2.1 Example 1 . 37

4.2.2 Example 2 . 40

4.2.3 Example 3 . 41

4.2.4 Example 4 . 42

4.2.5 Comparisons Between the Examples . 43

4.3 Use-Case for Industrial Design . 43

5 Conclusions and Future Work 47

6 Appendix 49

Bibliography 55

xii

xiii

xiv

1
Introduction

1.1 Context

Generally speaking, similarly to the constant evolution of the humankind, the technological

development has followed several different paths, some of them exist to improve society, and

others to hinder it, and, in the case of this dissertation, for each mechanism created for tax-evasion

and product forgery, there needs to be a way to counteract it.

Consequently, to create a way to accomplish these goals, the Imprensa Nacional-Casa da Moeda

(INCM), and the University of Coimbra together, carried out a research and development project

so as to find new ways to avoid counterfeiting, and the consequent tax-evasion, and to ensure not

only product authenticity, but also consumer protection.

Everyday new products are created and branded, money is spent on its marketing and adver-

tisement and, to make sure the companies work is paid off, new technologies are needed to enable

product verification and authentication, and always with the goal of improving vendor-buyer com-

munication. These technologies need to be cheap and easy to implement, very secure, and, if

possible, with the added benefit of improving the product’s aesthetic value, and not hinder it.

With the goal of improving the said technology that allows product tracking, facilitates logistic

processes and hinders its forgery creation, Machine-Readable Codes (MRC) were created more

than 60 years ago. These types of stenographic codes allow each product to have it’s own unique

identifier, which in turn facilitates traceability by communicating confidential textual information

through an image [21].

As experience shows, one of the most commonly used MRCs is the 1D bar-code (figure 1.1a).

This MRC is very simple and quick to encode and decode, and very useful for short messages,

1

Generation of Icon-based Graphic Codes

which explains its wide reach. As a consequence of its popularity, however, it became necessary

to strictly standardise their creation so as to avoid a multitude of conflicts, such as having the

same code identifying two different products. Therefore, this problem was then solved by the

foundation of the GS1 organisation1 with the main purpose of creating a coherence between these

types of codes.

Later in time, however, when it became necessary to encode slightly longer messages, the codes

ventured into the 2D, and options such as the QR Code (figure 1.1b) were created [26]. A compar-

ison between the bar-code and QR Code sizes is shown in figure 1.2, where a QR Code can hold

the same amount of data contained in a 1D bar-code in only one-tenth the size [26].

(a) 1D Bar Code [24]. (b) 2D QR Code [26].

Figure 1.1: Machine-Readable Codes.

Figure 1.2: Size comparison between 1D bar-code and QR Code [26].

Whereas these codes were considerable innovations for the time, they still had a drawback in

common, and that was that none of them were visually appealing, with only black and white bars

or pixels.

As a result, some techniques to improve code appearance were developed, such as colouring

some of the code pixels or embedding some pixels of a picture in the actual code. These new

options were, in fact, an improvement, but they were still not very visually pleasant, that is, they

did not have a good enough aesthetic component, since examples like the QR Code still had to

have quite a large area of mandatory elements (3 big squares and 1 smaller one, as show in figure
1Global Non-Profit Organisation that defines standards for bar-codes and RFID tags, so that there is a general con-

sensus on the industry for these codes generation [24].

2

1. Introduction

1.3). On one hand, these elements are important for a quick detection and decoding but, on the

other hand, they make the code visually unappealing and inadequate whenever the code’s aesthetic

aspect is an important factor in the product it is applied on.

Figure 1.3: QR Code Modules [26].

This challenge to improve appearance and data capacity was taken by Instituto de Sistemas e

Robótica da Universidade de Coimbra (ISR) investigators, together with the INCM, and then, as a

consequence of a research and innovation project, the UniQode® 2 was created.

This innovative new way to encode messages joins several elements (hologram, Graphic Code,

glitter printing) to make up a final complex and visually appealing code (since it does not resemble

a typical code) that is also very hard to forge [16] (figure 1.4). Along with this new code, the

communication with consumers was also improved by providing them a way to, by themselves

through a phone app, check if any product, that the code is implemented on, is authentic or a

forgery [16].

(a) Validation stamp of Portuguese tobacco
(The grey strip is the hologram part of the

UniQode). (b) Graphic Code.

(c) Graphic Code using Pixels. (d) Graphic Code using Icons.

Figure 1.4: Validation stamp of Portuguese tobacco - composing elements of the UniQode [16].

2A patent for this product was applied for.

3

Generation of Icon-based Graphic Codes

Herewith, the methodology developed for the Graphic Code element of UniQode allowed for

it to be applied both with pixels and with icons (figure 1.5). This enabled a way to a greater

exploration of UniQode’s aesthetic strand.

(a) Pixel-based Graphic Code [15]. (b) Icon-based Graphic Code.

(c) Icon and Pixel-based Graphic Code [17].

Figure 1.5: Types of Graphic Codes.

The main difference between pixel-based and icon-based GC is that the first one is composed

by only contrasting pixels (black and white in the case of figure 1.5a) and encoded with a halftone

method (further explained in section 2.1), where the pixels are normally distributed in an orthonor-

mal structure (mainly matrix-type structures); and the second one is composed solely by icons and

the encoding method begins by associating a sequence of icons to certain information in a much

more flexible structure, since the icons do not have to respect a orthonormal structure, as we can

see in the example in figure 1.5b. Furthermore, there can also exist codes that incorporate both

elements, as we can see in figure 1.5c.

1.2 Motivation

As we saw previously, the UniQode has several composing elements and, with the possibility of

each of these being widely variable, there are infinite different codes, in practical terms, that could

be created with this method, which, in turn, deems it as a very time-costly and abstract process.

4

1. Introduction

With creation processes like the referred above, the industrialisation of this type of codes is

almost impossible to accomplish without setting a standard or exercising some control when it

comes to the design options (just like the GS1 organisation standards were needed to make the

generation of bar code, QR Code, data matrix, among others, coherent everywhere). In other

words, if there are infinite possibilities of the outcome, the industrialisation of the code for practical

use becomes almost impossible and, therefore, the development of such a complex code becomes

essentially meaningless.

As a result, the need to give more structure and guidelines to the generation of each code, and

keeping variables such as the printing process and the codes physical size inmind, originated a need

to develop an architecture that can join all of the above in a single place for an easier, quicker and

more organised way of design. Consequently, that revolves around an user-interaction platform,

with the purpose of helping guide and focus the creation process itself.

Furthermore, this work has a big component on the formalisation of the amounts of information

that fit in each visual identity that can be widely explored. Above all else, the icon-based GC has a

very high aesthetic component that has yet to be explored, which makes it an appropriate UniQode

component to focus on, in particular.

1.3 Goals

Although current UniQode codes and other MRCs have been showed to respond to general

needs, the icon-based strand, which is a solution tomost aesthetic needs, hasn’t yet been profoundly

explored (figure 1.6 shows an example of a recent prototype developed by the INCM). In addition

to that, it is necessary to have more control over the developed output codes, so as to formalise

their creation and enable an easier industrialisation process.

Therefore, from the information stated previously, the goal of this dissertation is to design a well

lined framework, with well defined inputs, calculations and outputs, in order to allow the devel-

opment of a standalone application to guide the creation and generation of the codes themselves,

as well as to help create more aesthetically pleasing codes that, not only can encode more infor-

mation, but also create a communication bridge between the producers and the consumers to help

counteract product forgery, while exploring the marketing and communication potential of such

codes.

Consequently, the above includes the development of the creation modules, and the definition

5

Generation of Icon-based Graphic Codes

of all the possibilities accepted for the generation tool of icon-based UniQode.

Figure 1.6: INCM’s first example of a possible icon-based Graphic Code in the UniQode setting.

1.4 Implementations and key contributions

The following implementations and contributions have been achieved:

• Uniformity and specification of icon-based GC elements (graphic unit, cell, alphabet and

dictionary) in both quantities and types;

• Development of a standalone program for the icon-based Graphic Code creation, by imple-

menting the above formalised standards and specifications in a C++ programming language

program that receives a set of characters and images and generates a graphic code, a config-

uration file and a dictionary file containing the final code’s information.

• Creation of a Graphical User Interface (GUI) for the program;

• Documentation of the whole program using Doxygen standards (chapter 6).

1.5 Structure of the dissertation

The course flow of this dissertation proceeds, in chapter two, with a general explanation of

Machine-Readable Codes and some of the concepts behind it, added also to a presentation and

discussion of some examples to illustrate the concept. Afterwards, a brief review of existing code

6

1. Introduction

security and validation methods will be made. Then, chapter three describes the process of the

program creation, from the used tools to the developed algorithms and implementation process.

And finally, chapter four presents the analysis and results, including a few examples of generated

codes using the developed tool, while final conclusions and future work propositions are made in

chapter five.

7

2
State of The Art

This chapter is divided into two sections and reviews the state of the art that supports the devel-

oped work in this dissertation.

Firstly, this state of the art will begin with a brief description of stenography and its development

into Machine-Readable Codes. Then, it will present different types of MRCs and how they gener-

ally operate, followed by a brief comparison between them and, lastly, some coding and decoding

notions. In addition to that, code security will be explained, with additional focus in validation

methods.

