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ABSTRACT Medical image analysis offers valuable visual support for clinical decision-making, yet
the incorporation of quantitative data is essential for deeper diagnostic insight. The radiomics approach
addresses this need by combining quantitative image analysis with Machine Learning (ML) techniques,
further enhancing Explainable Artificial Intelligence (XAI) for clinical applications. While working with
two-dimensional (2D) images derived from volumetric data offers computational advantages, accurately
estimating structural properties within these images remains challenging. Within the radiomics framework,
this study introduces a methodology to distinguish bifurcations from other structural variations in 2D local
fragments of retinal vasculature. Using a publicly available dataset of 29 retinal images, we extracted
1003 feature fragments for experiments. The regions of interest (ROIs) are identified using morphological
image processing techniques. Specifically, candidate points are detected by applying structuring elements
(SEs) to the skeletonized and binarized vasculature. From each candidate point, a local fragment of
35 × 35 pixels is extracted and used as input to the classification model. A Convolutional Neural Network
(CNN) model, tailored for small image datasets and binary classification tasks is created. The trained model
achieved an accuracy of 94.95% in correctly identifying bifurcation points. Based on predicted bifurcation
points and blood vessel segments, we use the Graph-Based Radiomics Feature Extraction Algorithm (Graph-
BRFExtract) to extract the adjacency matrix. This matrix serves as mathematical representation of the retinal
vascular network, constituting a novel form of graph-based radiomic features.

INDEX TERMS Bifurcation, blood vasculature, explainable AI, graph-structured data, interpretability,
radiomics, structuring element.

I. INTRODUCTION
The cardiovascular system addresses the heart, lungs, eyes,
liver, brain and also the vascular network where blood
flows. This network connects the above mentioned organs
and provides oxygen and other nutrients to all tissues
of the human body. Blood vasculature transport blood
cells, nutrients, and oxygen to all tissues throughout the
body. They also take waste and carbon dioxide away from
tissues. This process is called blood flow. Blood vessels are
essential for sustaining life, as all body tissues depend on

The associate editor coordinating the review of this manuscript and

approving it for publication was Li Zhang .

their proper functioning [31]. Blood flow patterns of the
cardiovascular system are important for accurate diagnosis of
cardiovascular diseases [27], and can be inferred from blood
vessel images [51]. In fact, cardiovascular diseases often have
non-invasive diagnostic methods [46], [52], [53]. Some of
these methods are based on medical imaging [8], [47], [82],
[91]. Therefore, image-based accurate analysis is important,
having drawn the attention of many researchers [26], [33],
[69]. To apply network methods to blood vasculature, it is
essential to extract nodes and edges. In this context, a network
refers to the mathematical representation of a real-world
complex system, defined by a collection of nodes (vertices)
and their associated edges (links) [62]. Thus, we can consider
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FIGURE 1. Retinal blood vessels. Region A shows an overlap of blood
segments and region B shows a blood segment bifurcation [78].

bifurcation points of blood vessels as nodes and vessel
segments as edges. In 2D blood vessel images, two possible
scenarios can be observed at intersections:

• Bifurcation - when the flow is divided into two or more
segments in the case of arteries, or two or more segments
come together in the case of veins.

• Overlapping - when visually two or more vessel
segments intersect. In certain observations, overlapping
can be confused by bifurcation, resulting in false node
or edge identification.

The in-depth analysis of medical images leads to radiomics
methods, a quantitative approach to medical imaging that
aims to detect image features through advanced and
sometimes non-intuitive mathematical analysis [30], [42],
[58]. There are several imaging modalities to visualize
blood vessels, such as Computed Tomography (CT) [41],
Magnetic Resonance Imaging (MRI) [36], Positron Emission
Tomography (PET) [68], and Ultrasound [18], for instance.
In these images, it is possible to detect similarities between
blood vessels and a common network allowing to apply
network approaches. As can be seen in Fig. 1, a random
chosen image of the human retina shows a network of
blood vessels exhibiting features that can be quantitatively
analyzed. Bifurcations and overlaps can provide insights
about blood related problems, although such characteristics
are not always easy to identify. In 2D blood vessel imaging,
overlapping of vessel segments may occur, resulting in
incorrect detection of vessel bifurcation points, which is
one of the key elements for mathematical network analysis.
For instance, in the corresponding vasculature segmentation
(see Fig. 2 obtained from Fig. 1), it is difficult or almost

FIGURE 2. Binarized image of eye blood vessels. This is the vascular mask
corresponding to Fig. 1 [78]. Both human vision and computer vision
cannot distinguish whether some vessel intersections within the yellow
rectangle belong or not to bifurcations.

impossible to identify whether points A and B are overlaps
or bifurcations, respectively. It is also challenging to identify
these points in regions with small vessels. Therefore,
developing a Machine Learning (ML) classification model
is needed for bifurcation identification. This work focuses
on blood vasculature for radiomics feature extraction. The
case study relies on 2D retina images. The background goal
is to explore insights related to cardiovascular problems,
by extracting network based features.

