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Resumo

Os métodos atuais de reconhecimento facial são baseados em redes neuronais que requerem grandes

quantidades de dados para serem eficazes. Os grandes conjuntos de dados dispońıveis publicamente

são, em sua maioria, coleções de imagens de celebridades sem restrições. Estes conjuntos de dados

não são otimizados para aplicações relacionadas com a segurança de documentos. Além disso, devido

a questões de privacidade, os conjuntos de dados de imagens faciais úteis para o uso em situações que

envolvem documentos de identificação são pequenos e dif́ıcil acesso. Este cenário não é favorável e

há espaço para otimização. Neste trabalho, uma nova abordagem de reconhecimento facial com foco

na mitigação deste problema é proposta. Foi elaborada uma estratégia para incluir a qualidade das

amostras numa função de perda de margem angular, a fim de otimizar o processo de treino para o

cenário de documentos identificação e viagem. Isto foi conseguido alterando o parâmetro de margem

na função de perda ArcFace, para um valor adaptativo que depende da qualidade de cada amostra.

A margem adaptativa foi formulada de forma a aumentar com o aumento da qualidade da amostra

e, como tal, aumentar o valor da perda. Para caracterizar a qualidade da amostra, cinco diferentes

métricas de qualidade relacionadas com padrões da ICAO para imagens em documentos de viagem

foram usadas: Blur, BRISQUE, FaceQNet, qualidade de iluminação facial e qualidade da pose. Três

benchmarks espećıficos foram criados para testar o desempenho do método desenvolvido em diferentes

cenários: sem restrições, com restrições e com restrições estritas. Com os benchmarks criados, o método

desenvolvido foi testado e comparado com as funções de perda ArcFace e Softmax. As experiências

realizadas mostraram que o método de margem adaptativa desenvolvido é superior à função de perda

de margem angular (ArcFace) para o cenário de documentos de identificação. Mais especificamente, o

modelo baseado na qualidade da iluminação facial provou ter o melhor desempenho nos cenários com

restrições e com restrições estritas de acordo com as métricas FNMR @ FMR. Os resultados também

indicam uma superioridade do método no reconhecimento facial sem restrições. modelo baseado no blur

apresenta os melhores resultados nestas condições. Também foram testados modelos com combinações

de métricas de qualidade. Estes não provaram ser superiores aos modelos que só utilisaram uma

métrica, no entanto, foi obtido um resultado mais regular entre cenários.
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Abstract

Current face recognition methods are based on deep neural networks that require large amounts of

data to be effective. The large datasets publicly available are mostly collections of wild celebrity face

images. These datasets are not optimised for document security-related applications. Moreover, due to

privacy concerns, ID-compliant face image datasets are small and hardly accessible. This scenario is not

favourable, and there is room for optimisation. In this work, a novel face recognition approach focused

on the mitigation of this problem is proposed. A strategy was devised to include sample quality in an

angular margin loss function in order to optimise the training process for the scenario of ID and Travel

documents. This was achieved by changing the margin parameter in ArcFace to an adaptive value

dependant on each sample’s quality. The adaptive margin was formulated in such a way to increase with

the increase in sample quality and as such, increase the loss value. To characterise sample quality, five

different quality metrics closely related to ICAO standards were used: Blur, BRISQUE, FaceQNet,

Face Illumination Quality and Pose Quality. Three specific benchmarks were designed to test the

method’s performance across different scenarios: Unconstrained, constrained and strictly constrained.

With the designed benchmarks, the developed method was tested and compared with the ArcFace and

Softmax losses. Experiments made show that the adaptive margin method developed is superior to

the standard angular margin loss function (ArcFace) for the ID-compliant scenario. More specifically,

the face illumination quality based model proved to better perform in the constrained and strictly

scenarios according to FNMR@FMR metrics. The results also indicate a superiority of the method

in unconstrained face recognition, namely the blur score model shows the best results. Models with

combinations of scores were also tested. They did not prove to be superior to the single score models,

however a more regular result across benchmarks was achieved.
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Chapter 1

Introduction

In this chapter, the context and motivation of the thesis will be explained as well as the outline for

the rest of the document.

1.1 Contextualisation

No two people are the same. People have a set of behavioural and biological characteristics that are

unique and specific to themselves. For this reason, we as a species can distinguish a friend from a foe.

From a strict recognition view, the biological features are easier to capture and store as information

than behavioural ones. Thus, to devise a generic recognition system, biological features like fingerprints,

height, weight, face attributes, iris size and colour or ear shape are preferred over behavioural ones

like walking, speaking mannerisms, signature or writing style, laugh, etc. Indeed this is the case for

most recognition systems. For example, identity cards usually contain a face photo, some fingerprint

information and height.

For recognition purposes, one of the most researched, important and useful biological human fea-

tures is the face. The face contains an abundance of features that are discriminative and rich enough

to distinguish one’s identity. Unlike fingerprints, iris, voice or other biometric factors, the facial fea-

tures can be easily extracted from unconstrained scenarios and in a non-intrusive way. This results in

the face being one of the most appropriate and useful biometric data types for various applications:

authentication, home security, border control, surveillance and others [1].

From a high-level point of view, an automatic face recognition system usually takes a two-dimensional

image of a face and extracts a group of face features for representation. Those features can be used

for identity verification or identification (see Section 2.4).

Automatic face recognition systems were made possible by advances in the computer vision and
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machine learning (ML) fields. With deep neural networks and large collections of images, it is possible

to process images (and subsequently face images) into a low dimensional feature space where further

processing and recognition tasks can be made [2]. These systems convincingly outperform humans in

many benchmarks.

1.2 Motivation

In some border control systems, namely in airports, face recognition is already used to verify a

person’s identity. In these systems, a photo is taken of the individual and then compared with his/her

identity documents (ID) or travel document and access is allowed (or not). This use case proves that

state-of-the-art face recognition systems can help facilitate and automate tasks that humans would

otherwise perform. Although this can accelerate some tasks, it can also increase the robustness of said

tasks since these systems are proven to outperform humans.

(a) (b)

Figure 1.1: Examples of ID-Face matching systems: a) Schematic of an ID - Face matching system.
Image from [3]; b) Heathrow Terminal ePassport gates.

The idea of using face recognition systems to help automate and facilitate tasks like ID or passport

creation is already being developed within the scope of the FACING project, a partnership including

the Imprensa Nacional-Casa da Moeda (INCM) and a computer vision team from the Instituto de

Sistemas e Robótica (ISR) within the University of Coimbra. This project aims to develop a mobile

system for smartphones, or in the form of a web app, whose purpose is to allow the user to do a safe

self-enrolment. As an example, this could be used to renovate a passport or ID from home. Apart from

document-related applications, this system could also be used in banking and other services requiring

safe access. The FACING project can be grouped into 3 different tasks:

• Verify if a submitted image complies with the international standards and requirements (set by

International Civil Aviation Organization (ICAO)). In other words, verify if an image is ICAO

standard compliant. The app also intends to help guide the user in the process of obtaining an

ICAO compliant image.

2



• Liveness detection is the task of verifying if a human in a video is, in fact, a human or a

presentation/spoofing attack is being made to the system. This type of attack has the goal of

interfering with a system into thinking another individual is present. For example, this can be

done by showing a picture or a screen with another individual photo to fool the system. High-

level presentation attacks can also be made using custom 3-D masks and makeup, but those are

harder to detect.

• Face Recognition (FR) module that has the goal of verifying if the app user is whom he/she

claims to be. It is a system built from scratch to be light enough to run on mobile devices and

based on deep learning techniques. Although the project’s goal is not to invent a new state-of-

the-art recognition system, as current solutions already have acceptable levels of performance, it

is always desirable to try to improve current methods. This topic is the context where this thesis

is inserted.

All ID and travel documents contain a photo of the face of the holder. This photo also follows

a vast number of recommendations and requirements set by the ICAO [4]. Some examples of these

requirements are that the image must be sharp enough, there must be no face occlusion, the illumina-

tion must be frontal on the face, the subject looking directly at the camera, among many others (see

Fig 1.2). This is a much different scenario than unconstrained face recognition, where all variations

are expected to be found.

Figure 1.2: Example of pose and eye alignment ICAO requirement. a) is a compliant portrait, in b)
the head not aligned toward the camera, and in c) eyes not aligned toward the camera. Image from [4].

One important requirement is that the face should be frontal and, according to the international

standard ISO/IEC 19794-5 [5], two types of frontal faces can be defined:

• Full frontal face images, which should have enough resolution to be examined by humans and to

be consistent for automatic face recognition purposes. This type of frontal image should contain

the neck and shoulders as well as the hair of the subject.
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• Token frontal face images, which follow specific geometric restrictions for image size and for the

position of the eyes in the image according to image height and width. This type of portraits has

fixed aspect ratio characteristics and the storage size is reduced when compared to full frontal.

(a)

(b)

Figure 1.3: Examples of the two types of frontal images: a) Full frontal; b) Token frontal. Examples
from [5].

Both types of images can be used for machine readable documents. Images in these types of

documents can be used as-is or encoded for more secure recognition purposes. For example, Medvedev

et al. [6] developed an efficient method for the protection of ID and travel documents, done by encoding

the image in machine-readable code with augmentations based on the facial biometric template.

Although current developments in deep networks allowed for impressive results in FR applications,

these networks require large amounts of data to be effective. For unconstrained FR, there are large

public collections of labelled face images (usually from celebrities [7–9]). This is not the case for

ICAO compliant images. Due to legislation concerning the use of personal data, the collection and

distribution of personal data are strongly constrained. For instance, the European General Data

Protection Regulation considers biometric data such as facial images as sensitive personal data, which

results in several restrictions for its use. This means the large collections of ICAO compliant images are

private, and the small amount of publicly available collections that exist are of insufficient size for deep

learning purposes. This discrepancy between the type of data available for training (unconstrained

also called ”wild” data) versus the data of the final application (ID/travel documents photos) means

there is room for optimisation.

As such, taking into account the current scenario of face recognition for document security, the
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availability, size and type of data that can be used for these applications, this thesis project aims to

contribute to developments in face recognition optimisation towards document security, with the use

of deep learning techniques.

1.3 Objectives

As mentioned in the above section, the general goal of this thesis is to try to improve current deep

learning-based methods performance on the task of FR, with a focus on the use case of the FACING

project, which is ICAO compliant images. To achieve said goal, specific objectives were defined:

• Review current face recognition state-of-the-art literature and analyse the common datasets and

deep networks used.

• Define the deep network and datasets used to develop FR models.

• Search relevant face image meta-information that could be included in the training process.

• Investigate and improve deep learning face recognition strategies for document security applica-

tions. Consider the design of a custom loss function that uses sample-specific information.

• Study protocols to evaluate the methods developed and evaluate the performance of the developed

approaches.

1.4 Contributions

From the work developed in this thesis, a paper was published in the BIOSIG 2021 conference. The

paper is named ”QualFace: Adapting Deep Learning Face Recognition for ID and Travel Documents

with Quality Assessment” and it is included in the Appendix.

The contributions of this work are listed bellow:

• Compilation of metrics to evaluate Machine Readable Travel Documents portrait quality.

• Formulation of a margin-based loss function that includes sample quality in such a way to increase

inter-class separation and intra-class compactness of face embeddings for the document security

scenario.

• Creation of two benchmark protocols to measure a model’s performance on document security

applications.
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1.5 Outline of the Dissertation

The remainder of this document is structured as follows: In chapter 2, the theoretical background of

the work developed is explained. Chapter 3 explores the state-of-the-art in face recognition, on which

the work developed depends. Chapter 4 presents an overview of the methodology used to develop

and test the models used. The results obtained are presented and discussed in chapter 5. Finally, in

chapter 6, a conclusion for the work developed is made.
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Chapter 2

Theoretical Background

In this section, essential aspects and concepts regarding FR systems will be presented. Then, an

overview of the pipeline of a FR system will be reviewed, the main concepts behind a convolutional

neural network (CNN), and how its training is done. Finally, a brief overview of recognition scenarios

will be presented.

2.1 Overview

Current state-of-the-art FR technologies are based on deep learning methods [10]. The scope of this

thesis is related to deep learning methods; hence only those will be detailed in this introduction. The

common pipeline for a generic deep learning FR is represented in figure 2.1 [10].

The face detection module is used to localise the face or faces present in an image or video. The

most common face detectors’ output is a bounding box for the face in conjunction with the positions

of landmark points of said face, i.e. eye centres, mouth corners, nose tip, etc.

Next in the pipeline, the face alignment module aligns the face’s landmarks to some predefined

coordinates or orientation and crops the image to the desired dimensions.

Finally, the FR module receives the aligned images. The image is used as input in the system’s

CNN and transformed into a relatively low dimensional set of features (feature vector) used to describe

the said image. This feature vector is then used for the task of face matching/recognition.

2.2 Convolutional neural networks

As mentioned above, FR currently achieves the best results through the use of deep learning methods.

CNN are the go-to method used for a plethora of computer vision applications, including FR.
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Figure 2.1: Diagram of face recognition pipeline.

(a) (b) (c)

Figure 2.2: Detected and aligned images: a) Default; b) detected; c) Aligned.

2.2.1 Artificial Neural Networks and Flat Layers

Artificial neural networks, or simply called neural networks, are a machine learning method inspired

by the neurons and their connections (synapses) in animal brains. In a neural network’s structure exist

nodes, also called neurons, that store real number values. Groups of nodes constitute layers (named

flat layers), and a group of layers and the connections between them form a neural network. (see

Figure 2.3). As seen in the figure, there are three categories of layers in a neural network, the input

layer, the hidden layers and the output layer. The input layer receives external inputs, the output

layer contains the networks’ final output, and between them exists any quantity of hidden layers.
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Figure 2.3: Scheme of a simple neural network architecture.