2.1 Machine-Readable Codes

Since the creation of cryptography (encoding of a message into something that is unreadable to

the average person) with the purpose to keep the integrity of data intact, several other methods for

concealing messages have been developed, one of them being stenography, which represents the

concealment of information in appropriate multimedia carriers, like images or videos [21].

Consequently, MRCs are part of a stenographic approach to coding where the output is an image

that goes from the simple 1D bar-code, to the more complex 2D codes that arose from the need to

encode more information on a single carrier. What makes the codes above machine-readable ones

is the fact that they can be decoded using some kind of machine-vision systems consisting of optical

laser scanners or cameras and an interpreting software [26]. The use of scanning tools, instead of

manually checking the codes, speeds data collection and eliminates manual data collection errors

like illegible handwriting and data entry errors [24].

8

2. State of The Art

2.1.1 Types of MRCs

As the use of MRCs has been growing exponentially since its creation, the need to enhance its

appearance and increase the size of the encoded information grew with it, and various types of

2D codes variations have been developed. As a consequence, a few Picture-Embedded QR Codes

(PEQRC) were created to enhance the code appearance [3] [4] [5] [9] [10] (figure 2.1).

(a) Qiao et al. [20]. (b) Q Art Code [4]. (c) Chu et al. [3].

(d) Li et al. [9]. (e) Q Art Code [4]. (f) VisualLead [2].

Figure 2.1: Several PEQRC examples.

Initially, several approaches emerged where the halftone method was used. In this case, Halfton-

ing is a method inspired by the dispersed-dot dithering approach [23] where it uses a highly con-

trasting pair of colours and takes each pixel in a greyscale image and transforms it into a k ∗ k set

of the 2 contrasting colour pixels, whilst preserving the human perception of the original greyscale

image.

Specifically, the dispersed-dot dithering approach consists in converting a greyscale image to a

black and white one by dividing the 0-255 greyscale values into a set of quantized levels (quantum)

and taking each greyscale pixel of the image and associating it to a dithering pattern. This dithering

pattern is a k ∗ k matrix of black and white pixels, in which the number of black and white pixels

depend on the quantized level that the greyscale pixel value, from the original image, fits into

(figure 2.2) [23].

One of the first approaches that used the halftone method was known as Halftone Visual Cryp-

tography [27] and could encode an image into two complementary others, where one has black

pixels the other has white ones, and vice versa. This method uses only images as input and the

9

Generation of Icon-based Graphic Codes

Figure 2.2: Quantization of greyscale pixels into 10 levels of 3*3 black and white pixels (used in
dithering) [19].

resulting images seemed to have a great amount of white noise. However, in some cases, it can

use other types of images, besides the complementary ones described previously (figure 2.3a). An-

other approach was done by Liu et al. [11] to enhance the previous visual cryptography methods

by preserving edge structures trying to suppress noise in smooth areas of the image, and resulted in

coded images that kept the overall appearance of the original ones, except with only a little added

noise (figure 2.3b).

Both of the above methods (figure 2.3) coded an input image into two, or more, different output

images, and the decoding process involved the stacking of the output images [27] [11]. Moreover,

they both have a common limitations of very low contrast in the resulting image of the decoding

process.

Afterwards, a stenographic technique that performs small changes in the Least Significant Bit

(LSB) [21] appeared for information encoding, which produced the original image, but with some

imperceptible changes to the human eye. However, this technique is very sensitive to image de-

formations, so it ended up causing problems with the image decoding whenever the actual code

was physically printed.

The examples above are only a small number of the stenographic methods created, but more

recently however, the Graphic Code (GC) was created [15].

As explained in section 1.1, the GC is a composing element of UniQode and is a complex code

whose main features are its high data storage capacity and its easy design integration. The pixel-

based GC is also an approach based on dithering in order to create halftone stenographic images,

10

2. State of The Art

(a) Zhou et al. [27].
(b) Liu et al. [11].

Figure 2.3: Halftone-based Stenography (both with the complementary images first and the en-
coded image at the end).

but in a way that it is able to encode more information in a better-looking final image [15].

Also in section 1.1, it was mentioned that Graphic Code can be created in two different ways:

with pixels or with icons. Both of these approaches give added flexibility to the code design and

its contained information [14].

2.1.2 Comparison between MRCs

Although most of methods presented above were a considerable progress from the first 1D bar-

codes, most of them weren’t aesthetically pleasing (random dispersion of black and white pixels,

even when there was a possibility to have a base image in the background) and most couldn’t

encode a great amount of information.

In the table bellow (2.4) some of the previously presented codes are compared. It is shown the

analysis of different 5 machine-readable methods and the Graphic Code method, where the data

capacity and main features are represented for each code.

As can be observed, the QR code has all the important elements of the remaining codes on the

right side which are: larger data capacity, small size and high-speed scanning. Nonetheless, the

aesthetic part of the QR Code was clearly lacking, therefore the PEQRCs, by joining the most

important QR Code qualities with a more pleasing appearance, introduced a new aspect to classic

MRCs.

11

Generation of Icon-based Graphic Codes

Figure 2.4: Comparison between the graphic code and other machine-readable methods [19].

However, as a result of striving for a code that could both be more visually appealing and encode

more information, the GC method shows an improvement in both areas. Although comparing the

visual aspect of codes is quite subjective, it is mostly agreeable that the aesthetic value of the GC

is superior, when compared with other state of the art MRCs.

2.1.3 Code Generation and Decoding

According to Guruswami 2002 [6], the Encoding, also referred to encryption or code generation,

is a function that maps a sender’s input message, consisting of symbols, over an alphabet into a

longer, redundant string, termed codeword.

Similarly, the Decoding function, also called decryption, maps strings of noisy received words

to strings that the decoder believes were the originally transmitted message, which happens when

the receiver gets a possibly distorted copy of the transmitted codeword, and needs to figure out the

original message, which the sender intended to communicate [6].

The notion of encoding (or encryption) and decoding (or decryption) gained great importance in

secure information communication in Claude Shannon’s work (1948), and will be expanded upon

in section 2.2.1.

In the case of the GC with pixels, the encoding method is based on the dispersed-dot dithering

approach [23], explained before, where it takes each pixel in a greyscale image and expands it into

a k ∗ k block of black and white pixels. These pixels are then quantized, producing a quantum for

each pixel (figure 2.2). Each quantum represents the amount of black or white pixels of the k ∗ k

12

2. State of The Art

block, and is then associated with a symbol from a set, called alphabet. This association between

the quanta and the alphabet symbols produces a a dictionary [18].

Afterwards, some specific pixels in the image that fit the selected quanta are chosen and those

pixels are encoded (according with the quantum-symbol association), resulting in the final coded

image [18].

In the same way, according to the previous reference, the decoding process resembles the reverse

of the above, as in taking the dictionary and the coded image, detecting the quantized symbols

hidden and decrypting the input message.

The whole process is demonstrated in the image below (figure 2.5).

Figure 2.5: Encoding and decoding pipeline [17].

In contrast, when it comes to GC with icons, there is no need to quantize the base image pixels.

Further work about this topic (coding and decoding of icon-based GC) will be developed with the

progression of this dissertation.

However simple the encoding processmight seem, it provides satisfactory security. For instance,

even if it is known that an image contains a message, the decoder still has to identify the alphabet

used in the dictionary, the pattern size, and several other elements [14]. In the next section (2.2) the

security aspect of the cryptographic process will be expanded upon, as well as the added elements

that a code can integrate as validation mechanisms.

13

Generation of Icon-based Graphic Codes

2.2 Code Security and Further Data Processing

Communication secrecy is, in itself, assured by the applied cryptographic methods in a way that

preserves the integrity and the confidentiality of the communicated information. This concept is

usually referred to as ”cryptography for communication security” [25].

In contrast, to ensure that the encrypted information is decrypted correctly further data process-

ing can be added, therefore validating the output information. Additionally, other methods can

be added to the encryption pipeline, which is the case of data compression, where information to

encrypt can go through a compression process in order to decrease its size and facilitate its trans-

mission.

The following sections will explain some views on cryptography and its effects on code security,

and a few methods for further data processing in order to either assure information integrity, or to

compress more information in a single code.

Nevertheless, since this dissertation will focus mainly in UniQode’s Graphic Code, the presented

methods are all applicable for this case, as mentioned in [14], and will be expanded upon in section

3.4.

2.2.1 Cryptography as a security mechanism

The historical development of cryptography has been to try to design cryptographic systems

(defined below) where one key can be used to encrypt a relatively long string of plaintext (i.e.,

one key can be used to encrypt many messages) and still maintain some measure of computational

security [22].

We must firstly refer to a few important definitions in cryptography.

According to [25], Cryptographic Algorithms are mathematical algorithms that enforce infor-

mation protection; a Cryptographic System is a set of cryptographic algorithms; Plaintext denotes

the information to encode, that is, the input of an encryption algorithm, and, subsequently, Cipher-

text stands for the encoded information by a cryptographic system; Encryption and Decryption are

basic cryptographic processes that represent an action to transform a plaintext into a ciphertext or

the opposite, respectively; A Secret Key (or cryptographic key) is an element of the cryptographic

system that, added to the plaintext input, generates the ciphertext; Cryptanalysis is, according to

Vaudenay [25], the theory of security analysis of cryptographic systems or, according to Koblitz

14

2. State of The Art

[8], the science of breaking codes. Computational Security, relative to cryptography, is equitably

defined as a measure of how much computational effort is required to break a cryptosystem ([22]).