The paper is organized as follows: Section II describes
available methods for radiomics, highlighting the new
network radiomics feature. This section also includes a
review of Explainable AI (XAI). Section III presents the
proposed methodology, ranging from image preprocessing,
fragment extraction in the Region of Interest (ROI) with
target points (T-points), segmentation and conversion into
classification data. In this section, we also present in
detail the description of the classification model. Addi-
tionally, the method to extract the graph-based radiomics
feature is discussed. Section IV shows the experimental
results, highlighting the merits of the approach. Conclud-
ing remarks and contributions of this work are summa-
rized in Section V, followed by future prospects and
challenges.

The main contributions of this paper are as follows:

• We propose the Graph-Based Radiomics Feature
ExtractionAlgorithm (Graph-BRFExtract Algorithm) to
extract the (un)weighted adjacency matrix from retinal
vasculature images and other medical images with
vascular structures.
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FIGURE 3. The radiomics workflow. Schematic illustration of the patient
journey including image acquisition, analysis utilizing radiomics, and
derived patient-specific therapy and/or prognosis [13], [30].

• Additionally, we introduce graph-based radiomics fea-
tures from vasculature to enhance interpretable machine
learning (IML) and explainable AI (XAI) frameworks.

II. RELATED WORK IN RADIOMICS
Radiomics analysis is the process of converting digital med-
ical images into minable data. Data analysis through various
statistical and mathematical processes allows quantification
of various shape and textural characteristics referred to as
radiomics features [13], [42], [57]. The concept of radiomics
is based on the assumption that biomedical images contain
information of disease-specific processes that is impercepti-
ble to the naked eye and is not accessible through traditional
visual inspection [3], [30]. Visual appreciable differences
in image intensity, shape, or texture can be quantified by
means of radiomics, thus overcoming the subjective nature
of image interpretation, not implying diagnostic process
automation [17]. It rather provides existing processes with
additional data, as shown in Fig. 3, helpingmedical diagnosis.
Among radiomics features described in [13], [42] and [46],
the complex network approach we aim to focus on can
be considered as a novelty radiomics feature. The new
radiomics approach enables the extraction of points from
medical images, allowing the analysis of their arrangement
(constellation) and associated relationships. This method
enables the exploration of patterns and insights related to
cardiovascular problems.

A. INTERPRETABILITY AND GRAPH-STRUCTURED DATA
The graph theory, aligns well with complex network approach
based on the modern theory of networks [28], [56], [87].

Graph-structured data are an integral part of many application
domains, including chemoinformatics, computational biol-
ogy, neuroimaging, and social network analysis [10], [23],
[38], [48], [83]. Graphs allow modeling complex objects as
a collection of entities (nodes) and of relationships between
such entities (edges), each of which can be annotated by
metadata such as categorical or vectorial node and edge
features [44]. Graph data type representation is one of the
most versatile data structures commonly employed in ML
characterized to numerous applications benefit from the
flexibility that it provide [11].

Understanding and interpreting the results of machine
learning is of highest importance in the healthcare domain
because the decision based on these predictions affect human
lives. Therefore, algorithms or data should not bias the
model when making decisions. XAI explains these results
by highlighting critical features that domain experts can
verify [4], [37], [63]. This ultimately helps to increase trust
by providing transparency to these systems as they provide
a human-understandable explanation of the results produced
by the models. The drive for increased interpretability and
explainability in ML models speak to the importance of
transparency and trust in clinical settings [1], [63], [64], [81].
Making complex models that are more palatable to clinicians
provides an opportunity for implementing machine learning
insights properly and improve the process of decision-making
with evidence-based and data-driven support [7], [16].
One of the ML steps is obviously the feature selection