In a conventional neural network, any node of a given layer is connected to all nodes in the previous

layer. Furthermore, these connections are weighted, meaning the influence of a node on another can

be different for each connected pair of nodes. So, when the neurons in the input layer receive a signal,

the signal is passed onto the first hidden layer, then the second, iteratively through all hidden layers

until reaching the output layer.

Focusing on the connection between two arbitrary layers l and l+ 1, let xli be the signal on the i’th

node of the l’th layer. Also, since the weights can vary for each neuron pair, let wi,j be the connection

weight between the i’th and j’th nodes on layers.

With this, the value of a given node in layer l + 1 can be given by the following equation:

xl+1
j = σ


∑

i

(wi,jx
l
i) + bli


 (2.1)

From the above equation, the signal of a node is equal to a linear combination of the signals of all

the previous layer’s nodes, plus a bias bli and ”wrapped” by a non-linear function σ. This formulation

is for the case of fully connected layers, however, there are other possible ways of connecting layers.

2.2.2 Convolutional Layers

A CNN, also called ConvNet, is a type of artificial neural network that is extremely useful for

processing images. As the name suggests, a ConvNet utilises convolutional layers for at least one of

its layers. Convolutional layers can capture spatial features that would not be possible to capture by

9



flattening the image and using a flat layer.

2.2.3 Convolution operation

A convolutional layer uses a three-dimensional kernel with predefined dimensions NxMxC (hyper-

parameters) where N,M correspond to height and width, respectively. C is the number of channels

of the kernel, also called depth, which should be equal to the number of channels of the input volume

of the layer (e.g. an RGB image has 3 channels). Another important hyper-parameter when defining

a convolution is the stride. The stride is the length of each step taken by the kernel during the

convolution operation.

To perform the convolution, the kernel slides across the input volume with steps that are the size of

the stride previously defined. Then, at each location, element-wise multiplication between the elements

of the kernel and elements of the volume the kernel overlaps is made, and the sum of these values is

the output (named feature map) at the current location. This operation is visually shown in figure

2.4.

Figure 2.4: Two dimensional convolutional between 5x5x1 input map and 3x3x1 kernel with stride 1.
Image taken from [11].

The width and height of output depend on the input/kernel dimensions and also the stride. From

figure 2.4, it is possible to understand that unless the kernel size is 1x1, the output will always be

smaller than the input. This is not desirable because if many successive convolutions are applied,

which is the case for most deep CNNs, the final output map will be too small to convey any relevant
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information. As such, padding is used to limit this effect. Zero padding, the most common form of

padding, is the addition of zeros on the image’s borders. This allows the convolution to retain the

input’s height and width in the case of Same Padding or even allow for increased dimensionality in

Valid Padding.

Since square kernels and images are common, let O, I,K be the dimension of the side of the output,

input and kernel, respectively. P is the size of padding used, and S is the stride. The output dimension

is then obtained the following calculation:

O =
I + 2P −K

S
+ 1 (2.2)

To extract several features from the same input, it is common to stack the results of several

convolutions with different kernels resulting in output with depth equal to the number of kernels used,

represented by C.

2.2.4 Pooling Layers

Pooling is another common operation in convolutional neural networks and is usually done after a

convolution operation. A pooling layer is used to reduce the dimensions of the feature maps [12]. This

is useful since it helps reduce computational effort. For example, in a max-pooling operation, a kernel

slides across the input just like in convolution. Still, the value used of the output is the maximum value

in the overlapped area. Because of this, max-pooling layers help extract dominant features and remove

undesired feature noise. There exist other types of pooling layers, for example, average pooling.

2.2.5 ReLU

The ReLU function is a type of activation function and stands for Rectified Linear Unit. In the

context of neural networks, activation functions serve the purpose of introducing non-linearities that

allow the neural network to approximate its output to non-linear functions. This is required for the

vast majority of applications since most of the phenomena studied are non-linear. The ReLU function

is defined as follows [13]:

f(x) = max(0, x) (2.3)

This formulation introduces some type of non-linearity required, but it is also efficient in terms

of computation, which is advantageous in large architectures. This function is usually applied on the

feature maps after convolution layers and also after fully connected layers.
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2.3 Training

In the previous section, it was mentioned the existence of weights connecting layers and kernel

weights. These parameters are what define the output of a ConvNet for any given input. How these

parameters are defined is crucial to get the desired outputs instead of random numbers. To understand

how the parameters are updated firstly is important to define what a loss function is.

2.3.1 Loss functions

A Loss function compares the outputs of a model with the desired outputs and returns a real number.

This number simply referred to as ”loss”, represents some representation of the error estimate of the

model. This means the larger the loss value, the farther the model is from its pretended output. There

are several commonly used loss functions for simpler problems. A simple example of a loss function is

the quadratic loss, commonly used when applying least-squares approaches in regression problems.

Lquadratic = A(y − x)2 (2.4)

where A is a set constant, y is the pretended output, and x is the model’s output. For FR applications,

more complex loss functions are used, which will be explained in detail in chapter 3.

2.3.2 Regularisation

When training a network, one important aspect to have in mind is the possibility of overfitting.

Overfitting is the phenomenon where a model learns too well the statistical noise and details of the

training dataset, which leads to poor prediction performance when presented with new unseen data.

To tackle this effect, some techniques may be used. These techniques are known as regularisation

techniques.

Dropout

Dropout is a technique that consists in removing (”dropping”) a random set of nodes and their

respective connections of a given layer each iteration with a predefined probability. As a result, nodes

can learn to adapt to fix mistakes from other nodes, which may lead to complex co-adaptations [14].

This, in turn, causes overfitting since the co-adaptations are specific to the training data and thus not

able to generalise to unseen data. Dropping some nodes each iteration removes this problem and leads

to better generalisation and results.
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Weight Decay

Weight decay is another technique that consists in penalising the growth of the weights in a neural

network. This is helpful to prevent a model from becoming overly complex and overfitting to the

training data. Weight decay works by introducing an L2 regularisation of the weights into the loss

function:

L′ = L+ λ
∑

i

w2
i (2.5)

where wi represents the network’s weights or layer and L represents the loss function without the

weight decay. The value λ is the weight decay parameter that influences how much the L2 norm of

the weights impacts the value of the loss.

2.3.3 Network training

Training a neural network is a process where its trainable parameters are updated with the direction

of minimising the value of the loss function. In the case of a CNN, the trainable parameters are the

weights and biases in the connections and the kernels’ weights.

To start the training process, first, the network’s trainable parameters must be initialised with

some commonly random value (random initialisation). Still, they can also be imported from other

previously trained networks. Then, for each training iteration, an optimisation algorithm is used to

minimise the loss function, and, in combination with the backpropagation algorithm, all the weights

are updated.

The first step to update the weights in a neural network is to calculate the gradient of the loss

function with respect to all the weights and biases of the network for a given input. This is done by

the backpropagation algorithm that computes the loss function’s gradient with respect to the network

adjustable parameters using the chain rule. This is accomplished by iterating from the last layer up

to the first to avoid unnecessary calculations.

After calculating the gradient of the loss function with respect to each trainable parameter of

the network, the parameters are updated according to the optimising algorithm used. One of the

most common optimising algorithms is the family of gradient descent methods [15] (gradient descent,

stochastic gradient descent, mini-batch gradient descent). These are used to optimise a function to

minimise it in the case of the loss function.

Mini-Batch gradient descent uses a mini-batch (a small group of samples) to calculate the average

gradient to update the parameters. This option has smoother convergence than stochastic gradient

descent, which only uses one sample per step. On the other hand, it has much less computational
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effort than traditional gradient descent, which uses the entire dataset to calculate the gradient. As

such, mini-batch gradient descent is the most commonly used optimiser among the three mentioned.

The following formulation can describe this algorithm [15]:

w′j = wj − η
1

N

N∑

1

∂Li
∂wj

(2.6)

where wj represents any trainable parameter in the network and w′j is the updated parameter. Li

is the loss value for the sample i, and N is the batch size. Finally, η is the learning rate. Bigger

learning rates lead to faster convergence but may ”jump” over some loss function local minimums and

not converge properly if too high.

2.4 Recognition Scenarios

FR systems function in a reference-based manner. It is assumed that the system has access to a

set of correct reference images (gallery). Depending on the system, this reference can be captured

in different ways. For example, the user could have previously submitted it, captured it via security

camera, extracted it from an ID, etc. Face recognition can be categorised into face identification and

face verification.

The face verification scenario involves two images that are compared to determine if they belong

to the same subject (1-1 authentication). This scenario is found in automated border control systems,

e.g. in airports where a live captured image is compared to an ID or passport photo. To evaluate the

performance of systems in this scenario, the commonly used metrics are the following:

• False Match Rate (FMR), which is the fraction of non-matching identities wrongly matched as

the same identity.

• False Non-Match Rate (FNMR), which is the fraction of matching identities wrongly considered

a non-match.

The FNMR can be interpreted as a measure of how convenient a system is, while the FMR measures

the level of security. These values can be plotted to show the Detection Error Tradeoff (DET) curve,

exemplified in Fig 2.5. The verification accuracy is usually reported as the FNMR for a defined FMR

threshold.

Other metrics are also used, but these are usually obtained from the two above mentioned. For

example, the True Accept Rate (also named True Positive Rate (TPR)): TAR = 1 − FNMR. This

value is useful for plotting the Receiver Operating Characteristic (ROC) curve, a commonly used

graphical way to show the models’ performance. On the ROC curve the x-axis represents the False
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Figure 2.5: Example DET curve. Image from [16].

Positive Rate (FPR) (which in this application is the same as the FMR) and the y-axis represents the

TPR. Another relevant metric is the Equal Error Rate (EER) which can be extracted from the ROC

or DET curves. The EER is the point of the operation curve where FPR + TPR = 1 or, in other

terms, the point where FNMR = FMR. Generally, the lower the EER the better the performance of

the recognition system.

Face Identification uses a new image and the entirety of the gallery set (1-N authentication). Face

identification is classified as closed-set if the probe’s identity is contained in the identities present in

the gallery set. In this case, the system tries to find the closest identity. To assess the performance

of a face recognition system in this scenario, a common metric to use is the identification rate at rank

r. For a given authentication attempt, the identification rate at rank r is the probability that in an

identification attempt of an enrolled user, the user is at the top r members of the list of matched

identities.

On the other hand, if new identities can be presented to the system, the task is classified as open-

set identification. Open-set tasks are the scenario of most real-world applications of authentication

systems. In open-set tasks, the metrics mention for the closed-set scenario can be used and in addition

there are two other useful metrics to describe system performance:

• False Positive Identification Rate (FPIR), which is the fraction of non-enrolled identities that

had a successful identification attempt.

• False Negative Identification Rate (FNIR), which is the fraction of enrolled identities for which

the identification attempt was unsuccessful.

Similarly to 1:1 Face Verification, the performance of a system in a open-set scenario can be plotted,

in this case, as the FNIR for a FPIR value at a given rank r.
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Chapter 3

State of the art

In this chapter, the state-of-the-art regarding face recognition systems will be described. Firstly,

some important datasets used in the field to compare system performances are presented. Then, the

current advances in deep neural network face recognition are explained. The third section presents the

current best-performing algorithms regarding face detection and alignment. Afterwards, a review of

top-performing face recognition systems in civil identification and machine-readable travel documents

is demonstrated. Finally, a short mention of recent advancements in face image quality assessment is

made.

3.1 Datasets

Datasets/databases are a critical factor in developing deep learning models for FR. All state-of-the-

art FR methods are heavily data-driven. A model’s performance can have a significant bias depending

on the quality, quantity and distribution of the data used to train it. Datasets are also used in

benchmarks for system validation.

3.1.1 Training datasets

For effective deep learning-based FR, it is essential to have a sufficiently large training dataset. As

Zhou et al. [17] show, large amounts of data in deep FR improve the model’s performance.

At the beginning of deep learning-based FR, most state-of-the-art methods used large private

datasets, so they could not be reproduced. The first publicly available dataset that helped solve this

issue is CASIA-Webface [18]. Since this is a relatively small dataset with 500K images of 10K celebrities,

more large-scale datasets were made available such as VGGFace [7], MS-Celeb-1M [9] among others.

A collection of some widely used training datasets are presented bellow in Table 3.1.
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Table 3.1: Common datasets for facial recognition training and benchmarking.

Datasets Number of photos Number of identities Publish date

CASIA-WebFace [18] 494,414 10,575 2014

VGGFace [7] 2.6M 2,622 2015

VGGFace 2 [8] 3.31M 9,131 2017

IMDB-Face [19] 1.7M 59K 2018

MegaFace [20,21] 4.7M 672,057 2016

MS-Celeb-1M [9]
(challenge 1)

10M
3.8M (clean)

100,000
85K (clean)

2016

MS-Celeb-1M [9]
(challenge 2)

1.5 M (base)
1K (novel)

20K (base)
1K (novel)

2016

MS-Celeb-1M [22]
(challenge 3)

4M (MSv1c)
2.8M (Asian-Celeb)

80K (MSv1c)
100K (Asian-Celeb)

2018

Labelled Faces in the Wild (LFW) [23] 13,233 5,749 2008

YouTube faces (YTF) [24] 3,425(videos) 1,595 2011

IJB-A [25] 5,712(images)/2,085(videos) 500 2015

IJB-B [26] 21,798(images)/7,011(videos) 1,845 2017

IJB-C [27] 31,334(images)/11,779(videos) 3,531 2018

Datasets have two important aspects. First, depth, which measures the number of images per

identity, provides the desired level of intra-class variations like pose, lighting, occlusion or even ageing.