Image (2.6) illustrates a few of these concepts .

Figure 2.6: Adaptation of the Shannon encryption model [25].

A great influence in the study of cryptography was Claude Shannon’s paper, in 1949, entitled

”Communication Theory of Secrecy Systems” [22].

According to Shannon, cryptography is a method used to establish secure communications over

insecure communication channels by using an extra hypothesis: a channel which already provides

security. This channel is basically used to set up a confidential and authenticated symmetric key

(cryptographic key that is symmetrically used in encryption and decryption processes). Once set

up, symmetric keys can be used to communicate securely (i.e., confidentially and in an authenti-

cated way) over insecure channels by using conventional cryptography [25].

Still, according to [25], there are contrasting views to Shannon’s extra channel approach, but

this discussion is beyond the scope for this project.

One essential element in cryptography is its cryptographic keys. This element can be labelled

into two different types: private and public keys, and they are always associated in pairs, one for

encoding and the other for decoding. The Private Key is associated with a symmetric cryptosystem

(figure 2.6) and, as a result, it can also be called a symmetric key, and it describes a key that is only

known to the encrypter and the decrypter, and used in both the encoding and decoding process. In

contrast, a Public Key, also called asymmetric key, is accordingly associated with an asymmetric

cryptosystem (figure 2.7).

The Public Key cryptosystemwas formalised in 1976 byW.Diffie andM.Hellman [8]. This type

of cryptosystem uses both a private and a public (or asymmetric) key, and consists on performing

of the encryption process using a key know to the general public, while the decryption process

15

Generation of Icon-based Graphic Codes

is accomplished with the private key, know only by a limited number of entities [25]. In other

words, according to [8], in a public key cryptosystem the encipher cannot use the enciphering

key to decipher the code. This system is represented in figure 2.7 and is called an asymmetric

cryptosystem, since its encryption process is not symmetric to its decryption one [25].

Figure 2.7: Asymmetric cryptosystem with a public key setting.

In some cases, a public key setting is advantageous since the sender does not need to know the

private key, therefore keeping the private key in only the receiver’s knowledge [25]. However,

this benefit has the cost of being slower and riskier to implement, since there needs to exist, not

one, but two different keys and there is no guaranteed security since half of the system is public

knowledge [8].

As referred before, the Cryptanalysis of a cryptosystem is the science of breaking a code [8]. In

order to break a cryptosystem, [8] states that there are two types of information that are needed.

The first one is the general nature, or structure, of the system, that is, what kind of enciphering

and deciphering techniques it uses. The second one is the choice of the parameters that are used

in both of the previous techniques. Consequently, by having the two types of information, one has

full knowledge of the system procedures.

However, [25] refers that cryptanalysis has a usually negative connotation, since the entities that

try to break codes generally also break laws. Nevertheless, cryptanalysis can also be used by the

cryptosystem creators to gauge how safe and robust the created system is, which, in turn, gives it

a positive and constructive connotation.

Furthermore, in Claude Shannon’s paper the concept for Perfect Secrecy for secret key systems

is defined and its existence demonstrated. This concept is a mathematical term that denotes that a

certain cryptographic algorithm is ”unbreakable” [22].

On the other hand, the author also refers that the perfect secrecy term is mostly applicable in

theoretical circumstances, that is, the only way to create an unbreakable code is to have at least as

16

2. State of The Art

many cryptographic keys communicated securely as the amount of plaintext, which is a consider-

able disadvantage in practical implementations, mainly in commercial use [22]. Douglas Stinson

[22] refers to a previously existent cryptographic method (or cryptosystem), the One-Time Pad

(Gilbert Vernan, 1917), that accomplished the perfect secrecy concept. However, the One-Time

Pad cryptosystem had a practical implementation obstacle, that is, it was very hard to use com-

mercially due to having to adopt a single different cryptographic key for every distinct message,

which explained its lack of widespread use. Nonetheless, the author also adds that the One-time

Pad has been employed in military and diplomatic contexts, where unconditional security is of

great importance.

2.2.2 Further Data Processing for Cryptographic Systems

First of all, validation methods can be added to cryptographic systems to assure data integrity

and error detection in the decryption process, in other words, to validate the decrypted code.

There are several validation methods that can be added to codes, mainly MRCs, to ensure that

the encrypted message is transferred correctly from the sender to the receiver. In other words, to

exchange information effectively, even when the medium of communication introduces errors [6].

Guruswami’s work [6] centres on adding data redundancy to the encryptedmessage in away that,

even if the encrypted data is slightly tarnished, the message can still be decoded to its original form.

The developed method, Reed-Solomon Error Correction Algorithm [6], is applied particularly in

QR Codes (where up to 30% of the code area can be damaged [26]), and is one of the main features

that promoted its popularisation [14].

Whereas the data redundancy method ensures that the code is decrypted even in the case of

some damage, another existing validation method, the check digit, functions in a way that further

guarantees the decoded information corresponds to the encoded one.

This other technique is a widely used approach in which a function analyses a message and

always produces the same number for the same message [14]. This number is then added to the

encrypted message and will serve as a means to check if the decrypted information corresponds to

its check digit [7]. If the encoding and decoding check digits correspond, the message reconstruc-

tion is thus validated [14].

Besides being used as a validation mechanism, the check digit can also be an added security

measure for the code. For instance, if the algorithm for the check-digit is slightly complex and

17

Generation of Icon-based Graphic Codes

secret, it can generate a unique number for each message that anyone trying to hack the system

would have great difficulty at recreating or corrupting.

Although both of the above methods are used to validate decoded information, there are other

types of data processing methods that can be added to the cryptosystem pipeline and not for vali-

dation purposes. Such is the case of data compression.

Similarly to the check digit and data redundancy approaches, data compression is also added in

the encryption process of the cryptosystem, and seeks to reduce the number of bits used to store or

transmit information [13].

Generally speaking, data compression consists of taking a stream of symbols and transforming

them into a smaller stream, if the compression is effective [13], and is widely used to increase the

capacity of data storage devices or to transfer data faster on networks [12].

As stated by [13], there is a great amount of existing compression methods at present which

encompass such a wide variety of software and hardware compression techniques that can be so

unlike one another that they have little in common except that they compress data.

Mainly, there are two types of data compression: lossless and lossy.

Lossy data compression concedes a certain loss of accuracy in exchange for greatly increased

compression. That is, greater compression has more value than the retention of all of the original

information, and proves effective when applied to graphic images and digitized voice, where the

output data loses definition and accuracy, when compared to input one, but can still be easily

usable. Most lossy compression techniques can be adjusted to different quality levels, gaining

higher accuracy in exchange for less effective compression [13].

In contrast, lossless compression denotes the type of compression that consists of techniques

guaranteed to generate an exact duplicate of the input data stream after compressing, and later

expanding, the data. This is the type of compression used when storing database records, spread-

sheets, or word processing files. In these applications, the loss of even a single bit could be catas-

trophic [13].

Furthermore, it is important to note that this method ties in with Shannon’s Information Theory

(mentioned above) because of its concern with redundancy. Redundant information in a message

takes extra bits to encode, and if we can get rid of that extra information, we will have reduced

the size of the message [13]. As data redundancy was presented above in a good light because of

18

2. State of The Art

its ability to avoid some decoding errors, it also increases the quantity of information to encode,

which is not usually a favourable factor. However, as [13] states, this fact can be helped with the

addition of data compression.

19

3
Program Development Process

This chapter will describe the methods used in the development of this project. Firstly, a general

overview of the project’s goals will be made; then all the functional elements comprising the used

coding system (Graphic Code) will be described, as well as an outline on the developed algorithms

and their implementation; and, finally, the application of the security and validation methods to

icon-basedGC and the used tools to accomplish all of the above, joined by a few use-case examples.

3.1 Program Creation

The goal of this project was not only to further establish the icon-based GC creation process

and regulations, but also to develop a tool to assist with the design creation while automatically

generating each code’s documentation.

Therefore, firstly, the Minimum Viable Product (MVP) was established and it comprised the

development of a standalone program that, with input encoding information, would generate a

fully encoded VI. Furthermore, the program would also have to generate extensive documentation

on each type of created code, in order to describe its encryption keys, along with proper printing

files with the purpose of aiding the industrialisation process.

Moreover, this program needed to have an intuitive and easy to use interface, so as to facilitate as

much as possible a process that was originally quite complex and time-consuming.

The early establishment of the desired framework and work-flow for the design tool was crucial

to its development and, consequently, the created UML use-case diagram (using the online Visual

Paradigm [1] tool) is represented in figure 3.1.

This UML represents the system variables that most influence it, which are its inputs, message

and graphic elements, and the placement of the graphic elements within the code image. These

20

3. Program Development Process

Figure 3.1: Use-Case Diagram for the icon-based GC platform.

variables and their roles will be discussed at length in the following sections.

3.2 Graphic Code Taxonomy

To better understand the Graphic Code system, a few key concepts need to be clarified and

explained. Therefore, a list with the essential definitions is presented below [14]:

• A Visual Identity (VI) is an image containing an encoded message (figure 3.2a), with a suit-

able placement of graphic units;

• A Graphic Unit (GU, figure 3.2b) is, in the case of this project, a cryptographic primitive1

and, therefore, an Icon;

• A Cell (figure 3.2c) is a group of one, or more, GUs and its creation is the basis for the

encoding process;

In addition to the presented above, one of the essential elements to encrypt a message is the

encryption key. Within this project, the encryption key is partially represented by a Dictionary

(which will be further explained in section 3.4). A dictionary integrates a set of associations be-

tween a symbol (mainly a character) and sequence of GUs in a cell, in a way that one sequence is

associated with, at most, one symbol. A set of dictionary symbols defines an Alphabet.