aiming to reduce irrelevant input data, increasing learning
accuracy and improving comprehensibility. In recent years,
data has become increasingly larger in both number of
instances and number of features in many applications. This
enormity may cause serious problems to many machine
learning algorithms with respect to scalability and learning
performance. Therefore, feature selection becomes very
necessary for machine learning tasks when facing high
dimensional data [50], [54], [86]. However, this trend of
enormity on both size and dimensionality also poses severe
challenges to feature selection algorithms. The graph can
be used as derivative data type in radiomics for multimodal
interpretation. Instead of using images as direct model inputs,
features such as node-level attributes, edge weights, graph
topological metrics (e.g., degree, centrality, and clustering
coefficients), and subgraph patterns can provide valuable
insights while reducing image feature dimensionality. The
integration of this multimodal data sources with radiomic
data processing enables a more comprehensive analysis of
patient health, leading to a deeper understanding of disease
mechanisms.

B. IMAGE PREPROCESSING FOR VASCULATURE
EXTRACTION
In preprocessing stage, the delineation of the region/volume
of interest (ROI/VOI) in two-dimensions (2D) or in three-
dimensions (3D) is one crucial step of the pipeline [12],

VOLUME 13, 2025 125361



O. Jorreia et al.: Graph-Based Radiomics Feature Extraction From 2D Retina Images

[30]. ROIs/VOIs define regions in which radiomics features
are calculated. Image segmentation might be manual, semi-
automatic (using standard image segmentation algorithms
such as region-growing or thresholding) [60], [85], or fully
automated (nowadays, using deep learning algorithms) [21],
[30]. However, the generalization of trained algorithms is
currently a major limitation, since applying such algorithms
on different datasets might entail very different results.
Further research has to be devoted to develop robust
and general algorithms for automated image segmentation.
According to Van Timmeren et. al. [30] and Chaddad [13],
image processing represents the attempt to homogenize
images from which radiomics features are extracted, based
on pixel spacing, gray-level intensities, bins of the gray-
level histogram, and so forth. The robustness of these
radiomics features largely depends on image processing
settings [24], [76], such as device manufacturer [59], [70],
intensity discretization [76], reproducibility [2], [13], number
of iterations, post-filtering levels, input noise, reconstruction
algorithms [6] and so forth. Therefore, each image processing
step is important and must be adjusted to allow exposure of
the vasculature depending on the image acquisition method
(CT, MRI, PET).

In this study, we have used a retina image dataset. Eye
images are extensively employed in medical research, with
various techniques applied to clinical purposes [19], [51],
[75], [89]. Many of these techniques align with imaging
methods and use ML approaches. However, there is a notable
lack of standardized frameworks [61], [76], [80], [90]. In this
work, we emphasize the feature extraction for retinal image
vascular quantification based on the radiomics approach.

III. METHODOLOGY
The journey of extracting the proposed network radiomics
features involves identifying bifurcations in the retina
vessel network through a ML classification model. Model
development comprises three stages: 1) Acquisition and
preprocessing of 2D retina images; 2) Feature extraction
of T-points for classification; 3) Training, assessment and
validation. The classification model is then used to identify
bifurcations in retina images. Radiomics feature extraction
involves representing bifurcations and adjacent blood vessels
in the form of a graph adjacency matrix, enabling network-
based analysis. Each stage is analyzed in the sequel.

A. STAGE 1: ACQUISITION AND PREPROCESSING
To perform this study, a set of 20 retina images from DRIVE1

dataset with corresponding vasculature masks is analyzed.
The dataset is provided for diagnosis, screening, treatment,
and evaluation of various cardiovascular and ophthalmologic
diseases such as diabetes, hypertension, arteriosclerosis and
chorodial neovascularization. The images were acquired
using a Canon CR5 non-mydriatic 3CCD camera with a

1Provided by Kaggle: https://www.kaggle.com/datasets/andrewmvd/
drive-digital-retinal-images-for-vessel-extraction

FIGURE 4. Binarized image skeleton of the retina vasculature. In this
image the B6 structuring element fits on the T-point where the feature
fragment (corresponding square fragment of 35 × 35 pixels on grayscale
image) is going to be extracted.

FIGURE 5. The SE is tilted clockwise by moving peripheral pixels to
reproduce all possible shape forms.