For example, VGGFace [7] has, on average, 1000 images per identity. Second, breadth, which measures

the number of identities in the dataset, provides the desired level of inter-class variations and coverage

for the different appearances of a sufficiently large number of people. A good example to show this is

the MegaFace [20,21] challenge with over 670K identities.

3.1.2 Evaluation datasets

Evaluation benchmarks aim to provide information regarding the viability and performance of a

model. With an evaluation dataset and a benchmark protocol, it is possible to extract the performance

metrics mentioned in section 2.4 in order to compare different models’ performance.

The Labelled Faces in the Wild (LFW) [23] dataset is the most widely used benchmark for uncon-

strained FR applications. The images, obtained from the internet, are cropped using an automatic

algorithm based on Haar Cascade called the Viola-Jones detector [29]. The protocols used in this

dataset are intended for facial verification (pair matching). There are two variants, one where the

pairs are provided, named restricted protocol, and an unrestricted protocol where the pairs can be

chosen. The ROC curve is the method used to visualise the results. It is also worth mentioning the

YouTube faces (YTF) [24] dataset where the images are taken from YouTube videos. The individuals
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Figure 3.1: Sample images from benchmark datasets: Labelled Faces in the Wild (LFW) (top), video
frames from IJB-A (middle) and MegaFace (bottom). Image from [28].

in this dataset are also present in LFW, and the protocols are the same. Finally, another dataset

group worth mentioning is the IJB group of datasets [25–27]. These are manually aligned thus contain

more variations in pose, occlusion and illumination that the automatic detection in LFW is not able

to detect.

3.1.3 Face detection and alignment

As discussed earlier, some face datasets use some automatic face detection and alignment. This is

also true for most FR systems. The scope of this work is applications on ID and travel documents.

In these applications, most of the images processed are frontal face images (see section 3.6). As

such, a deep study of face detection and alignment techniques is not the main target. Still, there are

many published methods regarding face detection and alignment like the aforementioned Viola-Jones

detector [29], histogram oriented gradient (HOG) techniques [30], Multi-Task Cascaded Convolutional

Networks [31], among others. There are also deep learning-based techniques for face detection on

which a survey is done by Rajan et al. [32], and Xin and Tan [33] present a survey on face alignment

techniques.
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3.2 Deep Learning Face Recognition

CNN are a type of Artificial Neural Network that are commonly used in the field of computer vision,

usually applied in object detection, segmentation or recognition. CNN can learn high-level features

from images, and those features can then be classified by the fully connected layers of a conventional

neural network. Now, CNN are at the core of all state-of-the-art face identification and verification

systems.

The initial evolution of deep convolutional neural network (DCNN) architectures was made by

increasing the depth and number of units per level. This led to the ever-increasing complexity and

computational resources required. Several breakthroughs in DCNN architectures like GoogleNet [34],

AlexNet [35] and VGGnet [36] emerged, and these were more powerful and less resource-intensive

than before. Further developments in image recognition and CNN were made by He et al. [37], who

proposed to apply residual connections to the network and introduced the ResNet architecture. These

connections result in faster training and better performances and, for these reasons, is commonly used

in deep learning computer vision tasks.

In 2014, one of the first face recognition systems based on deep learning, DeepFace [2], was published

by Facebook. DeepFace, at the time of its publishing, was the best performing algorithm on LFW [38]

and the first to achieve near-human performance. (DeepFace: 97.35% compared with Human: 97.53%

on the LFW benchmark unconstrained). The authors used a custom CNN architecture with a Softmax

Loss function (see section 3.4) trained on a multi-class face classification scheme.

Current face recognition research and investigation utilise these well known and well-performing

architectures as backbones for their DCNN. The recent investigation focus has shifted towards im-

proving the loss functions used in these deep learning pipelines. Most of the recent breakthroughs and

improvements are now related to enhancing the discriminative power of the features obtained from a

given deep network. That is, it increases inter-class dispersion while maintaining inter-class compact-

ness. This is done by altering or creating a new loss function with that goal in mind. That can be

accomplished in two ways, using metric-learning or classification-based approaches. These concepts

and related key articles are presented in the following two sections.

3.3 Metric Learning Loss Functions

Metric Learning methods consist of optimising the feature embeddings, in this case, to enhance their

discriminative power.

One example of a metric learning loss function is the triplet loss introduced in face recognition

applications by Schroff et al. [39] in FaceNet. As the name suggests, the triplet loss requires three
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Figure 3.2: Visual representation of minimising positive pair distance while maximising the distance
between negative pair. Image from [39].

data points per step known as the anchor xai , the positive xpi and the negative xni samples. The anchor

and positive samples belong to the same identity while the negative sample is taken from the disjoint

identity. The goal is to maximise the distance between the negative sample and the anchor while

minimising the distance between the positive sample and the anchor, as illustrated in Figure 3.2.

Let f(x) ∈ Rd be the d dimensional embedding or d dimensional set of deep features of an image.

A constraint is made so that
∥∥f(x)

∥∥
2

= 1. Since the positive sample must be made closer to the anchor

than the negative sample:

∥∥f(xai )− f(xpi )
∥∥2
2

+ α =
∥∥f(xai )− f(xni )

∥∥2
2

(3.1)

Where the triplet belongs to the set of all possible triplets T with cardinality N and α is the margin

enforced between the distances of positive and negative pairs. Thus, the final loss function can be

denoted as:

Ltriplet =

N∑

i

(∥∥f(xai )− f(xpi )
∥∥2
2

+ α−
∥∥f(xai )− f(xni )

∥∥2
2

)
(3.2)

The problem with the triplet loss method is that not all N triplets are useful, and using them all

results in slower and worst convergence. In addition, using triplet loss requires some time-consuming

data mining, even though there are methods presented to facilitate the process.

Another metric-learning based loss function worth mentioning is used in DocFace [3]. Since this

article is related to document security applications, the loss function is explained in detail in section

3.6.

3.4 Classification Loss Functions

Classification based loss functions are used in problems that consist in classifying a given data point

as one of the already existing classes (in this case, identities).
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Most recent advances in face recognition [40–42] result from loss functions based on the softmax

classification loss. The softmax classification loss’ goal is to maximise the posterior probabilities of

the true class. This is achieved by using the values of the output layer of the network (a layer with

dimension C), f ∈ RC , as an input to the softmax function, where the i−th component of the resulting

vector is defined as:

σ(f)i =
efi

∑C
j=1 e

fj
(3.3)

Here, C is the number of classes of the classification problem. The softmax function serves as a

normalisation function for the output of a network since the sum of the C components of σ(f) is 1.

These components can be interpreted as the probability of a given data point belonging to a certain

class. This is usually implemented using a softmax activation on the network’s last layer, called the

softmax layer. The softmax classification loss is simply this softmax activation combined with the

cross-entropy loss resulting in:

Lsoftmax =
1

N

∑

i

− log(
efyi

∑C
j e

fyj
) (3.4)

Here, N is the number of training samples, i refers to the i− th sample, yi is the index of the class

of the i − th sample and xi ∈ Rd is the output of the last fully connected layer, also called a deep

feature. The value d is the dimension of the last fully connected layer.

The value fyi is the yi − th component of f . With the weight matrix of the connections between

the final two layers defined as W ∈ Rd×C . An expression for f is obtained:

f = W · xi + B (3.5)

where B, the bias vector of the last fully connected layer, is usually considered a vector of zeroes for

simplicity. Denoting the j − th columns of W as Wj , each component of f can be obtained by the

following expression:

fj =
∥∥Wj

∥∥‖xi‖ cos θ (3.6)

The softmax classification loss function, although widely used up to this point, is not discriminative

enough and results in lower performances for large intra-class variations (e.g. age gaps or pose vari-

ations) [42]. Therefore, the high separation between different classes and small intra-class separation

became the main goal of modern investigation.

One common method used by some articles is to normalise the weight and feature vectors using

l2 normalisation and then re-scale the feature vectors to s:
∥∥Wj

∥∥ = 1 and ‖xi‖ = s (however, some
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approaches follow this strategy in simplified form [40]). This implies the dot product depends strictly

on the cosine of the angle between these two vectors. Note that the new features are distributed across

a s-radius hypersphere.

Using this method, the softmax function can be reformulated into the following:

LAngular =
1

N

∑

i

− log

(
es cos(θyi ,i)

es cos(θyi,i) +
∑
j 6=yi e

s cos(θj ,i)

)
(3.7)

Various reported approaches deal with similar formulation modifying such loss function in different

ways.

For instance, SphereFace [40] then introduces an angular margin by multiplying θyi and the integer

m ≥ 2. The result is a monotonically decreasing angular function Φ(θyi , i) that replaces cos(θyi , i)

and is equal to the cosine function for θ ∈ [0, πm ]. This loss function, A-Softmax loss, led to higher

discriminative features in the hypersphere and resulted in the best performance on LFW and YTF up

to that point.

CosFace [41] improves on this by adding the margin directly into the cosine of the true class angle

directly instead. This loss function is named large margin cosine loss (LMCL). The LMCL improves

on A-Softmax and learns high-discriminative facial features, resulting in better performances than A-

Softmax (although for the LFW with the same training data and CNN architecture achieved slightly

worst results).

ArcFace [42] follows a similar approach but adds the margin directly to the angle θyi . This results

in a constant linear angular margin in the angular space. Through extensive testing it is found that

the loss function introduced in ArcFace slightly outperforms the two prior mentioned approaches. A

visualisation of the difference between softmax and ArcFace loss is presented in figure 3.3.

Figure 3.3: 2D hypersphere embedding of an 8 class problem using the Softmax versus ArcFace loss.
It can be seen the increased inter-class separation and intra-class compactness of ArcFace compared
to the Softmax loss. Image taken from [42].
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3.5 Sample Specific Loss Functions

While previously mentioned approaches resulted in excellent performances in the evaluation datasets

discussed, these same benchmarks are basically ”saturated” since most modern methods achieve near-

perfect performance on them. Even though this is the case, it does not mean the methods used are

perfect though. Evaluation datasets like LFW present a relatively low variation in head poses [43],

age [44], ethnicity [45], among other aspects. This is also true for training datasets. Even the huge

ones present these kinds of biases. This lack of variation is not ideal and leads to poorer performance

in more challenging datasets closer to real-world applications such as IJB-S [46], Cross-Age LFW [44],

Cross Pose LFW [47], among others. Real-world scenarios offer a much broader diversity of head poses,

age, ethnicity etc. Recent works aim at closing this performance gap.

Shi et al. [48] introduce some novel methods to try to tackle more challenging datasets. Firstly,

the authors introduce three different data augmentation techniques: blurring, occlusion and head pose

changes. These 3 augmentations were chosen since they are related to low resolution, high occlusion

and lack of head pose variations which are common challenges in unconstrained/wild applications.

Following this, the authors introduce a confidence-aware identification loss. This softmax based loss

function introduces a sample-specific confidence parameter, si, where higher quality samples show

higher confidence values. Usually, the class prototype wi is simply the class centre. In other words,

it does not depend on the quality of the samples. However, taking into consideration the sample

confidence ”pushes” the prototype towards the higher quality samples (as shown in figure 3.4). This

makes higher quality samples that convey more information have a higher impact in training which is

highly desirable.

Figure 3.4: Visual representation of confidence-aware embedding learning. The learned prototype
shifts towards higher quality samples. Image from [48].

Another relevant method introduced in this article is the decorrelation of the sub-embeddings. This

method results in a more compact feature size and a higher representation power.

In CurricularFace [49], Huang et al. introduced curricular learning to create a loss function named

Adaptive Curricular Learning Loss. Curricular learning is a method of training machine learning
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methods where easier samples are introduced earlier in training while harder samples are introduced

later. Using the ArcFace loss function as a base, the authors incorporated this concept in their work

by including an adaptive parameter that controls the loss impact for harder samples. During training,

this value is increased, and the impact of harder samples is increased as well. This parameter needs to

be carefully formulated because it can greatly impact the convergence of the network. Hard samples

were defined according to the performance of the network on each specific sample during training.

Sun et al. [50] observed that margin-based methods like ArcFace only enforced margin between

classes, meaning no consideration was made regarding the intra-class discrepancy. For datasets with

considerable class size differences (imbalanced datasets), larger classes will occupy more volume in the

hypersphere resulting in bias towards these classes. This is not considered in margin-based approaches.

The authors use the intra-class and inter-class similarity of a sample to measure the difficulty of

the sample. The loss function takes two hyper-parameters, t1 and t2, the intra-class and inter-class

similarity thresholds, respectively. Based on these hyper-parameters, margins are imposed in a sample-

specific manner for positive and negative logits.

Zeng et al. [51] noted that hard samples could be categorised as hard positive and hard negative

samples (intra and inter-class, respectively). The authors also verify that for large datasets, a hard

positive sample will also generally act as a hard negative for another class.

Figure 3.5: Examples of hard positives between the first and second row and hard negatives between
the second and third row. Image from [51].

To address this concern, the authors proposed the Negative-Positive Cooperation Loss (NPCFace).