An example representation of a dictionary and alphabet is presented bellow, in figure 3.3. In figure

3.3a, each icon is associated with a number (’0’ to ’3’); the alphabet is composed by the elements
1A cryptographic primitive is equivalent to the most basic building block.

21

Generation of Icon-based Graphic Codes

(a) Visual Identity.
(b) Representation of every
Graphic Unit (GU).

(c) Representation of the dif-
ferent cells within the VI.

Figure 3.2: Graphical representation of icon-based Graphic Code taxonomy [14].

from ’a’ to ’z’ (figure 3.3b); and the association between each alphabet symbol and a sequence of

icons (’0000’ to ’0122’) makes up the dictionary (figure 3.3b).

(a) Enumeration and coding of the icons. (b) Resulting alphabet and dictionary.

Figure 3.3: Graphical representation of a Graphic Code dictionary, adapted from [14].

3.3 Developed Algorithms

3.3.1 Quantification of Code Information

One critical algorithm for icon-based Graphic Codes design is the quantification of maximum

coded information. That is, the computation of how many symbols we need to encode a certain

input message, and the most efficient combination of parameters.

First of all, an important requirement of this project was to allow the encoding of special char-

acters, for example Latin letters such as ’ç’. These types of characters, however, are usually in

a multiple-byte format and, in order to encode as many different characters, in the simplest way

possible, the UTF-8 format was adopted.

This format, 8-bit Unicode Transformation Format (UTF-8), is a way to represent a character in

sets of 8 bits, which meant, in this case, that every possible character could be encoded, but not

22

3. Program Development Process

in only one cell (one byte). In other words, as an illustrative example, since the ’ç’ character is

represented by two sets of 8 bits (two bytes), it will, therefore, be encoded in two cells.

Nevertheless, for demonstration and explanation purposes, we will assume that to encode x

amount of symbols, we need to have x amount of cells in the code.

Consequently, if there is an x amount of symbols to encode, we need, at least, as many dictionary

icon sequences to associate to each message symbol. We can demonstrate the above statement by

referring back to figure 3.3b, where, to represent the alphabet’s cardinality of 26 elements (a-z),

there needs to be one singular sequence of icons for each element.

Therefore to obtain the necessary number of icon sequences, a specific number of different

icons is needed and, by using the mathematical concept of arrangements with repetition, we can

represent this number of icons by distributing them within the graphic units in each cell and check

if the condition for the icon sequences is met, as is represented in the following equation:

IconSequences ≤ IconsGraphicUnits (3.1)

This algorithm explanation is quite abstract, but the main concept to understand is: the number

of different icons, raised to the power of the number of graphic units per cell has to be greater or

equal to the number of alphabet elements.

As a consequence of this main algorithm, a few other resulting notions should be underlined:

• The minimum number of different icons (I) needed for the code depends on the number of

cells (C) and the number of graphic units per cell (GUs):

C ≤ IGUs, I ∈ N ⇒ I = ⌈logGUsC⌉ =
⌈

logC

logGUs

⌉
(3.2)

• The distribution of the icons within the cell’s graphic units make up the icon sequence. If we

refer back to figure 3.3, the sequence of the four treble clef icons (with the value 0 in figure

3.3a) distributed within the cells four graphic units, represent the character ’a’;

• At least one sequence needs to be associated to each alphabet element, which means that

more than one sequence can be associated to an element. By taking the above example into

consideration again, since a sequence of four quarter notes (with the value 3 in figure 3.3a)

is not associated with any other alphabet element, we could also represent the letter ’a’ with

23

Generation of Icon-based Graphic Codes

this sequence;

As an additional example of the method above we can analyse the following image (figure 3.4).

(a) Input icons, alphabet and dic-
tionary.

(b) Graphic units locations. (c) Final code.

Figure 3.4: Icon-based GC Example.

The first image (figure 3.4a) shows the input icons, I = 3 (3 vertical leaves), the graphic units

per cell, GU = 4 (4 leafs represent each message symbol, therefore, each cell), the alphabet with

up to IconsGraphicUnits = 34 = 81 elements/icon sequences, and the dictionary (association of

the input icons with the alphabet). Then, the second image (figure 3.4b) shows all the available

graphic units positions, 16 in total, distributed by 4 different cells, C = 4, which means we can

encode 4 message symbols in this case. The third, and final, image represents an example of a

final code that uses the previous elements to encode a 4 symbol messages.

3.3.2 Check Digit

As explained in section 2.2.2, the check digit is an added measure to check the validation of the

code during decryption.

Moreover, since this mechanism’s complexity could be easily increased and work as an addi-

tional security measure, it motivated its development and implementation and, consequently, the

algorithm to associate a check-digit during the encoding process was developed.

The check-digit, in itself, is a value that is calculated from each inputmessage and is incorporated

in the encoded information, in such a way that, during the decoding process, the decoder could

check if the output message was equivalent to the input one, without knowing specifically what

that message was. This was achieved by recalculating the check digit from the decoded message

and matching it up to the one present in the code.

This algorithms, as many others, is not foolproof and has its limitations such as, if the check

24

3. Program Development Process

digit is not correctly decoded, the decoding process would fail, even if the rest of the message was

decoded properly.

This algorithm performed as described in the following steps:

1. The input message symbols are associated with a numbered sequence;

2. The number of each sequence is added. That is, the first sequence has the number 1, the

second sequence has the number two and so forth, and these numbers are the ones that are

added;

3. The remainder of the previous value by the number of cells is calculated;

4. The resulting value is corresponded with a numbered sequence. In other words, if the result-

ing value is 5, the corresponding icon sequence is the fifth present in the dictionary;

5. That sequence of icons is added as another cell to the VI, and represents the Validation Cell;

For example, if the alphabet’s elements were ’a-z’ and the message to encode was ”adab”, the

step one of the algorithm was to associate ’a’ with the first sequence, ’b’ with the second and ’d’

with the fourth. The next step would be to add 1+4+1+2 = 8 and then calculating their remainder by

4, which returned the value 0. Finally, the check digit value would be the 0+1 sequence, therefore,

the first one, which meant that, in the final code, the check digit icon sequence would be the same

as the one for the character ’a’. Therefore, if the check-digit is decoded properly and returned the

value of the first sequence, the decoder would verify, hence validate, that the decoded message is

equivalent to the originally encoded one.

However simple this algorithmmight seem, it was implemented in such a way that its complexity

could be easily increased, if ever needed, therefore increasing the cryptosystem’s security. This

topic is an important strand of this project and will be further explored in the following section 3.4.

3.4 Security and Validation Aspects of Icon-based GC

As presented in this dissertation’s state of the art, code security can be assured by its crypto-

graphic system and be measured by performing its cryptanalysis. Additionally, a multitude of

validation methods can be applied to assure its correct decryption which may, subsequently, add

to the system’s security aspect.

As mentioned in section 2.2.1, the two types of information needed for a systems cryptanalysis

25

Generation of Icon-based Graphic Codes

are the general nature of the system and the parameters used in the system’s procedures. Therefore,

applied to the developed system, the first type of information is quite easy to obtain or deduce (it

encodes each message symbol in icons), however, the second type of information is different for

every created code and would be very difficult to gauge without the input details.

Consequently, as mentioned in [18], the computational cost of the cryptanalysis for pixel-based

GC is very high because of the multiple degrees of freedom that it presents. Moreover, since the

process of encryption of icon-based GC is similar to the pixel-based one, seeing that both need

elements like an alphabet and dictionary and specified positions for the encoded elements, the

developed process in this dissertation has also a very high cryptanalysis computational cost.

Therefore, to perform the cryptanalysis for this process, one would have to discover which al-

phabet was used in the dictionary, the position of each cell within the image, the position of every

graphic unit within each cell, among a few other aspects [18]. These aspects, however, have such

small limitations (resulting of high degrees of freedom) that to figure out the correct pattern of ev-

ery code element and their actual meaning would demand a great computational cost, consequently

proving the high cryptanalysis value.

Seeing that, in the case of the developed method, the used cryptosystem is symmetric, the re-

sulting cryptographic key is private. With this key a decision was made to divide into two parts,

the dictionary and the configuration (figure 3.5), with the purposes of both data organisation and

additional code security. These parts, that were created in the form of XML format files, contained

all the necessary information to either encode or decode a visual identity, and are represented in

the following listings 3.1 and 3.2.

Figure 3.5: Developed cryptosystem with the separate private keys.