45-degree field of view (FOV). Each image is captured at
768 × 584 pixels with 8 bits per color plane. The FOV of
each image is circular, with a diameter of approximately
540 pixels. These images have been cropped around the FOV.
Nine additional images, with a resolution of 2144×1424 pix-
els each, were added from Retinal Fundus Multi-disease
Image Dataset (RFMiD),2 bringing the total to 29 images.
Before feature extraction analysis the images are converted
to grayscale. Respective binary images representing retina
vasculature masks do not explicitly distinguish between
bifurcations and overlaps. By applying Zhang-Suen thinning
algorithm [15] to skeletonize3 these masks, we reduce the
vasculature thickness to a single pixel (Fig. 4). This allows the
extraction of T-point coordinates using Structuring Elements
(SEs) [55], [60]. The use of SEs helps to reduce noise and
outliers in detecting potential T-points, overcoming known
feature detection methods such as Harris corner detector [20],
Min-Eigen corner detector and ORB (Oriented FASTRotated
BRIEF) corner detector [77], and facilitates accurate class
assignment during feature fragment extraction by applying

2Provided by Kaggle:https://www.kaggle.com/datasets/andrewmvd/
retinal-disease-classification/data

3Morphological treatment of binary images that involves eroding objects
reducing to a single pixel in thickness.
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FIGURE 6. T-points detection methods. a) Harris. b) Min-Eigen. c) ORB. d) and e) Proposed method.

FIGURE 7. Set of 3 × 3 pixel structuring elements (SE) for T-point
detection: bifurcation (left two columns) and overlap (third column).

them at intersections between vascular segments (Fig. 6). The
coordinates are extracted by examining each pixel, row by
row and column by column, over the skeletonized image.
If a SE fits at a point along this path, the coordinates that
match with the middle pixel of the SE are extracted. A set
of 3 × 3 pixel SEs are defined to assign, as a first guess,
the class each candidate point belongs to (1-for bifurcation
in green and 0-for overlap in red), as can be seen in Fig. 7.
In this task assignment, error may occur and therefore, visual

FIGURE 8. Fragments representing overlapping, noisy regions or other
structural variations in the vasculature.

inspection is needed. It is important to note that the shapes of
each column, starting from the second row (B2, B3,. . . and
B10, B11,. . . ), are the result of rotating previous shapes
(Y-form B1 and T-form B9) clockwise by 45◦ and so forth.
The SE is a binary square matrix with odd number of pixel
per side, since the middle pixel (C in Fig. 5) of the square is
used for coordinate extraction.

B. STAGE 2: FEATURE EXTRACTION FOR MODEL TRAINING
This stage involves extracting fragments from the retina
image containing candidate points for bifurcation or
not, through the coordinates defined in stage 1. The
non-bifurcation clustering approach helps address situations
like those illustrated in Fig. 8 (non-bifurcation points
representing overlapping regions, noise or other structural
variations in the vasculature), where T-points are unsuitable
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for extracting fragments due to their geometry, making it
difficult to determine whether they result from overlapping
structures. This method can also be applied to thinner vessels.
Recent studies by Mokan et al. [49], propose a segmentation
method that differentiates veins from arteries and can be
suitable in further works.

Using supervised ML approach, input data must be
provided for model training [66]. Thus, through SEs and
visual inspection, a set of 35 × 35 pixel feature fragments
is extracted from grayscale images, segmented in gray-level
thresholding and binarized to feed model predictors. For
the binarization process, we applied local Otsu thresholding
[72], meaning that Otsu’s method was executed individually
on each image fragment. This approach accounts for the
spatial variability between fragments, such as differences in
local intensity levels, even within the same retinal image.
By employing a local thresholding strategy, we aim to
minimize the extraction of noisy or inaccurate silhouettes,
as demonstrated in Fig. 10.
The fragment size is chosen balancing region size and the

proximity between T-points, aiming to collect as many fea-
tures as possible. For training data, each feature fragment is
then vectorized, resulting in a row input vector of 1225 (35×

35) elements (features). An additional element is appended
to this vector, indicating the class it belongs to, based on
the associated SE. This selection is done through visual
inspection. Thus, each feature vector contains 1226 elements,
and these vectors are grouped into a stack to form an
input feature table for model training. In case of CNN the
fragment is not vectorized and a class label vector is defined
to represent the target categories for classification. CNNs
include a layer called Flatten, which performs vectorization
by converting multidimensional feature maps into a one-
dimensional vector. The table presents 1003 observations
corresponding to feature fragments extracted from all retinal
images, with 904 observations (90%) used for training and the
remaining 10% set aside for model validation. Themodels are
trained on incremental portions of the dataset – 25%, 50%,
75%, and 100% – to evaluate their performance based on the
number of observations. It is important to note the features
we refer to in this section are not the final radiomics features.