In NPCFace, the non-ground truth logit is altered to remove the stability-hard emphasis conflict other

formulations like CurricularFace presented. This is made using a mask Mi,j ∈ 1, 0 that indicates if a

sample i is hard or not to the j − th class:

f
Mi,j

j = (1−Mi,j) · s cos θi,j +Mi,j · s(t cos θi,j + α) (3.8)
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The mask mentioned can be related with miss-classification, but other methods are also mentioned,

for example, off-the-shelf options. Regarding ground-truth logit, the authors alter the ArcFace positive

logit by including a cooperative margin mi. If the sample is not considered a hard negative for any

class, the margin is simply the constant m0 > 0. Otherwise the margin is formulated as follows:

mi = m0 +

∑
j 6=yi Mi,j cos θi,j∑

j 6=yi Mi,j
m1 (3.9)

where m1 > 0 controls the impact of the hard negative samples. The cooperative margin is related to

the average hard negative logits for each sample. If the sample is hard, the margin will increase from

the baseline value m0, increasing the loss value.

MagFace [52], unlike the works mentioned prior, utilises the magnitude of the feature vector as

additional information to include in the loss function. The authors propose that the magnitude ai

can be used to indicate the quality of the sample i. They then use the ArcFace loss formulation, but

instead of using a static margin m, they use an adaptive margin whose value changes with respect to

the sample quality: m(ai). This results in higher margins for higher quality samples which, as will be

explained further, will also be the approach in this thesis. The authors also add a term to the loss

function to regularise the feature magnitudes g(ai) that rewards samples with larger magnitudes. The

final MagFace Loss is defined as follows:

LMagFace =
1

N

∑

i

− log(
es cos(θyi+m(ai))

es cos(θyi+m(ai) +
∑
j 6=yi e

s cos θj
) + λgg(ai) (3.10)

where λg is a coefficient that represents the trade-off between the regularisation and classification

losses.

3.6 Applications on ID and travel documents

Security applications for ID pose peculiar face recognition challenges. That is why specific techniques

and methods were developed for this particular subject.

Shi and Jain [3] presented a method for face matching based on ID photos entitled DocFace. This

type of face matching relies on two types of images:

• The ID photo, either scanned or digital, which is obtained from the identification document.

This photo usually is frontal, well lit and the subject presents a neutral expression. However,

one problem that might arise with such photos is the lack of quality due to image compression.

• The live ”selfie” of the individual. If the subject is cooperative, this image can be taken with

relatively the same pose, lighting and expression as the ID photo, although that might not be
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the case, and variations might occur.

Figure 3.6: Two ID-Selfie pairs from the private ID-Selfie-A dataset [3].

The major difficulties in matching these two different types of images from different sources come

from the image quality and the time span between the issuing of the ID and the time of verification.

The approach presented uses ResNet architecture as the backbone trained on a big wild dataset

(MS-Celeb-1M [9]). The loss function used is the angular margin softmax loss function. Since the

target domain (ID photo - selfie pair) is different from the training domain; if this network were

applied as-is, the results would be poor. As such, the authors take two copies of this trained network,

called sibling networks, and then fine-tune them on the smaller ID-Selfie pair dataset. In this process,

one network is trained on the ID part of the dataset and the other on the corresponding selfie part.

The loss function used for the sibling network training is called the max-margin pairwise loss. This

loss function is inspired by the triplet loss:

LMPS =
1

M/2

M/2∑

i=1

max[0,max
j 6=i

(max[cos θj,i, cos θi,j ])− cos θi,i +m′] (3.11)

where M/2 is the number of pairs on the mini-batch. Similar to other loss functions presented earlier,

cos θi,j = gTi ·hj . gi and hi are the L2 normalised embeddings for the ID and selfie images, respectively.

The scalar m′ is the margin imposed. This method achieves state-of-the-art performance in ID-Selfie

matching, although this method is trained and tested done on a private datasets.

Still in this line of research, Shi and Jain improved on the results of DocFace with DocFace+ [53].

Most of the pipeline used in DocFace is carried over to DocFace+. Apart from using a bigger ID-

Selfie dataset for training, the main improvement presented is a newly introduced loss function for the

training of the sibling networks. The new loss functions used, called DIAM-Softmax, results in faster

convergence, crucial in this scenario where the amount of data available for training is reduced. Shi

and Jain show this loss function outperforms all other state-of-the-art loss functions presented on their

private ID-Selfie dataset.
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3.7 Face Image Quality Assessment (FIQA)

FIQA has similarities with the generic image QA. For example, a blurry image, a distorted image

or an over-saturated image will be considered a low-quality image whether it is a face image or not.

Although this is the case, there are certain desirable characteristics specific to face images: Frontal

pose, frontal illumination, no face occlusion, among others. A document with recommendations and

requirements for high-quality portrait images (for Machine Readable Travel Documents) was made by

ICAO [4]. The image quality indicators used in this work were chosen in close proximity with the

standards set by ICAO and are explained in Section 4.3. Apart from the quality indicators used in

this work, other useful FIQA tools could be used in future work. A survey on this topic is conducted

by Schlett et. al [54]. Out of the recent FIQA literature, some noteworthy articles follow that focus

on removing the human perception from the quality estimation algorithm.

In SER-FIQ [55], the authors propose a quality estimation method that is based on the usage of

dropout when training a network for FR. If a network is trained via dropout, it is possible to use a

set of sub-networks to generate several outputs for a given input. By comparing the proximity of the

outputs, a quality estimate can be made for the sample in question. The closer all the outputs are

(more robust prediction), the higher sample’s quality is considered to be.

In Probabilistic Face Embeddings (PFE) [56], Shi and Jain explain that poor image quality is

responsible for changes in similarity scores of genuine and impostor pairs. Furthermore, these changes

increase with the increase in degradation, which increases the likelihood of mismatching genuine or

impostor pairs. To fix this problem, the authors introduce a new form of face embedding named a

PFE. Unlike normal deterministic face embedding, with PFE, the model used outputs two different

vectors to convey the uncertainty in the representation. These two vectors are the Gaussian mean

and Gaussian variance of the embedding. Furthermore, to match the PFEs from different samples, a

method is proposed that penalises high levels of uncertainty (Gaussian variance).

SDD-FIQA [57] is another method that does not depend on human perception for the quality

estimation of a sample. To estimate the quality of a sample, the authors propose to use the inter-

class and intra-class similarity scores and map them to pseudo-labels that indicate quality by using a

distribution distance metric. The final step in the method is to train a new network with the quality

labels to predict the quality scores.

3.8 Discussion

Deep learning-based methods applied in computer vision led to improvements in pattern recognition,

image segmentation and other tasks. These works usually use some CNN. Face recognition systems
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have also adopted CNN as part of their pipeline and have shown significant growth in accuracy and

performance since their inception.

Due to significant improvements in network architecture, which led to the less computational effort

while improving results, new research shifted its focus to fine-tuning loss functions for specific purposes

while maintaining a well-known network as the backbone used. Several types of CNN architectures

can be used for face recognition purposes without a clear top-performing architecture.

New research focuses on methods to improve the discriminative power of the learned face em-

beddings. These are commonly under the form of loss functions. Metric learning approaches have

achieved good results, but the data mining and also data quantity required leads to harder conver-

gence. Another type of approach possible is to use a classification based loss function. This has been

done by somehow enhancing the softmax loss function. This type of research achieved increasing levels

of inter-class variance while also increasing intra-class compactness on the resulting face embeddings.

However, datasets with larger variations (for example, head pose or lighting) still challenge current

methods. For this reason, most authors are experimenting with enhancing the impact on the train of

hard samples in a sample-specific way.

Applications on ID and travel documents benefit from the advances previously mentioned, but they

also have specific challenges. The uniqueness of the problem requires different approaches, such as the

use of sibling networks. The lack of large ID or ID-Selfie public datasets is a big challenge in training

deep learning models for these applications.

There have been rapid developments in FIQA, based on classification performance instead of in-

trinsic image properties. This new approach shows significant improvements over previous techniques

and should be further explored in future work.
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Chapter 4

Methods

In this chapter, the process and decisions made for the development of the experiments done are

explained.

4.1 Choice of architecture

The first step taken to develop a model was the choice of the network/backbone architecture. This

is done since developing a new architecture is out of the scope of this thesis. The benefit of the loss

function should be transferable to different network architectures which is another reason to define

the network now. The choice of architecture for the backbone was the ResNet. ResNets are efficient

and commonly used in most state-of-the-art papers regarding novel loss functions. Within the ResNet

”family” of networks, the ResNet-50-V2 [58] is a good balance between performance and computational

effort.

4.2 Choice of train dataset

Some different datasets were considered to train the models. The three main options considered

were: CASIA-Webface, VGGFace2 and MS-Celeb-1M. VGGFace2 was chosen as the training dataset

since it is considerably bigger than CASIA-Webface and has much less label noise than MS-Celeb-1M.

The details of these datasets are presented in table 3.1.

VGGFace2 [8] presents an unconstrained set of face images acquired from Google Images. There is

an average of 362.6 face images per individual with 9131 subjects. These images have large variations

in pose, lighting, age and other aspects, useful for the work developed.
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4.2.1 Train dataset processing

VGGFace2 is quite large, and to compare the performance of different models; it is sufficient to train

said models on a subset of this dataset. This allows for a shorter training time at the cost of a slight

performance decrease. The subset chosen for training was the set of identities in VGGFace2 that had

400 or more images. So, instead of the 3.31M images and 9,131 identities of VGGFace2, the dataset

used for training had 1.34M images and 2842 identities.

Before using the dataset to train a model, it is common to crop and rotate the images according

to the position and orientation of the face. To do so, first, the face was detected in each image. This

was done using an open-source pre-trained CNN from a project named RetinaFace [59].1 This method

(which also uses a ResNet50 architecture as a backbone) receives a face image as input and outputs

a set of landmarks/key-points of the face, a bounding box for the face and a confidence score that

reflects how ”certain” the network is that the points return indeed belong to the face. It can happen

that the face detector does not detect a face in the image, for example, if the face has really poor

illumination, pose or quality. If this is the case, the image is not used. 5 important key points were

then further used for face alignment: the centre of both eyes, corners of the mouth and the nose tip

(as seen in Fig 2.2b)).

(a)

(b)

Figure 4.1: Face image alignment process: a) Representation the 5 keypoints (green), face centre point
(red) and the angles used to rotate the face (angles between red and blue lines). b) Result after
alignment and cropping.

With the face detected, the final step to prepare the dataset was to align the faces according to

1The implementation used can be found in the following URL: https://github.com/peteryuX/retinaface-tf2
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their landmarks. To do so, the following procedure was designed: From the previously extracted face

landmarks, the face centre is calculated. This is done by averaging the X and Y coordinates of the

5 landmarks. Afterwards, the angle that the line connecting the two eye landmarks makes with the

horizontal is calculated, and the same is done for the two mouth landmarks (see Fig 4.1). These two

angles are averaged, and the resulting angle is used to rotate the image pivoting on the face centre.

Finally, the resulting image is cropped and resized to the desired dimensions and saved.

4.3 Face image meta-information

As mentioned earlier, the main goal of this work is to improve FR performance through manipulation

of the loss function. The idea of extracting extra information from the image and including it in the

loss function to improve performance was explored. In total, 5 different types of meta-information were

extracted from the train dataset used. These quality scores were chosen with the ICAO requirements

and recommendations for portrait photographs in consideration.

4.3.1 Image blur

The first information extracted from the image was a measure of the image blur. This was done

by simply taking the variance of the image after convolving it with a Laplacian filter [60]. This value

gives a solid indication of the level of blurriness in an image, where lower values indicate higher blur.

4.3.2 BRISQUE

BRISQUE is a no-reference image quality assessment method, and it can be applied to any image [61].

BRISQUE stands for Blind/Reference-less Image Spatial Quality Evaluator. This method is useful to

assess how distorted (or not) an image is. The output of this method is a simple value from 0-100,

where lower values are best.

4.3.3 FaceQNet

FaceQNet is a face recognition specific quality assessment tool based on deep learning [62] 2. To

develop the method, the authors use a third-party framework to calculate ICAO compliance scores

and use those as a baseline to train a DCNN. The trained network outputs a generic quality score

ranging from 0-1, where 1 corresponds to the best face quality image.

It is shown that this quality score has a high correlation with face verification performance for

commercial of-the-shelf systems. Higher quality scored samples resulted in better verification.

2For this work, the following FaceQNet implementation was used: https://github.com/uam-biometrics/FaceQnet
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Figure 4.2: Quality score distribution from VGGFace2 and BioSecure datasets. The BioSecure dataset
presents higher quality scores as its images were acquired in more controlled conditions. Image from
[62].

4.3.4 Illumination Quality

One relevant variation present in face images is the quality of face illumination. According to ICAO

standards and requirements for document images, portraits should have adequate and uniform lighting.

To extract a measure of the quality of face lighting, a pre-trained DCNN based method was used [63]

3. This model was trained on the Face Image Illumination Quality Database (FIIQD). Its output,

similarly to FaceQNet, is a score ranging from 0-1, where the value 1 corresponds to the best possible

illumination quality.

4.3.5 Pose

The pose can be characterised by the rotation in three dimensions, the yaw, pitch and roll, which

are visually shown in figure 4.3

The angles of rotation for the three-axis described can be extracted for a face image in various

ways. 4 These three angles can be combined to create a simple score. In this work, the average of the

absolute value of the angles was used as the score for a given image. In this case, a full-frontal image

would have a score of 0.

3For this work, the following Face Image Illumination Quality Assessment (FIIQA) implementation was used: https:
//github.com/zhanglijun95/FIIQA

4For this work, the following implementation was used:https://github.com/OverEuro/deep-head-pose-lite
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Figure 4.3: Representation of the yaw, pitch and roll axes. Image from [64].