Listing 3.1: Configuration File

26

3. Program Development Process

1 <?xml ver s i on=” 1 . 0 ” encod ing=”UTF 8 ” ?>

2 <C o n f i g u r a t i o n F i l e >

3 <CodeElements C e l l s =”5” I c on s =”3” G r aph i cUn i t s =”3” / >

4 < P o s i t i o n s Ce l l =”1” Icon=”1” X=” 369 ” Y=”85 ” / >

5 < P o s i t i o n s Ce l l =”1” Icon=”2” X=” 363 ” Y=” 179 ” / >

6 < P o s i t i o n s Ce l l =”1” Icon=”3” X=” 361 ” Y=” 251 ” / >

7 < P o s i t i o n s Ce l l =”2” Icon=”1” X=” 348 ” Y=” 322 ” / >

8 < P o s i t i o n s Ce l l =”2” Icon=”2” X=” 280 ” Y=” 248 ” / >

9 < P o s i t i o n s Ce l l =”2” Icon=”3” X=” 287 ” Y=” 195 ” / >

10 < P o s i t i o n s Ce l l =”3” Icon=”1” X=” 170 ” Y=” 294 ” / >

11 < P o s i t i o n s Ce l l =”3” Icon=”2” X=” 144 ” Y=” 429 ” / >

12 < P o s i t i o n s Ce l l =”3” Icon=”3” X=” 211 ” Y=” 416 ” / >

13 < P o s i t i o n s Ce l l =”4” Icon=”1” X=” 211 ” Y=” 416 ” / >

14 < P o s i t i o n s Ce l l =”4” Icon=”2” X=” 211 ” Y=” 416 ” / >

15 < P o s i t i o n s Ce l l =”4” Icon=”3” X=” 211 ” Y=” 416 ” / >

16 < P o s i t i o n s Ce l l =”5” Icon=”1” X=” 339 ” Y=” 418 ” / >

17 < P o s i t i o n s Ce l l =”5” Icon=”2” X=” 414 ” Y=” 383 ” / >

18 < P o s i t i o n s Ce l l =”5” Icon=”3” X=” 427 ” Y=” 330 ” / >

19 < P o s i t i o n s Ce l l =”6” Icon=”1” X=” 459 ” Y=” 295 ” / >

20 < P o s i t i o n s Ce l l =”6” Icon=”2” X=” 494 ” Y=” 375 ” / >

21 < P o s i t i o n s Ce l l =”6” Icon=”3” X=” 471 ” Y=” 440 ” / >

22 <Pa t h s > / baseImage . png< / Pa t h s >

23 <Pa t h s > / i con1 . png< / Pa t h s >

24 <Pa t h s > / i con2 . png< / Pa t h s >

25 <Pa t h s > / i con3 . png< / Pa t h s >

26 < / C o n f i g u r a t i o n F i l e >

As is shown in the configuration file example above, the main encryption inputs are stored in this

file with the names ”cells”, ”icons” and ”graphic units”. Moreover, the coordinates of the positions

of every icon in each cell and the paths for the input images are also written in this file. As a result,

this constitutes all the basic configurations necessary for each created code and represents the first

half of the cryptographic key. This half was created in such a way that it would be independent

from the other half, the dictionary file, and could be used with multiple different dictionary files,

depending on the user preferences.

Listing 3.2: Dictionary File

1 <?xml ver s i on=” 1 . 0 ” encod ing=”UTF 8 ” ?>

27

Generation of Icon-based Graphic Codes

2 <D i c t i o n a r y F i l e >

3 <Con f i g F i l e > p r e d e f i n e dD i c t i o n a r i e s / config_A Z_3i_3gu . xml< / Con f i g F i l e >

4 <MaxElements>27< / MaxElements>

5 <Alphabe t >

6 <Sequence>111< / Sequence>

7 <Sequence>112< / Sequence>

8 <Sequence>113< / Sequence>

9 <Sequence>121< / Sequence>

10 <Sequence>122< / Sequence>

11 <Sequence>123< / Sequence>

12 <Sequence>131< / Sequence>

13 <Sequence>132< / Sequence>

14 <Sequence>133< / Sequence>

15 <Sequence>211< / Sequence>

16 <Sequence>212< / Sequence>

17 <Sequence>213< / Sequence>

18 <Sequence>221< / Sequence>

19 <Sequence>222< / Sequence>

20 <Sequence>223< / Sequence>

21 <Sequence>231< / Sequence>

22 <Sequence>232< / Sequence>

23 <Sequence>233< / Sequence>

24 <Sequence>311< / Sequence>

25 <Sequence>312< / Sequence>

26 <Sequence>313< / Sequence>

27 <Sequence>321< / Sequence>

28 <Sequence>322< / Sequence>

29 <Sequence>323< / Sequence>

30 <Sequence>331< / Sequence>

31 <Sequence>332< / Sequence>

32 <Sequence>333< / Sequence>

33 <Cor r e spondence>65< / Cor r e spondence>

34 <Cor r e spondence>66< / Cor r e spondence>

35 <Cor r e spondence>67< / Cor r e spondence>

36 <Cor r e spondence>68< / Cor r e spondence>

37 <Cor r e spondence>69< / Cor r e spondence>

38 <Cor r e spondence>70< / Cor r e spondence>

39 <Cor r e spondence>71< / Cor r e spondence>

40 <Cor r e spondence>72< / Cor r e spondence>

41 <Cor r e spondence>73< / Cor r e spondence>

42 <Cor r e spondence>74< / Cor r e spondence>

28

3. Program Development Process

43 <Cor r e spondence>75< / Cor r e spondence>

44 <Cor r e spondence>76< / Cor r e spondence>

45 <Cor r e spondence>77< / Cor r e spondence>

46 <Cor r e spondence>78< / Cor r e spondence>

47 <Cor r e spondence>79< / Cor r e spondence>

48 <Cor r e spondence>80< / Cor r e spondence>

49 <Cor r e spondence>81< / Cor r e spondence>

50 <Cor r e spondence>82< / Cor r e spondence>

51 <Cor r e spondence>83< / Cor r e spondence>

52 <Cor r e spondence>84< / Cor r e spondence>

53 <Cor r e spondence>85< / Cor r e spondence>

54 <Cor r e spondence>86< / Cor r e spondence>

55 <Cor r e spondence>87< / Cor r e spondence>

56 <Cor r e spondence>88< / Cor r e spondence>

57 <Cor r e spondence>89< / Cor r e spondence>

58 <Cor r e spondence>90< / Cor r e spondence>

59 <Cor r e spondence>32< / Cor r e spondence>

60 < / Alphabe t >

61 < / D i c t i o n a r y F i l e >

In the dictionary file example (listing 3.2) however, the elements pertaining the dictionary are

present. Firstly, this half of the cryptographic key is always dependent upon the configuration file,

since the cardinality of the alphabet depends on the number of cells, graphic units and icons. As a

result, the first element of this file is the name of the corresponding configuration file. Secondly, the

maximum number of elements the dictionary can hold is written, and represents the resulting value

of the equation 3.1. In this case, with the elements from the configuration file we obtain 33 = 27,

which is the maximum number of icon sequences we can create with 3 icons and 3 graphic units

per cell, and, therefore, the maximum number of elements the dictionary can accommodate.

The following written elements are the icon sequences. The first sequence, ’111’, represents

a cell which has three identical icons and is illustrated in figure 3.6b, where the icon with the

value ’1’ is accordingly exemplified by the star icon in figure 3.6a. If, for instance, we needed to

represent the sequence ’313’, the icons order would be the moon icon, followed by the star icon

and the moon icon again. The same process applies for the remaining sequences.

Last but not least, the final elements in the dictionary files are the values of the symbols that will

be corresponded with each sequence. These numbers represent the decimal value of each UTF-8

symbol that makes up the alphabet. In the case of the example presented above, the first value is

29

Generation of Icon-based Graphic Codes

(a) Example of code icons (b) Example of the first sequence of the presented
dictionary

Figure 3.6: Exemplification of a dictionary’s icon sequences.

65 which corresponds to the upper-case letter ’A’ in UTF-8 format and, similarly, the fourth value,

68, corresponds to the UTF-8 character ’D’. Consequently, the value 65 is represented by the first

sequence, ’111’, and, therefore, 3 star icons in a row.

The set of elements presented in the segments explained above make up the created cryptosys-

tem’s cryptographic key. And, consequently, by dividing the encoding information into two sepa-

rate files we made sure that, to decrypt the code, one always needed both files.

However, as a validationmechanism, the previously described check digit method (section 3.3.2)

was used. Consequently, as the check digit was added as another encrypted cell (validation cell) to

the rest of the code, it also became another element to verify the code’s integrity during decryption.

This element can be observed in the lines 14 and 15 of the configuration file (listing 3.1) as the

sixth cell of a five cell code. This means that the input message has five symbols, therefore five

cells, and the check digit is encoded and added as the sixth one.

The resulting process and its implementation is represented in figure 3.7.

Figure 3.7: Encryption model of the developed cryptosystem.

Additionally to the methods referred above, two other data processing methods were presented

in this thesis’ state of the art: data redundancy and data compression.

30

3. Program Development Process

Neither of these methods were implemented during the development of this program, as they did

not represent the essential parts of the MVP. However, as is referred in [18], both of these methods

could easily be incorporated in the cryptosystem’s pipeline GC encoding (both pixels and icons),

and the resulting process would resemble the model in figure 3.8.

Figure 3.8: Possible cryptosystem encryption model with added data redundancy and compres-
sion.

As is shown in the above figure, both the data compression and data redundancy affect the en-

cryption process and its values, since they need to be implemented before the data is encrypted,

unlike the check digit addition, that does not influence the encryption input, but only adds to it

[14]. Both of these method’s implementation can be considered as future work of this disserta-

tion. Nevertheless, the proposed work would consist on the application of a data compression

algorithm to the input message, then applying a redundancy algorithm to the resulting data and,

finally, proceeding to encrypt the compressed data.