C. STAGE 3: MODEL TRAINING AND EVALUATION
To identify whether a T-point is a bifurcation or not,
a classification model has to be created and trained to classify
the corresponding fragments.

After identifying candidate points in all dataset images
through the SEs, observations are grouped into two classes.
Models are trained using 904 candidate points and associated
pixel fragments, validated by visual inspection. In this work,
the authors conduct visual inspections and manual anno-
tations. Various ML algorithms suitable for classification
tasks such as CNN, Decision Trees, K-Nearest Neighbour
(KNN), Naive Bayes, Shallow Neural Networks and SVMs
Classifiers, are trained and tested to create the classification
model [66].

According to Martin-Isla [46], SVMs are frequently used
in classification tasks related to image-based diagnosis.
The SVM is a ML algorithm used for linear (standard
SVM) or nonlinear classification, regression, and even outlier
detection tasks [14], [74]. The main goal of the SVM
algorithm is to compute the optimal hyperplane in an
n-dimensional space that can separate data points in different
classes in the feature space. The hyperplane is set so that the
margin between the closest points of different classes should
be as maximum as possible.

The SVM is extended to the nonlinear field by introducing
a kernel function, becoming an effective method of nonlinear
analysis [25]. In a SVM classifier, the kernel function
is a crucial component, allowing the algorithm to handle
nonlinear data relationships. It transforms input data into a
higher-dimensional space where it becomes easier to separate
classes using a hyperplane [29]. This transformation is
known as ‘‘kernel trick’’ and it allows SVMs to create more
complex decision boundaries without explicitly computing
coordinates in high-dimensional spaces. Common kernel
functions such as Gaussian Radial Basis Function (RBF)
[67], polynomial and sigmoid have good performance in
solving most of the problems due to good stability and wide
adaptability.

Nonetheless, Convolutional Neural Networks (ConvNets
or CNNs) have been proven very effective in areas such
as image recognition and classification. Especially in the
field of image classification, the CNN-based method has
achieved excellent performance [35], [45]. As one of the most
successful computer vision algorithms today, CNNs have
been widely adopted as a core algorithm for image classifi-
cation tasks [45]. In this work, we use a CNN architecture
specifically designed for binary image classification. This
network is particularly well-suited for small image datasets
and straightforward classification tasks.

The bestML technique of this study is then used to estimate
the class in which each point belongs to. The evaluation is
performed using classification metrics that assess the overall
performance [71]. These metrics are also used for model
validation. The metrics are:

1) ACCURACY (Acc)
It measures the proportion of correct predictions made by the
model out of all predictions. It is a fundamental evaluation
metric, corresponding to the ratio of correctly predicted
points to the total points in the dataset. The formula is:

Acc =
TP+ TN

TP+ FP+ TN + FN
(1)

where:

TP is the number of True Positive points;

TN is the number of True Negative points;

FP is the number of False Positive points;

FN is the number of False Negative points.
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2) PRECISION (Pr)
It is the proportion of true positive predictions among all
positive predictions. It is a measure of how accurate positive
predictions are. A high precision means the model has fewer
false positives and the respective formula is:

Pr =
TP

TP+ FP
(2)

3) RECALL (Re)
It is also known as sensitivity or true positive rate (TPR),
relating true positive predictions among all actual positive
ones. It measures the classifier ability to identify points
correctly. A high recall means few false negatives and is given
by:

Re =
TP

TP+ FN
(3)

4) F1SCORE
It is the harmonic mean of precision and recall, providing
a metric that balances both measures. It is beneficial
when dealing with imbalanced datasets, where one class is
significantly more frequent than the other. The formula for
the F1Score is:

F1Score =
2

1
Pr +

1
Re

= 2 ×
Pr × Re
Pr + Re

(4)

5) CONFUSION MATRIX
This matrix, also known as an error matrix, evaluates the
performance of classification models in ML and statistics.
It provides a summary of the predictions made by a classifier
compared to the actual class labels, enabling a detailed anal-
ysis and comprehensive view of the classifier performance
across different classes. It helps identify misclassification
patterns.

D. GRAPH-STRUCTURED DATA EXTRACTION
Radiomics features are broadly categorized based on their
characteristics and the aspects of the image they describe.
Common categories include shape-based features [9], first-
order statistical features (intensity-based features) [39], and
texture-based features [65]. In this study, we employ a
graph-based approach, using medical images that reveal
blood vessels to extract the vascular network, introducing a
new category within radiomics beyond the traditional ones
mentioned.