4.4 Loss function formulation

To integrate the meta information extracted from the images in the loss function it was first defined

the approach to follow. Two different directions were considered.

The first considered approach was changing the loss function to penalise harder samples more than

easier samples. Harder samples can be defined in several ways, e.g. samples miss-classified by the

model, samples with high loss or samples with intra/inter-class distances that are larger/smaller than

desired can be used as hard samples [49–51]. These samples usually have undesirable variations, e.g.

face occlusion, poor lighting, blurry photo non-frontal pose, etc. In the context of this work, a hard

sample could also be defined in terms of the meta-information discussed earlier. Optimising the loss

function with this approach helps the network learn harder scenarios and leads to better results in wild

scenarios with many different possible variations.

The other approach considered has an opposite goal. Instead of increasing performance in generic

scenarios by increasing the penalty on hard samples, this approach focuses on increasing the impact

of higher quality samples by increasing their loss value. Higher quality samples can be defined with

the meta-information previously mentioned. The desired goal of this approach is that the FR system

would perform better for the use case of the FACING project that involves mostly frontal, well-lit face

images, which, according to the definition used, are of higher quality. This was the approach followed.
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4.4.1 Mathematical formulation

Inspired by NPCFace [51], the mathematical formulation for the loss function used was based on

the ArcFace [42] loss function with an adaptive margin parameter:

L1 =
1

N

∑

i

− log

(
es cos(θyi+mi)

es cos(θyi+mi) +
∑
j 6=yi e

s cos θj

)
(4.1)

where the adaptive margin parameter mi is defined as:

mi = m0 +

Q∑

j

wjqijm1 (4.2)

and
Q∑

j

wj = 1 (4.3)

where, m0 and m1 are hyper-parameters that signify a baseline margin value and the amount of

maximum change to that margin allowed, respectively. The value Q is the total number of quality

attributes used and qij is the j−th normalised quality score for sample i. Finally, wj ∈ [0, 1] represents

the importance of the j − th quality score.

This formulation directly alters the ArcFace loss function intended to adapt the margin value with

a linear combination of the quality scores used.

All the scores qij used should have higher values for better quality images and lower values for lower

quality ones (if that’s not the case, for instance, with BRISQUE, the scores should be inverted). This

results in higher regularisation for higher quality images, resulting in a higher loss value, as desired.

The described adaptive margin method has a desired feature distribution with a larger concentration

of higher quality samples closer to the class centre (Fig 4.4b), unlike ”standard” margin methods like

ArcFace, where the class centre is not affected by sample-specific attributes (Fig 4.4a).
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Figure 4.4: The sample distribution in two deep features; a) simple margin methods distribution; b)
desired distribution with sample-specific quality information.

34



4.5 Benchmarking

In order to compare different models with different parameters and understand the performance of

the models on real-world scenarios, benchmarks are required. Therefore, three different benchmarks

were designed to test the models: a benchmark with unconstrained face images, a benchmark with

images that have relaxed compliance to ICAO standards and a benchmark with images that have strict

compliance to ICAO standards, named the Wild, Relaxed and Strict benchmarks respectively. These

three scenarios were chosen to test the models under different conditions to better understand how

their performance changes from wild images with high variability to relaxed and strict ICAO compliant

images, which are the scope of the FACING project.

The benchmarks were designed as face verification benchmarks, a 1-1 comparison of images to

check if the identities are a match or not. To design the benchmarks, firstly, datasets were chosen. A

subset of VGGFace2 that was not used for training was used to generate the Wild benchmark.

In order to generate the Strict benchmark, the Face Recognition Grand Challenge (FRGC) version

2 [65] dataset was used. From this dataset, only ICAO compliant images were chosen.

To generate the relaxed ICAO compliance benchmark, the FRGC V2 dataset was also used. In

this benchmark, all the images included in the Strict benchmark were used with the inclusion of other

images. The added images chosen were allowed the following deviations from strict ICAO compliance:

small variations from the frontal pose, the existence of facial expressions, non-frontal face lighting, some

degree of blurriness and non-uniform background.5 Example face images from the three benchmarks

mentioned above are represented in figure 4.5.

After selecting the datasets, a protocol was generated for each benchmark. To generate the protocol,

first, a certain ratio of positive (same identity) to negative (different identities) pairs were chosen.

For the three benchmarks, a ratio of 1/2 was used, meaning that in the protocol for each positive

comparison existed two negative comparisons. The pairs of images were chosen randomly through the

use of random number generation. The total number of comparisons was chosen to be around 330.000,

which resulted in approximately 110.000 positive pairs and 220.000 negative pairs.

To evaluate a model’s performance, the trained model is used to extract the feature embeddings

of all images that comprise the benchmark. Afterwards, the cosine similarity scores are calculated for

all the pairs in the protocol. Then, for a given threshold of the similarity score, all values below said

threshold are considered different identities, and all values above it are considered the same identity.

This is compared with the real pairwise label (same or different identity), and the FMR and FNMR are

obtained. Finally, by sweeping the threshold across the entire cosine similarity range, pairs of the FMR

and FNMR values are extracted, which are the metrics used to evaluate the models’ performance.

5The choice of images from the FRGC V2 dataset was done in the context of other works in the Computer Vision
investigation group and used as-is.
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Figure 4.5: Example images from the three benchmarks: First row - Wild Benchmark; Second row -
Relaxed Benchmark; Third row - Strict Benchmark.

4.6 Tools/Technical implementation

The code for defining and training all the models used was developed in python 3.7.9 with the

TensorFlow 2.5 and Keras libraries. The training was performed on a NVIDIA RTX 3090 GPU. The

ResNet50V2 model was imported from Keras. Then, an additional layer for the feature embedding

(512 nodes fully connected) was added. Finally, the ArcFace and adaptive margin losses were added as

a custom Keras layer. For the adaptive margin loss, an extra input was added for the score/scores of

each image which was then used to calculate the margin, while for ArcFace, the margin was a constant

value. The logits calculated are then used as input for a softmax function, and afterwards categorical

cross-entropy is applied to get the final loss value.
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Chapter 5

Results

5.1 Data analysis

In the work developed, four datasets were used: One for training and three for benchmarking. The

main properties of these datasets are presented in table 5.1.

Table 5.1: Details of the datasets used for training and benchmarking.

Dataset Train Wild Benchmark Relaxed Benchmark Strict Benchmark
Number of images 1338468 31117 35410 11732
Number of identities 2842 147 568 565
Average of images per identity 470.9±57.7 211.7±48.4 62.3±48.6 20.7±16.7

To better understand the datasets used in model training and benchmarking, the meta-information

mentioned in section 4.3 was extracted, after cropping, alignment and normalisation of the datasets as

described in section 4.2.1. For visualisation and comparison purposes, after extracting this information,

the scores were normalised to a 0-1 range with respect to the minimum and maximum values found in

the training dataset (VGGFace2). Then, the scores for which lower values signified higher quality face

images (BRISQUE and Pose) were inverted. The distributions of these normalised quality scores are

represented in figure 5.1 and the mean and standard deviation for each distribution are also represented

in table 5.2.
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Figure 5.1: Normalised score distributions (vertical lines represent the mean of each distribution): a)
VGGFace2 train; b) VGGFace2 Wild benchmark; c) FRGC V2 Relaxed benchmark; d) FRGC V2
Strict benchmark.

Table 5.2: Mean and standard deviation of normalised scores.

Datasets Train Dataset Wild Benchmark Relaxed Benchmark Strict Benchmark

Blur
Mean 0.0016 0.1325 0.3727 0.4806
Standard Deviation 0.0050 0.5914 0.2651 0.2424

BRISQUE
Mean 0.6018 0.5910 0.7232 0.7457
Standard Deviation 0.0662 0.0648 0.0397 0.0162

FaceQNet
Mean 0.5405 0.5321 0.6019 0.6076
Standard Deviation 0.0913 0.0954 0.0811 0.0835

Illumination
Mean 0.5902 0.5636 0.7584 0.7885
Standard Deviation 0.2840 0.2883 0.1830 0.1538

Pose
Mean 0.8398 0.8386 0.9398 0.9418
Standard Deviation 0.1054 0.1081 0.0263 0.0254

By analysing these distributions, some observations were made:

• The score distributions in the train dataset and Wild benchmark are almost identical as expected,

since they are subsets of the same dataset.
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• Both FRGC V2 benchmarks have higher face image quality than the training dataset, for all

scores tested.

• The Strict benchmark has a small but noticeable superiority (more shifted to the right) in terms

of score distribution when compared to the Relaxed benchmark.

The correlation between pairs of quality scores was also analysed and is plotted in Fig 5.2a. This

value can go from −1 for complete inverse correlation to 1 for complete correlation. The 0 value

corresponds to no correlation. A small degree of correlation between some pairs of scores can be seen

from the figure, as expected. The small correlation between blur and BRISQUE can be explained since

the BRISQUE scores also include information regarding image blur. Apart from this, the correlation

between FaceQNet and the other scores can be justified since FaceQNet is a generic face quality indica-

tor based on ICAO compliance, and as such, implicitly learns information regarding pose, illumination

and blurriness/intrinsic image quality.
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Figure 5.2: a) Correlation of the 5 scores extracted from the datasets before any transformation or
normalisation. b) Distribution of the 5 normalised and transformed scores used for training.

5.2 Model training and results

For all the following experiments (unless explicitly mentioned), the same training setup was used.

As mentioned previously, the backbone used was the ResNet50-V2 with a fully connected 512 node

layer. These models were initialised with the imagenet pre-trained weights. The batch size used was

24 images. The learning rate decay was done with a cosine annealing scheduler [66], from 5e − 3 to

1e − 5. The optimiser used was Mini-Batch Gradient Descent and with momentum parameter of 0.5

and weight decay of 0.0005.
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After cropping the images to 299 × 299 pixels, aligning and normalising the dataset was used for

training. The five quality scores mentioned in section 4.3 were extracted, transformed and normalised

to then be used as additional inputs in training. Each score was transformed independently in such

a way to reduce the skewness of the data and centre it with respect to its mean (transformed scores

represented in Fig 5.2b).

Single Score Model Training

To test the value of the information given by each of the five quality scores, two different models

were trained per score. These two models were trained using the loss function formulation in equation

4.1, with m0 = 0.4, m1 = 0.1 and m0 = 0.4, m1 = 0.2. These values for m0 and m1 were chosen

for a specific reason: in ArcFace, the authors found that the margin value m = 0.5 produced the best

results. By setting m0 = 0.4, m1 = 0.1 the max margin will be max(mi) = 0.5 since the scores were

normalised to the [0, 1] interval. By setting m0 = 0.4, m1 = 0.2 and taking into account that the

scores were transformed to have an average value close to 0.5, this combination of parameters leads to

an average margin value close to ∼ 0.5 and max(mi) = 0.6.

The FNMR@FMR metrics are represented in tables 5.3 and 5.4 for the 3 benchmarks, respectively.

The ROC curves for the m1 = 0.1, m1 = 0.2 models are also represented in figures 5.3 and 5.4,

respectively.
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Figure 5.3: ROC curves for the single score m1 = 0.1 adaptive margin trained models plus ArcFace
and Softmax. a) Wild benchmark; b) Relaxed benchmark; c) Strict Benchmark.

From the ROC curves in figure 5.3 it is possible to conclude most of the adaptive margin models

have better operation curves than either the ArcFace or Softmax models. Namely, the blur score

model is the most effective in the Wild benchmark scenario while the illumination model is generally

the best performer in the Relaxed and Strict benchmarks. (The AUC scores of all models trained are

represented in the Appendix).
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Table 5.3: FNMR@FMR thresholds for ArcFace, Softmax and the adaptive margin models (underlined)
with m0 = 0.4, m1 = 0.1.

Method
Wild Benchmark Relaxed Benchmark Strict Benchmark
1e-2 1e-3 1e-3 1e-4 1e-5 1e-3 1e-4 1e-5

Softmax 0.44502 0.79633 0.78645 0.95409 0.98727 0.69017 0.93655 0.98027
ArcFace 0.28680 0.52938 0.20263 0.39509 0.53552 0.02486 0.10205 0.19507
Blur 0.24600 0.46806 0.15828 0.37839 0.55140 0.00793 0.05453 0.13429
BRISQUE 0.26185 0.49934 0.21957 0.46290 0.64373 0.02556 0.08950 0.18444
FaceQNet 0.26383 0.50290 0.19293 0.42316 0.61194 0.01874 0.08284 0.15398
Illumination 0.26037 0.50076 0.15251 0.34849 0.49179 0.01066 0.04835 0.10878
Pose 0.27177 0.52186 0.19694 0.41607 0.52128 0.01805 0.08011 0.14550

From table 5.3 the conclusions taken from the ROC curves can indeed be confirmed. The blur and

illumination models are the best performers at all the thresholds tested.

Analysing the ROC curves from the models with m1 = 0.2 (see Fig 5.4) the results are generally

worse than with m1 = 0.1. Still, apart from the Relaxed benchmark, it is possible to generally see

some situations where the adaptive margin method is superior, namely with the blur and pose scores,

with the first being better in the unconstrained scenario and the latter outperforming in the higher

quality scenarios of Relaxed and Strict benchmarks.
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Figure 5.4: ROC curves for the single score m1 = 0.2 adaptive margin trained models plus ArcFace
and Softmax. a) Wild benchmark; b) Relaxed benchmark; c) Strict Benchmark.