Moreover, since the presented cryptosystem is symmetric, the decryption process would be rep-

resented by the inverse of the encryption one. However, the decryption of icon-based graphic

codes is outside of the scope of this project and could also be considered future work, along with

the suggestion presented above.

3.5 Implementation Tools

To achieve the standalone program described previously as the MVP in section 3.1, a few tools

for image manipulation and software development were required.

Firstly, to more easily create a software program of greater dimensions, an Integrated Develop-

ment Environment (IDE) was used, Qt Creator in particular, with C++ language. This singular tool

was chosen not only because it eased the organisation of all the files, but it also had a feature for

GUI creation, which proved very useful to accomplish the needed intuitive and easy to use final

product.

31

Generation of Icon-based Graphic Codes

As an image manipulation tool, however, the OpenCV library was used in such a way that the

user would be able to interact with a window containing and image in order to place the code icons.

Additionally, whenever a new type of VI is created, its encryption elements needed to be stored

for further work. Therefore, the icons placements, the dictionary elements and other code compo-

nents were appropriately stored in configuration and dictionary files in as XML format, by using

an XML parser, for a more standardised and formal document.

Finally, to generate the program documentation needed to formalise the product creation, Doxy-

gen documentation generator was used. Part of the resulting documentation is annexed in section

6.

The tools described above were used in a way that the process of the program creation was

formalised, by using XML format files and creating the program documentation, and resulting

product achieved an acceptable value, by completing the proposed MVP.

32

4
Discussion of Results

This chapter presents the final developed product, its advantages and its limitations, followed

by examples of created Visual Identities and their corresponding documents. Lastly, an analysis of

every example will be made pertaining the quantification of information and each resulting code,

and an industrial design use-case will be presented.

4.1 Graphic User Interface

Since the main goal of this dissertation was to create a user interface that allowed icon-based

Graphic Code creation, the resulting platform is represented in the following image (figure 4.1).

The user interface window has, per requirements, various functionalities and different possible

outputs.

First of all, the GUI window is divided in 4 parts:

• The first part, ”To encode”, is where the user chooses whether to input a number of cells, a

message or a message file. This segment represents the input of the encoding pipeline and,

consequently, the element the user wants to communicate securely and confidentially;

• The second section, ”Configuration file”, is where the first part of the encryption key is

formed. The option of either creating a new file or loading an already existing file is given

to the user. This is where the user chooses the number of GUs per cell and the number of

icons, while also loading the input images and, finally, placing the icons. Or, in contrast,

the user can simply load an existing file. In order to have both more creation flexibility

and added safety, this first part of the encryption key is independent from the second, as

explained in section 3.4;

• The next segment, ”Dictionary file”, represents the remaining half of the encryption key.

33

Generation of Icon-based Graphic Codes

Figure 4.1: Created user interface with Qt Creator’s GUI tool.

Whereas the configuration file is independent from this part, the dictionary file always de-

pends on only one configuration file. This has to do with the fact that its elements, mainly

the icon sequences, depend on the numbers of graphic units and icons, which are both con-

figuration elements. Also in this section of the window, the user can choose between loading

or creating the file, and the process is completed without the need of any additional inputs;

• The fourth, and last, part refers to the creation of the visual identity. This is accomplished by

joining all the previous input elements, and generating one, or multiple, codes that represent

the output of the encoding pipeline. This segment not only creates the image format of the

output codes, but it also creates a PDF file with the images in order to facilitate any possible

industrialisation process that might be needed.

Secondly, besides the windows main functionalities, during the development of this interface,

usability and practicality were also taken into consideration. For this reason the user can complete

a multitude of tasks with several degrees of freedom, while still complying with the algorithm rules

by being presented with several warning or error message boxes, in case of faults or failures (figure

4.2).

34

4. Discussion of Results

(a)Warning message box example. (b) Error Message Box Example.

Figure 4.2: GUI message boxes.

Typical workflow - creation of a VI with an input message

Additionally, a representation of a typical workflow is represented in figure 4.3. This illustration

describes a process with the goal of creating an encoded VI, and starts with the interaction of the

user with the GUI. Firstly, the user chooses to input a message to encode, instead of the other two

options of loading amessage file or only inputting the number of cells to encode. Secondly, the user

chooses the number of different icons and graphic units per cell he/she wishes to use. Afterwards,

the codes images are inputted and the creation of the configuration file is completed. Then, the

user chooses to create a dictionary file based on the previous inputs, the input message and the

configuration elements. Finally, the visual identity is created and an image and corresponding

PDF file are generated.

Figure 4.3: Typical workflow - creation of a VI with an input message.

35

Generation of Icon-based Graphic Codes

Alternative workflow - creation of configuration and dictionary files

An alternative possible workflow, illustrated in figure 4.4, begins with the goal of only generat-

ing the configuration and dictionary files for future use. This process starts with the users choice

of a number of cells, instead on the previous input message, and is followed by the choice of the

number of graphic units and icons. Afterwards, even if the goal is not to create a final visual iden-

tity, the user still needs to load the code images, since one of the elements of the configuration file

is the image’s paths. Finally, the user can choose whether to create a dictionary file or not, because

there is no input message symbols to correspond to icon sequences. That is, if the user chooses to

create a dictionary, it would be one without ”Correspondence” elements (refer back to listing 3.2),

that would be created in a future process.

Figure 4.4: Alternative workflow - creation of configuration and dictionary files.

Alternative workflow - creation of multiple output codes from an input message file

This final workflow (figure 4.5), fits with the previous one, as it uses already created configura-

tion and dictionary files. In this case, the user load a text file with several messages he/she wishes

to encode. Then, the user loads the configuration and dictionary files. The process of loading the

configuration file instead of creating it from scratch eliminates the need for the user to choose the

number of graphic units and icons and to load input images, since all of this information is already

contained in the configuration file. The dictionary file, however, is loaded, and the ”Correspon-

dence” elements (refer back to listing 3.2) are created or updated file. Finally, this process results

in multiple encoded images and a respective PDF file with all the codes.

This last presented workflow would be the most appropriate case for industrialisation purposes,

since multiple codes would be created at once from a single text file with as many messages as the

36

4. Discussion of Results

user wishes, within the codes limitation. This limitation has to do with the maximum number of

codes the cryptosystem can generate with each singular configuration, and will be explained in the

next section.

Figure 4.5: Alternative workflow - creation of multiple output codes from an input message file.

4.2 Analysis of Generated Visual Identities Examples

With the formerly presented tool and its flexible usability, and by giving a substantial amount

of creation freedom to the user, a great range of output codes can be generated.

The codes created with the developed tool can be analysed with respect to the quantity of infor-

mation each can encode, the different encoding elements each has, and the maximum number of

possible visual identities (or codes) that can be created from it.

Consequently, a few examples of visual identities ensue, accompanied with each respective

analysis and comparisons.

4.2.1 Example 1

This example (figure 4.6a) was first created by the INCM without the use of this project’s de-

veloped tool and will only serve a comparison subject, since the goal of this project was to create

a way to easily generate these types of codes. So, with this, we will analyse its elements.

37

Generation of Icon-based Graphic Codes

First of all, this visual identity was intended to represent a bunch of grapes and was designed

for the wine sector. It is important to note that the three leaves on top and the three triangles on

the bottom are used as static icons for position detection, much like the mandatory squares in QR

Codes, presented in chapter 1. Therefore, the actual encoding is done with the ”grape” icons in

between. Since this is a demonstration code, its correct configurations were not made public and

the composing elements that will be deduced from the image may not be the actual ones.

(a) First icon-based stamp created by INCM. (b) Different icons within the visual identity.

Figure 4.6: Example 1.

By analysing this practical case image, we can detect three different grape icons, singled out in

figure 4.6b, therefore the number of icons of this VI is 3. However, this number could easily be

adjusted to accommodate other grape icons or other configuration goals.

No other information is obvious from this examplewhich also shows how strong its cryptanalysis

value is. But, for comparison purposes, let’s assume that, with the total of 16 grape icons in the

image, there are 4 cells with 4 graphic units each, as is demonstrated in figure 4.7.

The number of possible icon sequences, as demonstrated before with the equation 3.1, is 34 =

81. Then, if we want to determine the maximum number of codes that can be created with this con-

figuration, we have to, again with arrangements with repetition, distribute the number of sequences

by the number of cells in the code, which returns the value 814 = 43.046.721. Consequently, with

this code’s configuration a company could label, trace and verify above 43 million units of prod-

ucts.

The process to obtain the value of 43.046.721 different possible codes would start with a code

38

4. Discussion of Results

Figure 4.7: Grouping of the example code’s icons by cells.

where all the icon sequences, in all 4 cells, would be ’1111’, which is something similar to figure

4.8a, and would end with a code where all the cell’s icon sequences would be ’3333’, as is shown

in the example in figure 4.8b. Therefore this value is obtained by associating every single one of

the 81 sequences to the 4 existing cells.

(a)Example of a first code generated with the pre-
sented configuration.

(b)Example of a last code generated with the pre-
sented configuration.

Figure 4.8: Exemplification of a code’s icon sequences.