Identifying bifurcations is a well-established task, with
recent work by Long et al. [43], demonstrating increasing
accuracy in this area. However, in this study, we go further
by proposing the extraction and numerical representation of
graph-based features. Similar network features are frequently
used in neuroimaging for analyzing brain diseases such as
Alzheimer’s disease [34]. To the best of our knowledge, in the
field of clinical imaging, the adjacency matrix is commonly
employed for brain network analysis, representing connec-
tivity between regions of interest (ROIs) [32], [40]. These

Algorithm 1: Graph-BRFExtract Algorithm
1 begin;
2 load images;
/* loading image for coordinates extraction,

SEs and target image in gray scale */
3 detect and save T-points in a vector n;
4 define adjacency matrix W as square

matrix with size n and zero elements;
// n is the number of T-points

5 for T-point i = 1 : n do
6 extract and classify fragment in

T-point i;
7 if T-point i is a bifurcation then
8 for T-point j = 1 : n do
9 extract and classify fragment

in T-point j;
10 if T-point j is a bifurcation then
11 for segment k = 1 : v do

/* v is the number of vessel
segments */

12 if T-point i, T-point j and segment k
are connected then

13 Wij = 1
/* in weighted adjacency

matrix Wij = wij where
wij is corresponding to
vk vessel thickness */

14 save matrix W;
15 end.

connections are derived from Pearson correlation coefficients
when brain voxels (ROIs) defined by an anatomical brainmap
are activated. This activation occurs through a process known
as BOLD (Blood Oxygen Level Dependent) imaging [34],
[79], [92].

In radiomics, feature extraction refers to calculations,
where feature descriptors are used to quantify characteristics
of pixel spacing, gray-level intensities, bins of the gray-
level histogram, and so forth, within the ROI. Since many
different ways and formulas exist [22], [42], [84], the
Graph-BRFExtract Algorithm (Alg. 1) is based on the
following graph representation:

G = (V ,E), (5)

where V is a set of nodes, and E is a set of edges between
nodes, i.e.,

E ⊆ {(u, v)|u, v ∈ V }. (6)

In this context, we are dealingwith a binary graph,meaning
there is no weight information associated with the edges of
the graph [34]. W ⊆ RN×N is the adjacency (or weight)
matrix for a graph G, where Wij = 1 if there is an edge
between nodes i and j; otherwise, Wij = 0. N is the number
of nodes in G.
The assigned SEs of class 1 for bifurcation and 0 for not

bifurcation are compared with T-points for evaluation. If the
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FIGURE 9. Representation of the three-stage classification process before graph-structured data extraction: In the first stage, the images are
homogenized, and the vasculature is converted into a binary representation. The second stage focuses on extracting feature fragments from detected
T-points, with each fragment sized at n = 35 × 35 pixels. These fragments are then segmented for further analysis. The final stage involves developing
and training ML models using appropriate algorithms for classification. Image preprocessing and feature extraction are carried out in MATLAB R2023b,
while the classification stage is implemented using both MATLAB R2023b Classification Learner and Python 3.11.7.

FIGURE 10. Frame segmentation. From left to right: A - segmented
bifurcation; B - segmented overlap; and; C - noisy segmented bifurcation.

SE fits, i.e., if each of the pixels in the SE is associated with
the corresponding pixel of the neighborhood under the SE
at any point in the skeletonized image, the coordinates of
the middle pixel of the SE at that point, are extracted. These
coordinates are then used as the middle point of the feature
fragment to be extracted in the gray scale image. Then, the
feature fragment is segmented and binarized as described in
Sect. III-B. In this work, we use a two-class classification
approach: one class groups bifurcations, and the other one
includes non-bifurcations, overlaps, and noisy fragments.
Therefore, as can be seen in Fig. 10, extracting fragments
can result in some noisy features. Finally, the resulting feature
fragment is classified. If the target classification output is 1,
then it belongs to a bifurcation and is considered a graph node.

Fig. 9 depicts the classification process to identify bifur-
cation points in retina images. The identified points, along

with their respective adjacent blood vessels, are represented
as an adjacency matrix - a mathematical representation of a
graph or network. This constitutes the new network radiomics
feature.