The metrics from the table 5.4 indeed confirm the conclusions made from the ROC curves. Although

this margin value shows some good results, for all the thresholds tested in all benchmarks the models

with m1 = 0.1 outperformed. Another downside for the m1 = 0.2 formulation comes from the fact

that these models had some problems with convergence with the same setup as the previous models.

In the single score experiments the validity of the proposed method is proven. In the same training

conditions, the adaptive margin methods have enhanced verification performance in strictly ICAO

compliant and relaxed ICAO compliant face images compared to ArcFace. This fact is evident in the
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Table 5.4: FNMR@FMR thresholds for ArcFace, Softmax and the adaptive margin models (underlined)
with m0 = 0.4, m1 = 0.2.

Method
Wild Benchmark Relaxed Benchmark Strict Benchmark
1e-2 1e-3 1e-3 1e-4 1e-5 1e-3 1e-4 1e-5

Softmax 0.44502 0.79633 0.78645 0.95409 0.98727 0.69017 0.93655 0.98027
ArcFace 0.28680 0.52938 0.20263 0.39509 0.53552 0.02486 0.10205 0.19507
Blur 0.27460 0.52942 0.28090 0.49019 0.68323 0.04183 0.13423 0.19618
BRISQUE 0.28253 0.57363 0.26548 0.55709 0.71651 0.04329 0.21139 0.30880
FaceQNet 0.27945 0.56911 0.31194 0.56485 0.75202 0.05226 0.16409 0.39373
Illumination 0.29351 0.56006 0.28666 0.50236 0.61717 0.04046 0.14946 0.21644
Pose 0.28781 0.51604 0.24307 0.45505 0.58721 0.01146 0.11058 0.11783

models with m1 = 0.1. Taking into consideration wild benchmarks, the proposed approach also out-

performs ArcFace in these training conditions. It is possible to conclude that, in these conditions, the

adaptive margin method allows to regularise the training process in a deeper manner. In other words,

the models are not just adapting to qualitative samples but are generally learning more qualitative

and discriminative face features.

Combined Scores Model Training

After verifying the validity of the loss function formulation and the usefulness of the information

conveyed in the extracted scores, tests were made using the combination of all scores.

To test the utilisation of all scores simultaneously, several forms of mixing the scores were tried.

Specifically, the simple mean, a weighted mean, and three different types of median value. Three

median combinations of the scores were formulated as follows:

A model that averaged the three lower scores, named Median Lower, one where the three centre

scores were averaged - the Median model and the Median Higher model which averaged the three

highest scores. This sorting and averaging of scores was done on for each sample individually. Ex-

periments with uniforming score distributions in the range [0, 1] before averaging for equalising their

impact were also made. All the models tested in these conditions have m1 = 0.1 since its superiority

was proven. The ROC curves for all the models mentioned above are represented in figure 5.5 and the

FNMR@FMR metrics are presented in table 5.5.

Table 5.5: FNMR@FMR thresholds for the combined score models in the three benchmarks.

Models
Wild Benchmark Relaxed Benchmark Strict Benchmark
1e-2 1e-3 1e-3 1e-4 1e-5 1e-3 1e-4 1e-5

Equal Weights 0.26495 0.50912 0.23612 0.42770 0.55127 0.02869 0.12879 0.18398
Uniformed Scores 0.26393 0.50244 0.21462 0.42619 0.56392 0.02171 0.08221 0.18881
Custom Weights 0.25735 0.48964 0.18288 0.41150 0.54557 0.01834 0.06875 0.12521
Median Lower 0.26914 0.51016 0.21888 0.42815 0.63156 0.02195 0.07807 0.22204
Median 0.25829 0.49400 0.19761 0.46021 0.65266 0.02087 0.07853 0.21371
Median Higher 0.25877 0.51080 0.15494 0.35069 0.50644 0.01629 0.07027 0.12184
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Figure 5.5: ROC curves for the combined score adaptive margin trained models. a) Wild benchmark;
b) Relaxed benchmark; c) Strict Benchmark.

In the combined scores experiments, the Custom Weights and Median Higher were the best per-

formers in the Wild and Relaxed/Strict benchmarks, respectively. Various observations were made

from the results: Uniforming the scores distributions did result in slightly better results than the

normal averaging of scores but not a significant difference.

Weighting the scores before averaging proved to be a good improvement from the Equal Weights

model. The scores were weighted in accordance to their corresponding individual model performance

(in the experiments, the made best performing Custom Weights model had the following weighting:

Blur - 0.3, BRISQUE - 0.1, FaceQnet - 0.15, Illumination - 0.3, Pose - 0.15).

Regarding the models with median averaging, the Median Higher model had the most promising

results. This means that the sampling strategy used in the median models should be biased towards

better scores.

Although the use of combined scores did not outperform the single score models in any particular

benchmark, it allowed some combined score models to achieve more uniform results across the three

benchmarks. This result could be useful for applications in an unspecified scenario where more universal

face representation is key. For example, the Custom Weights model outperforms the blur model in the

FMR = 1e − 5 threshold in both document security related benchmarks, combining the strengths of

the blur and illumination score.

5.2.1 Other Experiments

Other types of experiments were made to better understand the behaviour and characteristics of the

developed method.

43



Feature distribution

The goal of this experiment was to test if the feature distribution of the developed method pulled

higher quality samples towards the class centre while pushing low-quality samples away, like hypothe-

sised in figure 4.4.
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Figure 5.6: Feature distribution of 2 FRGC V2 identities (04430 and 02463), the score represented is
the illumination quality score: a) ArcFace model; b) Adaptive margin illumination model.

To do so, the 512 dimensional feature distribution of all the images from the FRGC V2 dataset

was extracted. In order to better visualise the distributions, through the use of Principal Component

Analysis, the embeddings were reduced to 2 dimensions. The distribution plots with 2 identities are

represented in figure 5.6.

From the feature distributions, it is possible to make two conclusions. Firstly, the spatial separation

between identities common in margin-based methods is visible in both ArcFace and adaptive margin

models, as expected. Secondly, ArcFace does not take into account the quality of the samples: some

low-quality samples are close to the class centre, and there is some dispersion in high-quality samples.

However, in the adaptive margin case, the high-quality samples are more compacted together and

closer to the class centre while lower quality samples are further away, as hypothesised.

This is an interesting result since it shows the process of how the verification performance increases

for high quality samples: higher quality samples of different identities are further apart than in the

ArcFace scenario (since they are spread in a more compact manner around the class centre), which

leads to more discriminative power for the target ID and travel document scenario.

Additional experiments

For better understanding of the developed method, two more formulations of the adaptive margin

were tested. First, a model with margin parameter m1 = 0.15. Another model was designed to test
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the use of non-linear adaptive margin. The loss function remains the same as 4.1 but unlike equation

4.2, the mi parameter was designed as follows:

mi = m0 +

Q∑

j

wj(qijm1 + q2ijm2) (5.1)

where m2 is an additional hyper-parameter. The goal of this formulation is to increase the impact of

the good scores. The testing of these formulations was made on models trained with blur score. In

table 5.6 the FNMR@FMR metrics are represented for the models mentioned above:

Table 5.6: FNMR@FMR thresholds for different blur models in the three benchmarks (m0 = 0.4).

Method
Wild Benchmark Relaxed Benchmark Strict Benchmark
1e-2 1e-3 1e-3 1e-4 1e-5 1e-3 1e-4 1e-5

m1 = 0.1 0.24600 0.46806 0.15828 0.37839 0.55140 0.00793 0.05453 0.13429
m1 = 0.15 0.26941 0.51831 0.19995 0.40163 0.49769 0.01820 0.07151 0.14045
m1 = 0.2 0.27460 0.52942 0.28090 0.49019 0.68323 0.04183 0.13423 0.19618
m1 = 0.1,m2 = 0.1 0.25800 0.48868 0.22497 0.43605 0.57471 0.02445 0.09612 0.20571

From these experiments, it is possible to conclude that increasing the impact of the score in the

margin does not translate in better results, instead increasing levels of margin result in poorer perfor-

mances as well as poorer convergence during training.

Inverted Quality Scores

Another experiment was made to better understand the impact of the quality scores. All 5 scores

used in this work, were inverted (subtracted 1 and multiplied by −1) and then adaptive margin models

with m0 = 0.4,m1 = 0.1 were trained with this scores. Intuitively, the expectation is that these models

might perform better than the standard models on the Wild benchmark due to harder samples having

higher weight in the training process and under-perform in Relaxed and Strict scenarios. The results

from this experiment are represented in table 5.7.

Table 5.7: FNMR@FMR thresholds for the inverted score models (m0 = 0.4,m1 = 0.1) in the three
benchmarks. The bold numbers highlight the conditions where the inverted models outperformed the
base models.

Method
Wild Benchmark Relaxed Benchmark Strict Benchmark
1e-2 1e-3 1e-3 1e-4 1e-5 1e-3 1e-4 1e-5

Blur 0.25676 0.49993 0.21335 0.45042 0.65084 0.02279 0.08321 0.20641
BRISQUE 0.25419 0.49398 0.19377 0.41990 0.58251 0.01800 0.07416 0.21906
FaceQNet 0.26650 0.50846 0.21402 0.43829 0.63282 0.01762 0.08537 0.17598
Illumination 0.25565 0.47977 0.16520 0.37467 0.55442 0.01351 0.06568 0.14062
Pose 0.25818 0.50916 0.20509 0.42735 0.57781 0.02310 0.09207 0.19440

Comparing these results with table 5.3 it is possible to conclude that although the performance
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difference between the normal and the inverted models is not equal for all scores, generally a trend

can be recognised. For the pose, illumination and BRISQUE scores, focusing on poorer quality images

during training increases the performance in unconstrained conditions. It is also interesting to see that

for the inverted blur score case the results were poorer in all benchmarks, this can be understood as

blurrier images not conveying enough facial features and thus hindering the training process. Although

the BRISQUE and FaceQNet have some better results in the Strict Benchmark, this is not maintained

for all thresholds and is not verified for the lower threshold of FMR= 1e− 5. As such, it is possible to

understand that generally, inverting the scores results in better performance for the wild scenario and

lower performance for the stricter conditions.

Longer Refined Training

Finally, after proving the validity of the adaptive margin method, a longer, more refined training

setup was designed to show that the increase in performance from the method presented is transferable

and can achieve much better results. The training setup designed used the full VGGFace 2 train set

compromised of 8.631 identities and 2.474.216 images used for training purposes, and 618.554 images

for validation purposes. Instead of 6 epochs, 20 epochs were used, and the learning rate was started at

1e− 1 and decreased until 1e− 5. The same batch size and network were used (only the last layer was

replaced with an 8631-dimensional layer). The momentum parameter in Mini-Batch Gradient Descent

was set to 0.9.
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Figure 5.7: ROC curves for the refined training models: a) Wild benchmark; b) Relaxed benchmark;
c) Strict Benchmark.

With the more refined training setup, the results are clearly superior to the previous results trained

on the ”cropped” VGGFace2 dataset; ArcFace and adaptive margin models outperform all previous

models at all thresholds. This is an expected result given the importance of the dataset in the training

of deep neural networks.
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Table 5.8: FNMR@FMR thresholds for ArcFace and the adaptive margin blur and illumination models
with m0 = 0.4, m1 = 0.1 for the longer and refined training conditions

Method
Wild Benchmark Relaxed Benchmark Strict Benchmark
1e-2 1e-3 1e-4 1e-3 1e-4 1e-5 1e-6 1e-3 1e-4 1e-5 1e-6

ArcFace 0.17989 0.32435 0.47122 0.03569 0.12723 0.31330 0.49924 0.00065 0.00350 0.01232 0.05647
Blur 0.17018 0.28878 0.48877 0.01418 0.07902 0.19204 0.27731 0.00017 0.00172 0.01117 0.02192
Illumination 0.16061 0.27483 0.48542 0.01033 0.07237 0.14148 0.31670 0.00010 0.00170 0.00526 0.00658

Comparing the ArcFace model with the adaptive margin models, the performance difference across

the Relaxed and Strict benchmarks at all thresholds is evident. In these benchmarks, the illumination

and blur adaptive margin models are considerably better than ArcFace, and the performance enhance-

ment of the adaptive margin methods is even more noticeable than for the first experiments. This

result can indicate that over larger datasets with more identities and more pronounced image varia-

tions, the effects of sample-specific techniques (and subsequently the method developed) can become

more noticeable. Namely, the increase in identities represented in the 512-dimensional feature space

make it more challenging to separate classes in the embedding hyper-sphere, which in turn makes

the effect of the adaptive margin feature distribution more noticeable. When comparing the blur and

illumination models, the relative performance trend seen in the first experiment is repeated. For the

Strict and Relaxed benchmarks, the results are still favourable for the illumination model for most

thresholds except for the Relaxed scenario at FMR = 1e− 6 case.

By analysing the Wild benchmark results, the performance difference between the three models

is more negligible. ArcFace is the best model for the lower FMR thresholds (FMR ≤ 1e − 4 while

the illumination model achieves better results for the higher FMR thresholds. This statement can be

confirmed in table 5.8 and from figure 5.7a, and is a different result from earlier experiments. Before

commenting on these results, it is relevant to mention that lower FMR thresholds present a more

challenging task where performance on harder samples is crucial for good results.