39

Generation of Icon-based Graphic Codes

Element Value
Number of cells 4

Number of graphic units per cell 4
Number of different icons 3

Number of possible icon sequences 81
Maximum number of VIs to generate 43.046.721

Table 4.1: Analysis of Example 1.

4.2.2 Example 2

By choosing the following icons and base image (figure 4.9), we can create the subsequent code,

represented in figure 4.10.

(a) Base image. (b) Icon 1. (c) Icon 2. (d) Icon 3.

Figure 4.9: Input images.

This example, unlike the one presented before, was created with the developed tool.

During its creation process the number of cells chosen was 3 and the number of graphic units

and icons was also 3.

Moreover, the validation cell is also present, which accounts for 12 icons in total, distributed by

4 cells (3 code cells plus 1 validation cell) with 3 graphic units each (figure 4.10).

As a consequence of the chosen configuration, the number of icon sequences that are possible

is 33 = 27.

However, as can be seen in table 4.2, the maximum number of generated VIs is considerably

lower than the first one. That is due to the fact that this second example has one less cell and

graphic unit per cell, which goes to show that a codes outcome can be very flexible by applying

only small adjustments to a code’s elements.

Also, with the use of the developed tool, in order to give the user all the necessary information,

the program calculates the maximum number of VIs each specific configuration is able to generate,

40

4. Discussion of Results

Figure 4.10: Final code example.

and communicates that information to the user.

However, if the configuration excluded the need for a check digit, we would be able to encode

not 3, but 4 cells and the maximum number of VIs would be 274 = 531.441, and not the original

273 = 19.683 with a validation cell.

Element Value
Number of cells 3

Number of graphic units per cell 3
Number of different icons 3

Number of possible icon sequences 27
Maximum number of VIs to generate 19.683

Maximum number of VIs to generate w/o validation cell 531.441

Table 4.2: Analysis of Example 2.

4.2.3 Example 3

Another example was created by using following icons and base image (figure 4.11).

This example (figure 4.11) encodes a 5 characters message. It has 5 cells (plus the validation cell)

with 2 graphic units each. It also has the exact same number of icons in the code as the example

before, which is another way to demonstrate that hardly any of the code elements can be deduced

from only analysing the final code image image.

However, one element that does not have great importance in the encoding process but may

41

Generation of Icon-based Graphic Codes

(a) Base image. (b) Icon 1. (c) Icon 2. (d) Icon 3.

Figure 4.11: Input images.

Figure 4.12: Final code example.

greatly influence the decoding process is the base image. This image has no apparent role in

the code, except for aesthetic purposes, however, as the mandatory elements present in the first

example serve as position detection, the base image can serve much the same purpose, since, in

this case, the 4 corners of the blue background image are always in the same position in comparison

to the icons.

4.2.4 Example 4

To show the versatility strand of the developed tool, we can also use simpler, cleaner elements,

such as the following in figure 4.13. With the use of the developed program there are quite a lot of

degrees of freedom and not many limits on the type of visual identities that can be created, so the

designer will have a lot of flexible options to work with.

Comparing this example with the first one, this one has a smaller number of total icons in the

code (14 to the 16 present in example one). Even so, with only one additional input icon (4 input

icons to the 3 in example one) we can obtain more than 6 times the maximum number of VIs we

are able to generate with this configuration. This means that a higher number of icons in a code

42

4. Discussion of Results

Element Value
Number of cells 5

Number of graphic units per cell 2
Number of different icons 3

Number of possible icon sequences 9
Maximum number of VIs to generate 59.049

Maximum number of VIs to generate w/o validation cell 531.441

Table 4.3: Analysis of Example 3.

(a) Base image. (b) Icon 1. (c) Icon 2. (d) Icon 3. (e) Icon 4.

Figure 4.13: Input images.

does not imply that more codes can be created with a certain configuration.

4.2.5 Comparisons Between the Examples

In the table below (4.5) all of the above example’s values are shown for comparison’s sake.

A few conclusions we can take from this small sample of values are that the increase of the

number of icons by one, boosts the maximum number of possible VIs, or that a smaller number of

graphic units per cell does not mean an unavoidable decrease on the maximum number of VIs.

However, to further analyse the actual impact of these elements in the quantities of icon se-

quences or maximum number of VIs, a greater sample would have to be considered. Even so, this

kind of study would fall outside the scope of this project.

4.3 Use-Case for Industrial Design

To demonstrate the functional use of this thesis’ developed tool, a use-case of an industrial

process will be described and illustrated in figures 4.15 and 4.16.

In the following case, let’s assume that a designer of a certain company, that is a common target

of product forgeries, wishes to create a product label for a quantity of about 1 million pieces.

The goal label would have to encode a 5 character message to identify each product, with letters

from A-F and numbers from 0-9, which, with 6 letters and 10 numbers, equals the amount of

43

Generation of Icon-based Graphic Codes

Figure 4.14: Final code example.

Element Value
Number of cells 7

Number of graphic units per cell 2
Number of different icons 4

Number of possible icon sequences 16
Maximum number of VIs to generate 268.435.456

Maximum number of VIs to generate w/o validation cell 4.294.967.296

Table 4.4: Analysis of Example 4.

1.048.576 possible combinations. Therefore, this number represents the maximum number of VIs

that we are able to create with the given requirements.

At that point, the designer would use the provided tool and input a message file with the 1million

messages. By reading the file, the program would recognise the number of cells as 5. Thereafter,

the designer chooses, for example, 3 as the number of graphic units per cell, which would make

the program automatically limit the minimum number of accepted icons to 3, since equation 3.1

has to be complied with. That is, since we need 1 million codes, which, distributed by the 5 cells

implies that there needs to be at least 26 different sequences (255 < 106 and 265 > 106) and, those

sequences distributed in 3 graphic units per cell imply at least 3 icons (23 < 26 icon sequences

and 33 > 26 icon sequences).

44

4. Discussion of Results

Code Element Example 1 Example 2 Example 3 Example 4
Number of cells 4 3 5 7

Number of graphic units per cell 4 3 2 2
Number of different icons 3 3 3 4

Number of possible icon sequences 81 27 9 16
Maximum number of VIs to generate 43.046.721 19.683 59.049 268.435.456

Maximum number of VIs to generate w/o validation cell – 531.441 531.441 4.294.967.296

Table 4.5: Comparisons of the previous examples.

Afterwards, if the designer chose 3 as the number of icons, he/she would, then, have to load the

3 icons and a base image, and chose the placement of the icons to complete the creation of the

configuration file.

The next stage would be the creation of the dictionary file, then the designer would be informed

about howmany VIs this configuration could generate (1.048.576) and, finally, the visual identities

creation. This last step would generate as many images as the number of messages in the input

file and would be followed by the creation of a PDF file with all the codes, in order to make the

industrialisation process easier.

Finally, the designer would only have to deliver the PDF file to the printing department in the

company, and the process would be finished.

Figure 4.15: Industrial design use-case UML example.

In conclusion, the completion of this process could be done without the used of the developed

tool. However, the process would take a lot longer, not only to make sure all the calculations were

correctly done, but also to create each one of the needed 1 million labels. Besides that, all the code

elements were properly documented and the needed files for the decoding process, configuration

and dictionary file, were automatically created.

45

Generation of Icon-based Graphic Codes

Figure 4.16: Industrial design use-case GUI example.

Therefore, by using this product, the company was able save considerable time and, conse-

quently, money while trying to implement a way to confirm product authenticity and track their

products in an aesthetically pleasing and marketable way .

46

5
Conclusions and Future Work

The goal of this dissertation was to formalise the creation process of an icon-based cryptographic

algorithm, in a way that enabled the development of a standalone framework with the purpose of

creating icon-based MRCs.

The formalisation of the creation process included the definition of the code inputs and the

respective information quantification, while the creation of the framework focused on developing

the corresponding algorithms and implementing them, so as to allow easy and documented icon-

based GC creation.

While the implemented algorithms provided ample security for the codes due to its cryptographic

nature, they also added a validation feature that would allow future code decryption to verify itself,

therefore creating a more robust and secure process.

Consequently, the proposedMVPwas developed and the goals were achieved with the improve-

ment of the graphic user interface creation, which allowed a more intuitive and appealing creation

process and workflow.

Although the initial MVP comprised only the above goals, a few other improvements were made

in order to add further usability to the program, such as the ability to input a text file with several

messages (instead of a single one) to create multiple codes at once, therefore allowing a more

commercial use of this program.

However, improvements on software such as the developed one are almost limitless, since there

are several updates that can be made to the already existing algorithms and a multitude of features

that can be added. Some of those features could be the following: implementation of a process

that compared the colours and shapes of the input icons to ensure they are different; development

of a way for the user to re-position, rotate and resize the already positioned icons; and, finally,

47

Generation of Icon-based Graphic Codes

development of an application with the already implemented features, but independent from both

QtCreator andOpenCV in away that it could bemore easily used bywhoever needed it. Besides the

improvements on the developed program, the decryption process can also be explored, as explained

before in this dissertation, with the creation of a software that perform this action and, in turn, tells

the vendor or the consumer if the code corresponds to a original product or a forgery.

48

6
Appendix

Software Documentation
The following appendix is a part of the resulting documentation, generated with Doxygen, of

the program created over the course of this dissertation.

Firstly, a review and descriptions of the overall program are presented , including software re-

quirements and suggested testing. Afterwards a few classes and structures are explained.

49

27/06/2020 Icon-based Graphic Code Generator: User Interface platform to encode information into icon-based visual identities

file:///home/catarina/Desktop/Icon-based Graphic Code Generator/documentation/index.html 1/2

User Interface platform to encode information into icon-based visual
identities

Overview
This program's goal is to allow an easy generation of icon-based Graphic Code visual identities. An icon-based
graphic code is composed by a certain number of graphic units, divided by a certain number of cells (which
includes, in this case, a validation cell, used for code authentication). These graphic units are icons, that the
user will choose to load, and will be placed in a base image, also loaded by the user.

Requirements
To use this program you need to have:

 -> OpenCV installed (v.4.2.0) for image processing

 -> Qt Creator (v.4.12.1) as an IDE

High-level architecture
The main method of the program creates configuration files, dictionary files and icon-based codes.

The main flow of the code is divided in 3 work-flows:

1. The user inputs information to encode
2. Then he can choose whether to create or load an existing configuration file Create Configuration File:

needs GUs and icons number, loaded base image and icons
3. Afterwards, the same process is applied to the dictionary file creation (create or load)
4. Finally, with all the precious steps completed, the user can create a VI for the final created code

Function Descriptions
All functions are described in detail on the documentation pages for the files.

User Interface
The main user interface is developed in QT's GUI tool and presents the user with intuitive functionalities. The
user also may interact with an OpenCV window when placing the code icons.

Testing
Test the main code by running the program on Qt Creator. The configuration and dictionary functions are the
most prone to fail, so those should be tested first.

Besides those, the OpenCV functions are dependent on external libraries so those should also be tested by
trying to create a new configuration file. While testing, make sure that the images are loaded properly, with the
correct paths, the XML files are correct and parsed properly and the code elements are saved properly.

Finally, test for wrong user inputs to make sure the program handles them correctly.

27/06/2020 Icon-based Graphic Code Generator: User Interface platform to encode information into icon-based visual identities

file:///home/catarina/Desktop/Icon-based Graphic Code Generator/documentation/index.html 2/2

Generated by 1.8.13

27/06/2020 Icon-based Graphic Code Generator: MainWindow Class Reference

file:///home/catarina/Desktop/Icon-based Graphic Code Generator/documentation/classMainWindow.html 1/1

◆ MainWindow()

◆ ~MainWindow()

MainWindow Class Reference

Inheritance diagram for MainWindow:
Inheritance graph

[legend]

Collaboration diagram for MainWindow:
Collaboration graph

[legend]

Public Member Functions
 MainWindow (QWidget *parent=nullptr)

 ~MainWindow ()

Constructor & Destructor Documentation

MainWindow::MainWindowMainWindow::MainWindow ((QWidget * QWidget * parentparent = = nullptrnullptr))

Main Window constructor

MainWindow::~MainWindowMainWindow::~MainWindow (())

Main Window destructor

The documentation for this class was generated from the following files:

Icon-based_GC_Encoder/mainwindow.h
Icon-based_GC_Encoder/mainwindow.cpp

Generated by 1.8.13

27/06/2020 Icon-based Graphic Code Generator: config Struct Reference

file:///home/catarina/Desktop/Icon-based Graphic Code Generator/documentation/structconfig.html 1/1

config Struct Reference

#include <config.h>

Public Attributes
const char * fileName

int nCells = 0

int nIcons = 0

int nGUs = 0

int * positionsX = 0

int * positionsY = 0

const char ** iPaths

Detailed Description

Contains all the information needed for the creation of the .xml configuration file; this file must have the chosen
number of cells, graphic units per cell (GUs) and different icons, as well as the positioning of every single
graphic unit and the paths for all the images used.

The documentation for this struct was generated from the following file:

Icon-based_GC_Encoder/config.h

Generated by 1.8.13

27/06/2020 Icon-based Graphic Code Generator: dict Struct Reference

file:///home/catarina/Desktop/Icon-based Graphic Code Generator/documentation/structdict.html 1/1

dict Struct Reference

#include <dict.h>

Public Attributes
const char * fileName

int nElemsMax = 0

Detailed Description

Contains all the information needed for the creation of the .xml dictionary file; this file must have the name of the
corresponding configuration file, the maximum number of elements that can be generated, and the existing
alphabet (icons sequence and the corresponding value).

The documentation for this struct was generated from the following file:

Icon-based_GC_Encoder/dict.h

Generated by 1.8.13

Bibliography

[1] Visual paradigm tool, https://online.visual-paradigm.com/pt/diagrams/, 2020.

[2] Nevo Alva, Uriel Peled, and Itamar Friedman. Visual lead, http://www.visualead.com/, 2020.

[3] Hung-Kuo Chu, Chia-Sheng Chang, Ruen-Rone Lee, and Niloy J. Mitra. Halftone qr codes.

ACM Transactions on Graphics, 32(6):1–8, 2013.

[4] Russ Cox. Q art code, http://research.swtch.com/qart, 2020.

[5] Gonzalo Garateguy, Gonzalo Arce, Daniel Lau, and Ofelia Villarreal. Qr images: Optimized

image embedding in qr codes. IEEE Transactions on Image Processing, 23:2842–2853, 2014.

[6] Venkatesan Guruswami. List Decoding of Error-Correcting Codes. PhD thesis, 2002.

[7] Joseph Kirtland. Identification Numbers and Check Digit Schemes. The Mathematical As-

sociation of America, 2001.

[8] Neal Koblitz. A Course in Number Theory and Cryptography. Springer, 2nd edition, 1994.

[9] Li Li, Jinxia Qiu, Jianfeng Lu, and Chin-Chen Chang. An aesthetic qr code solution based

on error correction mechanism. The Journal of Systems and Software, 116:85–94, 2016.

[10] Yu-Hsun Lin, Yu-Pei Chang, and Ja-Ling Wu. Appearance-based qr code beautifier. IEEE

Transactions on Multimedia, 15(8):2198–2207, 2013.

[11] Bin Liu, Ralph R. Martin, and Shi-Min Hu. Structure aware visual cryptography. Computer

Graphics, 33(7):141–150, 2014.

[12] Altan Mesut and Aydin Carus. Issdc: Digram coding based lossless data compression algo-

rithm. Computing and Informatics, 29(5):741–756, 2014.

[13] Mark Nelson and Jean-Loup Gailly. The Data Compression Book. M&T Books, 1995.

55

Generation of Icon-based Graphic Codes

[14] Bruno Patrão, Leandro Cruz, and Nuno Gonçalves. Graphic code: A new reliable machine

readable system for coding (technical report).

[15] Bruno Patrão, Leandro Cruz, and Nuno Gonçalves. An application of a halftone pattern

coding in augmented reality. SA ’17 Posters, 2017.

[16] Bruno Patrão, Leandro Cruz, and Nuno Gonçalves. Graphic code: a new machine readable

approach. International Conference on Artificial Intelligence and Virtual Reality (AIVR),

2018.

[17] Bruno Patrão, Leandro Cruz, and Nuno Gonçalves. Graphic code: Creation, detection and

recognition. Recpad 2018-24th Portuguese Conference on Pattern Recognition, 2018.

[18] Bruno Patrão, Leandro Cruz, and Nuno Gonçalves. Halftone pattern: A new steganographic

approach. Eurographics 2018, 2018.

[19] Bruno Patrão, Leandro Cruz, and Nuno Gonçalves. Large scale information marker coding

for augmented reality using graphic code. International Conference on Artificial Intelligence

and Virtual Reality (AIVR), 2018.

[20] Siyuan Qiao, Xiaoxin Fang, Bin Sheng, Wen Wu, and Enhua Wu. Structure-aware qr code

abstraction. the visual computer. 31(6–8):1123–1133, 2015.

[21] Pooja Rai, Sandeep Gurung, and M. K. Ghose. Analysis of image steganography techniques:

A survey. International Journal of Computer Applications, 114(1):11–17, 2007.

[22] Douglas R. Stinson. Cryptography: Theory and Practice. Chapman&Hall/CRC, 3rd edition,

2006.

[23] Robert Ulichney. Digital Halftoning. MIT Press, 1987.

[24] GS1 US. How gs1 standards support product tracing, critical tracking events and key data

elements. 2011.

[25] Serge Vaudenay. AClassical Introduction to Cryptography: Applications for Communication

Security. Springer, 2006.

[26] Denso Wave. Qr code essentials. 2011.

[27] Zhi Zhou, Gonzalo R. Arce, and Giovanni Di Crescenzo. Halftone visual cryptography. IEEE

Transactions on Image Processing, 15(8):2441–2453, 2006.

56

	Acronyms
	List of Figures
	Introduction
	Context
	Motivation
	Goals
	Implementations and key contributions
	Structure of the dissertation

	State of The Art
	Machine-Readable Codes
	Types of MRCs
	Comparison between MRCs
	Code Generation and Decoding

	Code Security and Further Data Processing
	Cryptography as a security mechanism
	Further Data Processing for Cryptographic Systems

	Program Development Process
	Program Creation
	Graphic Code Taxonomy
	Developed Algorithms
	 Quantification of Code Information
	Check Digit

	Security and Validation Aspects of Icon-based GC
	Implementation Tools

	Discussion of Results
	Graphic User Interface
	Analysis of Generated Visual Identities Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Comparisons Between the Examples

	Use-Case for Industrial Design

	Conclusions and Future Work
	Appendix
	Bibliography