So, the results on the Wild benchmark suggest that the adaptive margin models, in more com-

plete training conditions, do indeed learn more discriminative features (showed by their performance

in higher FMR thresholds when compared to ArcFace. However, for lower FMR thresholds (more

challenging conditions), ArcFace proves to be superior. So, it is possible to conclude that although the

adaptive margin method helps to improve the performance on unconstrained face recognition by learn-

ing more discriminative face features from higher quality samples when performance on bad quality

samples matters most, ArcFace still proves to be superior.
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Chapter 6

Conclusion

6.1 General Conclusion

In this work, a method for optimising face recognition for document security applications based

on deep neural networks was developed. A novel loss function solution was created by modifying

the angular margin loss and introducing sample quality to alter the margin adaptively in a sample-

specific way. Furthermore, five different quality estimators were used (Blur, BRISQUE, FaceQNet,

Illumination Quality, Pose). Following the loss formulation, benchmarks were designed for the specific

purpose of document security and models were trained on each individual score. Other experiments,

including the combination of scores, feature distribution visualisation and inverting scores, were made.

In the extensive experiments with hyper-parameters and quality metrics, the adaptive margin

method generally proved to be superior in the ICAO compliance based benchmarks for almost all

thresholds and scores utilised. Training with the illumination quality score proved the best in both

document security benchmarks, significantly outperforming the standard margin method. This result

proves that the developed method significantly enhances face verification performance compared with

regular margin-based methods like ArcFace, for the ICAO compliant face image case.

Another interesting result obtained is that the method developed also outperformed ArcFace in

the unconstrained scenario benchmark. This result is more evident in the Blur score case. This result

allows the conclusion that the developed method improves learning, generally allowing the network to

learn better, more discriminative face embeddings.

Training with all scores combined, although not outperforming the best single models, showed

that combining the scores resulted in more uniform results across different scenarios. Namely, using

weighted averaging of scores and averaging the best 3 scores per image resulted in the best results for

combined score models.
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In the feature distribution visualisation, it was possible to see how the adaptive margin results in

changing the sample distribution in such a way that approximates higher quality samples towards the

class centre and pushes bad quality samples away. Additional experiments suggested that increasing

the score impact by increasing the m1 hyper-parameter or adding additional squared score dependency

resulted in poorer performance and worst model convergence.

The experiments with inverting the quality scores showed that for most scores used, training a

model while emphasising worst quality scores generally improves verification performance in the wild

scenario.

Finally, the results for the longer refined training showed that the performance benefits of the

adaptive margin model are transferable and enhanced in larger datasets. The illumination score model

convincingly outperformed ArcFace in both document security benchmarks. The results on the wild

scenario solidified the claim that the developed method increases the quality of the learned face features

to make them more discriminative, however showed , for lower FMR threshold where performance on

bad samples is important, ArcFace is still superior.

In conclusion, the method proposed in this work improves face recognition performance compared

to regular marginal loss functions for the document security use case without significant performance

loss in the universal face recognition scenario.

6.2 Future Work

Although the advantage of the developed method was demonstrated, there are further experiments

and ideas to pursue. The future work will focus on the study of different image quality metrics, for

example, SER-FIQ, PFE’s or SDD-FIQA that were mentioned in the state-of-the-art. It will also

include the study of other possible score transformation techniques as well as other possible score

combinations. The validity of the method on other margin-based loss functions, for example, on

Equalised Margin Loss, will also be tested. Finally, including the concept of feature vector magnitude

as a quality indicator (presented in MagFace) will be explored.
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Appendix

Table 6.1: AUC scores for the adaptive margin single score models of the m0 = 0.4,m1 = 0.1 (under-
lined) and m0 = 0.4,m1 = 0.2 models, for the 3 benchmarks.

Method Wild Benchmark Relaxed Benchmark Strict Benchmark
Blur 0.959089 0.999007 0.999957
BRISQUE 0.954925 0.998387 0.999878
FaceQNet 0.956515 0.998600 0.999910
Illumination 0.956797 0.998717 0.999936
Pose 0.954926 0.998385 0.999917
Blur 0.956314 0.997744 0.999813
BRISQUE 0.953276 0.997853 0.999772
FaceQNet 0.956252 0.997410 0.999743
Illumination 0.952535 0.997372 0.999792
Pose 0.951155 0.997860 0.999838

Table 6.2: AUC scores for the adaptive margin combined score models for the 3 benchmarks.

Method Wild Benchmark Relaxed Benchmark Strict Benchmark
Equal Weights 0.956074 0.998130 0.999850
Uniformed Scores 0.957280 0.998444 0.999897
Custom Weights 0.956706 0.998599 0.999907
Median Lower 0.955681 0.998203 0.999891
Median 0.958679 0.998518 0.999905
Median Higher 0.957604 0.998849 0.999930

Table 6.3: AUC scores for the ”small experiments” models, for the 3 benchmarks

Method Wild Benchmark Relaxed Benchmark Strict Benchmark
0.1 0.959089 0.999007 0.999957
0.15 0.957346 0.998266 0.999882
0.2 0.956314 0.997744 0.999813
0.1, 0.1 0.959106 0.998262 0.999891
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Figure 6.1: ROC curves for the ”small experiments” models: a) Wild benchmark; b) Relaxed bench-
mark; c) Strict Benchmark.
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Figure 6.2: ROC curves for the adaptive margin inverted score models: a) Wild benchmark; b) Relaxed
benchmark; c) Strict Benchmark.

Table 6.4: AUC scores for the adaptive margin inverted score models, for the 3 benchmarks.

Method Wild Benchmark Relaxed Benchmark Strict Benchmark
Blur 0.957053 0.998433 0.999890
BRISQUE 0.957521 0.998643 0.999909
FaceQNet 0.956470 0.998352 0.999918
Illumination 0.957856 0.998791 0.999935
Pose 0.955912 0.998278 0.999890

Table 6.5: AUC scores for the refined training models, for the 3 benchmarks.

Method Wild Benchmark Relaxed Benchmark Strict Benchmark
ArcFace 0.964413 0.999830 0.99999704
Blur 0.965521 0.999933 0.99999893
Illumination 0.966744 0.999950 0.99999927
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Abstract—Modern face recognition biometrics widely rely on
deep neural networks that are usually trained on large collections
of wild face images of celebrities. This choice of the data is
related with its public availability in a situation when existing
ID document compliant face image datasets (usually stored by
national institutions) are hardly accessible due to continuously
increasing privacy restrictions. However this may lead to a
leak in performance in systems developed specifically for ID
document compliant images. In this work we proposed a novel
face recognition approach for mitigating that problem. To adapt
deep face recognition network for document security purposes,
we propose to regularise the training process with specific sample
mining strategy which penalises the samples by their estimated
quality, where the quality metric is proposed by our work and is
related to the specific case of face images for ID documents. We
perform extensive experiments and demonstrate the efficiency of
proposed approach for ID document compliant face images.

Index Terms—face recognition, biometric template, document
security

I. INTRODUCTION

Security border control applications widely embed biomet-
rics recognition where the face image is one of the most
popular biometric source for such applications. The standard
approach to the face recognition nowadays implies learning
deep face features that are combined into a biometric template.
This template is further utilised for distinguishing identities
with relatively simple similarity metric and may be stored in
a secured database or even embedded to the document itself
for performing verification in the match-on-document scenario
[1].

The features of the template may be learned explicitly by
contrastive methods (i.e. by the contrast between match/non-
match pairs [2]) or implicitly in the multiclass (identities)
classification manner [3]. The deep networks, which are used
for extracting the biometric template, usually have complex
architectures of stacked convolutional layers. These networks
are usually trained on big collections of labelled face images
of celebrities [4], [5].

This work has been supported by Fundação para a Ciência e a Tecnologia
(FCT) under the project UIDB/00048/2020

Face recognition for document security applications pos-
sesses specificities. Official identification documents (i.e. bio-
metric passports, national ID cards) adopt only the frontal face
images compliant to ICAO standards [6], [7]. In comparison
with unconstrained face recognition systems, which adapts to
variations in illumination, pose, occlusion, facial expressions,
document security solutions deal with more regular conditions
especially in a situation when biometric enrolment tends to
become more controlled [8].

At the same time, the collections of ICAO compliant en-
rolled images, which are usually stored by national institutions,
are hardly available for the research and development due
to privacy issues. As an example, European GDPR (Gen-
eral Data Protection Regulation) categorise face images as
sensitive personal data which results in many constraints for
their collecting and distributing [9]. Recently, following this
trend, many of the face datasets (even public wild datasets of
celebrities) were withdrawn and usually available only in a
form of redistribution.

That is why there is a challenge for face recognition in
document security when for efficient training of the face
recognition algorithms one require large ICAO compliant face
image datasets which remain private, and the ones that are
public available are of insufficient size. In this situation the
most effective approach is to follow training on available wild
datasets and then apply some optional measures (like fine-
tuning) for achieving better performance in the deploy scenario
[10].

In this work we address the problem of this inconsistency
between the training and deploy data and introduce a novel
approach to mitigate this issue. We propose to emphasise the
face features which are more characteristic for ID document
compliant images by designing a sophisticated sample mining
strategy which regularises the training process. The developed
strategy penalises the samples by their quality score (estimated
by several metrics). Our approach allows to learn facial
biometric template which better suits the document security
applications.



II. RELATED WORK

A. Loss function

Loss function design have been in a focus of many recent
investigations of deep learning face recognition. The general
trend of these works was directed onto the increasing the
discriminative power of learned features. Most of the current
state of the art methods follow the approach of multi-class
classification with use of softmax based loss functions. To
increase intra-class compactness and inter-class dispersion,
several marginal modifications of softmax were proposed. For
instance SphereFace, CosFace and ArcFace introduced the
margin (in different manner) to the feature logits in the angular
domain [3], [11], [12]. These methods demonstrated clear
geometric interpretation at the same time having relatively
simple implementation. Although these loss functions allowed
to achieve state of the art performance in several benchmarks,
they do not account the hardness and variability of each
sample.

B. Hard sample mining strategies

Hard sample mining strategies allowed to improve the
face recognition performance in several approaches. For in-
stance, MV-Softmax [13] treats miss-classified samples as
hard samples increasing their weights in the training process.
CurricularFace [14] also uses miss-classification for indicating
hard samples and adapts the curricular learning strategy to the
face recognition. Hard samples are emphasised increasingly
over the training duration with an additional hyper-parameter.
NPCFace [15] makes the important distinction between hard
positive and hard negative samples and show that for large
datasets hard positives will usually be hard negatives for
another class as well. The form of the negative logit is defined
with use of a binary mask that indicates whether a sample is
hard or not. Following the ArcFace approach, the NPCFace
also utilises a margin for the positive logits, which is controlled
by the hardness of the sample.

These methods try to optimise their performance towards
hard samples, however we propose that for the document se-
curity applications emphasising higher quality samples during
training better suits the target scenario. Unlike the previous
works mentioned, MagFace [16] includes the quality of the
samples in the training process in a way that pulls easy
(high quality) samples closer to the class centre and pushes
harder (lower quality) samples away. The authors follow a
formulation similar to ArcFace where the margin parameter
varies for each sample with accordance to its quality. In
MagFace, the quality of each sample is defined by magnitude
of the feature vector. This approach shares several conceptual
similarities to our approach, however we shift our attention to
adapting the quality sampling to the document security images
scenario.

C. Document security specific face recognition

Document security specific face recognition investigation is
reported in several works. DocFace [10] present a method for
matching Identification Document (ID) photos to live photos.

The authors use a pair of trained sibling networks and fine-tune
them on a small private ID-Selfie dataset. The method achieves
better performance over general methods, however the dataset
used for benchmarking is private. Several improvements on
the ID-Selfie dataset and the loss function for fine-tuning were
introduced in the DocFace+ [17].

D. Face Image Quality Assessment (FIQA)

FIQA inherits aspects from general image QA also consid-
ering several other attributes such as pose, illumination, face
occlusion or facial expressions. A survey on this topic was
done recently by Schlett et. al [18]. Blur is good baseline
indicator for the quality of any image. The blur of an image
can be extracted by convolving the image with a Laplacian
filter and then calculating the variance of the result [19].
BRISQUE [20] is a no-reference generic image quality assess-
ment method. Through the use of scene statistics this method
is able to quantify the ”naturalness” and quality of an image.
Regarding face specific attributes, several works have been
recently developed to extract face specific meta-information
from images. The pose of a face in an image can be charac-
terised as a rotation in three dimensions, the yaw pitch and
roll. Estimating these angles is helpful to understand a datasets
pose distribution. Ruiz et. al [21] use a Convolutional Neural
Network (CNN) to estimate these three angles. The quality of
facial illumination is also a useful indicator of the quality of
a facial image. Zhang et. al [22] use a CNN, which is trained
on the FIIQD dataset to score the quality of illumination.
FaceQnet [23] is a face image QA CNN based method. It used
a third party framework to calculate ICAO compliance scores
used as ground-truth values to train the network. The authors
also show high correlation between the resulting scores and
face biometric verification performance for a variety of off-
the-shelf biometric recognition systems.

Some recently developed methods of face image quality
assessment were developed in such a way to remove human
perception from the quality estimation process. SER-FIQ [24]
is a quality estimation method based on the use of dropout
during the training of a model. The quality of a sample is
defined with respect with the robustness of its embeddings in
different sub-networks. The closer the outputs are for different
sub-networks, the higher the quality of the sample is. Shi and
Jain introduced the concept of Probabilistic Face Embedding
(PFE) [25]. This work shows that poor image quality affects
the similarity scores of genuine and impostor pairs in such
a way that higher degradation of an image leads to higher
probability of false reject or false accept of these pairs (named
Feature Ambiguity Dilemma). As such, instead of the normal
deterministic face embedding, the authors propose to encode
the uncertainty in the representation of the face with two
different output vectors one representing the Gaussian mean
and the other for the Gaussian variance. The authors also
introduce a method for matching the PFEs that penalises high
levels of uncertainty (variance). SDD-FIQA [26] also bases
its quality classification on the recognition performance of the
sample in question. This is done by mapping the inter-class and



intra-class similarity scores to quality pseudo-labels through
the use of a distribution distance metric. Afterwards, these
quality values are used to train a network to predict quality
scores.

III. METHODOLOGY

Deep learning classification approaches usually utilise soft-
max loss function, which now serves as basis for most of re-
cently developed loss functions in the field of face recognition.
It is usually formulated as follows:

Lsoftmax =
1

N

∑

i

− log(
efyi

∑C
j efyj

) (1)

where C is the number of classes in the classification problem,
yi is the index of the class of the i−th sample, N is the number
of samples in a batch and fyj

is the yj − th component of
the final layer’s logits f . If l2 normalisation of the weights
wj and biometric feature set xi is performed, then fyj

can
be represented as: fyj

= wT
j xi = cos(θj). The normalised

features are constrained on the hyper sphere in Rd space
(where d is the size of f ), which leads to the angular similarity
metric between samples. By reformulating softmax with this
normalisation and adding an angular margin parameter m to
the positive logit we obtain the ArcFace loss:

Larcface =
1

N

∑

i

− log(
es cos(θyi+m)

es cos(θyi+m) +
∑

j 6=yi
es cos θj

)

(2)

A. QualFace

Basing on the cooperative margin presented in NPCFace
[15], we introduce the concept of adaptive margin with regard
to image quality. Our approach, unlike others previously
mentioned, implies developing the sample mining strategy,
which enhance the impact of higher quality samples instead
of harder samples. In this case deep feature distribution is
characterised by the concentration of the qualitative samples
closer to the class feature centre (see Fig. 1). With this
approach, higher impact means higher loss value for samples
with better quality. This is done by increasing the margin
parameter in the ArcFace loss in an adaptive way, which results
in the following formulation:

Lq =
1

N

∑

i

− log(
es cos(θyi+mi)

es cos(θyi+mi) +
∑

j 6=yi
es cos θj

) (3)

where the adaptive margin parameter mi is defined as a
baseline value plus an added constant dependent on the quality
of the image:

mi = m0 +

Q∑

j

wjqijm1 (4)

Here, m0 and m1 are hyper-parameters, qij represents the
normalised j − th quality score value for the sample i. Q is

the total number of quality attributes and wj is the weight
of each score. For travel document photos, we consider high
quality samples as samples that have high ICAO standards
compliance [6]. For instance, images with frontal poses, clear
background, frontal face lighting, no face occlusion, no facial
expressions, etc. In our work we use five different indicators of
quality that are inspired by ICAO recommendations for portrait
photographs: Blur [19], FaceQNet scores [23], BRISQUE
scores [20], Face Illumination quality [22] and a pose score
[21]. The pose scores used were calculated as the average of
absolute values of the yaw, pitch and roll angles. QualFace
strengthens the supervision on higher quality samples through
the use of external quality indicators. The following section
will show the advantages of QualFace on document security
applications.
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Fig. 1. The spatial distribution of two high level features; a) default feature
distribution; b) desired distribution in our method.

IV. EXPERIMENTS AND RESULTS

We perform extensive training experiments with QualFace
and several baseline loss functions and benchmark the result
models in a following way.

A. Training

As a training data we used the subset of public VG-
GFace2 train dataset [4], selecting classes with more than 400
images per identity. The resulting dataset has a total of 1.34M
images and 2842 identities. Face detection and alignment to
299×299 is performed with use of RetinaFace method [27].
Each image channel is normalised by subtracting the mean
of the training dataset. The scores (FaceQNet, BRISQUE,
pose score) were extracted from the aligned images. They are
normalised and fed to the model as additional input.

As a backbone CNN architecture we choose the
ResNet50V2 [28], adding the fully connected feature layer
with 512 nodes. We initialise all models with the imagenet
weights before training. The training was performed on a
NVIDIA RTX 3090 GPU. We limit the batch size with 24
images and decay the learning rate with cosine annealing
scheduler from 5e−3 in the beginning to 1e−5 in the end. The
model is trained with SGD optimiser for 6 − th epochs with
a momentum parameter of 0.5 and weight decay of 0.0005.

B. Benchmarking

In order to demonstrate the effect of our method, and its
superiority for ID document compliant images, we designed



TABLE I
FNMR@FMR THRESHOLDS AND AUC SCORES FOR TWO BENCHMARKS.

Method Wild Strict
1e-2 1e-3 AUC 1e-3 1e-4 1e-5 AUC

Softmax 0.44502 0.79633 0.944118 0.69017 0.93655 0.98027 0,995333
ArcFace 0.28680 0.52938 0.951181 0.02486 0.10205 0.19507 0,999871

QualFace
(m0=0.4, m1=0.1)

Blur 0.24600 0.46806 0.959089 0.00793 0.05453 0.13429 0.999957
BRISQUE 0.26185 0.49934 0.954925 0.02556 0.08950 0.18444 0.999878
FaceQNet 0.26383 0.50290 0.956515 0.01874 0.08284 0.15398 0.999910
Illumination 0.26037 0.50076 0.956797 0.01066 0.04835 0.10878 0.999936
Pose 0.27177 0.52186 0.954926 0.01805 0.08011 0.14550 0.999917

QualFace
(m0=0.4, m1=0.2)

Blur 0.27460 0.52942 0.956314 0.04183 0.13423 0.19618 0.999813
BRISQUE 0.28253 0.57363 0.953276 0.04329 0.21139 0.30880 0.999772
FaceQNet 0.26524 0.54649 0.956252 0.03185 0.05963 0.19958 0.999944
Illumination 0.29351 0.56006 0.952535 0.04046 0.14946 0.21644 0.999792
Pose 0.28781 0.51604 0.951155 0.01146 0.11058 0.19958 0.999838
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Fig. 2. Normalised quality scores distributions across the datasets; a)
VGGFace2 train dataset (identical to VGGFace2 test); b) FRGC V2 test
strict dataset.

two different benchmarks datasets. The first one includes
”wild” images, and the second one is comprised of images
that are compliant to ICAO standards (we call it ”strict”). The
wild benchmark dataset was created basing on a subset of
VGGFace2 test part and include identities disjoint from the
training set. It contains 31k face images of 147 identities.
The strict dataset was created with images from the Face
Recognition Grand Challenge V2 (FRGC V2) dataset [29].
Since its default version includes wild images, we performed
its filtering in a semi-automatic way choosing only ICAO
compliant images. The final strict dataset contains 11.7k
images from 565 identities. For each dataset we generated
the protocols for 1-1 for verification by random selecting
of comparison pairs. Each protocol contains around 110K
pairs for match comparison and 220K pairs for non-match
comparison. 1

To demonstrate the relative difference of distributions across
two benchmark datasets we performed min-max normalisation
with respect to the minimum and maximum scores values
for the VGGFace2 train. One can see that the designed strict
benchmark (see Fig. 2b) has better image quality with respect
to the five scores presented. The wild benchmark dataset
distributions, as expected, turned out to be identical to the
train dataset distributions (see Fig. 2a).

1https://github.com/visteam-isr-uc/QualFace

C. Results Discussion

We performed intensive experiments training deep networks
with QualFace and observed that the strong applied adaptation
usually lead to a problem with the convergence. However,
applying regular and careful adaptation, we could attain the
superiority of our method. We achieved the best results in
two following configurations: m0 = 0.4 with m1 = 0.1 and
m1 = 0.2. For each of those we trained five different models
using a single score: Blur, BRISQUE, FaceQNet, Illumination
and Pose. The Receiver Operating Characteristic (ROC) curves
of the trained QualFace models (with m0 = 0.4 and m1 = 0.1)
are represented in Fig. 3 as well as ArcFace and Softmax
models for comparison.
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Fig. 3. ROC curves; a) Wild Benchmark; b) Strict ICAO compliance
Benchmark.

From the ROC curves one can see that most of the Qual-
Face models have better operation curves than ArcFace and
Softmax. For the strict benchmark, the illumination score
QualFace model exhibits the best results while for the wild
benchmark the blur scores is the best performing. We estimate
the performance by several metrics: False Non-Match Rate
at False Match Rate (FNMR@FMR) and Area Under Curve
(AUC) of ROC (see Table I).

From the results obtained, we conclude that QualFace
significantly enhances the biometric verification performance
in ICAO compliant face images when compared to a simple
margin based loss function like ArcFace. This statement can be
verified for most of the models trained in both configurations,
however the models with m1 = 0.1 clearly show superior
results. Considering wild benchmarks, our approach performs



TABLE II
FNMR@FMR THRESHOLDS AND AUC SCORES FOR TWO BENCHMARKS USING ALL FIVE SCORES QUALFACE MODELS WITH m0=0.4, m1=0.1.

Models Wild Strict
1e-2 1e-3 AUC 1e-3 1e-4 1e-5 AUC

Equal Weights 0.26495 0.50912 0.956074 0.02869 0.12879 0.18398 0.999850
Uniformed Scores 0.26393 0.50244 0.957280 0.02171 0.08221 0.18881 0.999897
Custom Weights 0.25735 0.48964 0.956706 0.01834 0.06875 0.12521 0.999907
Median Lower 0.26914 0.51016 0.955681 0.02195 0.07807 0.22204 0.999891
Median 0.25829 0.49400 0.958679 0.02087 0.07853 0.21371 0.999905
Median Higher 0.25877 0.51080 0.957604 0.01629 0.07027 0.12184 0.999929

on par with the baseline models. However, most of QualFace
experiment results still slightly outperform ArcFace. We con-
clude that our method allows to regularise the training process
in deeper manner (not just adapting to qualitative samples) but
generally learns better (more qualitative/discriminative) face
features. From that point of view, our approach inherently
shares conceptual similarities with the curriculum learning
strategy.

D. Feature distribution

To better understand the QualFace impact to the learning
process we analysed the real feature distribution for several
particular identities in the benchmark datasets. To constrain the
analysis in the 2D case we extract two principal components
from the 512 dimensional embeddings with PCA (Principal
Component Analysis). We represent the resulting feature dis-
tributions for two identities from the FRGC V2 Dataset Fig. 4.
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Fig. 4. Features distribution of 2 different identities (04430 and 02463)
from the FRGC V2 dataset with Illumination scores represented in colour; a)
ArcFace Model; b) Illumination Score QualFace Model with m0 = 0.4 and
m1 = 0.1.

Basing on our results we make two observations. First,
the separation between identities, which is commonly seen
in margin based methods can be confirmed both in ArcFace
and QualFace cases. Second, while ArcFace does not take into
account image quality, QualFace pulles high quality samples
towards the class centre and compacts their distribution, while
the low quality samples are pushed away as theoretically
hypothesised in Fig. 1b.

E. Combined scores experiments

After the experiments with sampling by a single score we
intuitively investigated several scores averaging techniques.
Namely, we utilised straight forward mean value, weighted
mean and several median value implementations. The median

implementations used three scores each. The Median Lower
model averaged the three lower scores, the Median model - the
three centre scores and the Median Higher averaged the three
highest scores, for each image. We also made experiments
with uniforming scores distributions in the range [0, 1] before
averaging for equalising their impact. The ROC curves of the
combined models are represented on Fig. 5
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Fig. 5. Combined model ROC curves; a) Wild Benchmark; b) Strict ICAO
compliance Benchmark.

In our experiments the models with Custom Weights and
Median Higher weights averaging demonstrated the best per-
formance in benchmarks. This can also be confirmed from
the AUC and FNMR@FMR metrics, which are represented in
table II.

We made several observations regarding the usage of com-
bined scores. Scores uniforming indeed allowed better reg-
ularise the training and achieve better performance results.
Scores weighing demonstrated its importance and the best
performance was achieved when the weights were selected
according to the results of single score models (Blur - 0.3,
BRISQUE - 0.1, FaceQnet - 0.15, Illumination - 0.3, Pose -
0.15 in our experiments).

In the list of models with median averaging Median Higher
case gave the most promising result, which means that the
QualFace sampling strategy should be good score biased. In
other words, it is better to treat a sample by its best scores
rather than consider it a bad sample even if it has some lower
scores.

The use of combined scores did not demonstrate the su-
periority in any particular benchmark. However, it allowed to
achieve more regular results across the two utilised bench-
marks (strict and wild) making the face representation more
universal in applications with unspecified scenario. This can
be verified when comparing the Custom Weight and Median



Higher model with the single score blur and illumination
models.

We conclude that sampling of face images with single
generic illumination and blur quality metrics allow to learn
better face representation when applying the QualFace tech-
nique. Particularly, illumination quality is better suitable in
application to the document security scenario, while blur score
better shifts the performance towards wild face recognition
scenario.

V. CONCLUSIONS

In this work we proposed a novel approach of adapting
deep learning face recognition methods for document security
applications. We introduced a sophisticated sample mining
strategy that regularises the training process by careful em-
phasising the impact of samples which are better suitable
for document security. The method allows to effectively train
face recognition networks on big wild datasets and at the
same time reduce the effect of ”wildness” of these datasets.
The extensive experiments with the selected marginal loss
function (ArcFace) proved the superiority of adapted models
against the default ones in tests with ID compliant images. The
introduced strategy can also be applied to other loss functions.
Our future work will focus on the study of additional image
quality metrics more specific to concrete ICAO requirements.
Experiments with different loss functions and finding better
normalisation for the quality scores are also part of our future
work plan.
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