IV. EXPERIMENTS
The experiments are conducted to validate the proposed
methodology and identify the most suitable algorithms for
developing the classification model. The tests followed the
three stages outlined in section III and were conducted across
multiple computers running MATLAB R2023b and Python
3.11.7, with parameters optimized to best fit each algorithm.
The training data is algorithm-independent, ensuring that the
same dataset is utilized for training Decision Tree, KNN,
Naive Bayes, Shallow Neural Networks, and SVM models,
with the exception of CNN, which requires a different
input structure. Given its focus on computer vision, the
training data for the CNN algorithm is prepared as binarized
fragments of 35 × 35 pixels.

A. SELECTED MODEL
All experiments in this study are carried out using image
processing andML classification toolboxes in bothMATLAB
R2023b and Python 3.11.7. Metrics are calculated from
confusion matrices, based on output data after training,
by applying 5-fold cross-validation on randomly separated
data, with 10% set aside for model testing.
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TABLE 1. Values used for the grid search to determine the optimal parameters for the CNN classification model, including activation functions:
parametric ReLU (PReLU) and leaky ReLU (LeakyReLU).

FIGURE 11. This diagram illustrates the architecture of the trained CNN classification model used for bifurcation detection. The first layer, with
n = 35 × 35 = 1225, represents the number of input features, corresponding to the total pixels per fragment. The network is implemented in
Python, and the diagram is generated using Netron 8.2.1.

TABLE 2. Validation confusion matrices of best performing models.

Table 4 presents results for the best performing classifier
models. Among the trained ML algorithms, SVMs and CNN
demonstrated better accuracy. The CNN approach produces
the best results, overall. The graph in Fig. 12 illustrates
its training progression, showing validation accuracy values
stabilizing above 90%. An analysis of the graphs in Figs. 13
and 14 clearly indicates that the accuracy of the CNN
model increases with the number of training observations.
In contrast, the SVM models do not exhibit significant per-
formance gains with increased training data but demonstrate
stable accuracy even with a relatively smaller number of
observations.

For the present experiment a 12-layer CNN, includ-
ing input and output layers, was constructed (Fig. 11).
Table 1 outlines the set of parameters employed in the
grid search process for training the classification network.
The objective is to fine-tune the model to identify the
optimal parameter configuration. The CNN architecture

TABLE 3. The total number of trainable parameters in the CNN
classification model is summarized below.

comprises convolutional, dropout, flatten, and dense layers,
each characterized as follows:

– The first convolutional layer (Conv2D1) extracts
low-level features from input fragments, followed by a
max pooling layer (MaxPooling2D) that reduces the spatial
dimensions. This pooling operation is repeated after the
second convolutional layer (Conv2D2) to further downsam-
ple the feature maps. To prevent overfitting, dropout layers
(Dropout1, Dropout2, and Dropout3) are incorporated, ran-
domly deactivating a subset of neurons during training. After
the convolutional process, the flatten layer transforms the 2D
feature maps into a one-dimensional vector. Subsequently,
a fully connected layer with 128 neurons (Dense1) captures
high-level abstractions, while the final fully connected layer
(Dense2) outputs class probabilities for classification.

To ensure optimal model tuning, training was conducted
using the parameters summarized in Table 3:

VOLUME 13, 2025 125367



O. Jorreia et al.: Graph-Based Radiomics Feature Extraction From 2D Retina Images

TABLE 4. Results of the best performing classifier models. In this table 100% of dataset is corresponding to 1003 observations and 25%, 50% and 75%
are respectively 251, 501 and 752 observations.

FIGURE 12. CNN model performance when trained on the full dataset
using all available observations. The figure highlights the influence of
convolutional kernel size, with the 17 × 17 kernel yielding the best
classification performance.

• Conv2D1 activation function: relu;
• Conv2D2 activation function: relu;
• dense layer Dense1 activation function: sigmoid;
• dense layer Dense2 activation function: softmax;
• dropout layer Dropout1 parameter: 0.2;
• dropout layer Dropout2 parameter: 0.2;
• dropout layer Dropout3 parameter: 0.4;
• Learning rate: 1 × 10−3;
• Convolutional kernel size: 17 × 17.

B. GROUND TRUTH AND DISCUSSION
Fig. 15 graphically highlights the performance of our method.
It can be inferred that retina images typically havemore bifur-
cations than overlapping vessel segments. In certain cases,
these segment crossings are mistakenly seen as bifurcations
in regions where vessels are thin. Additionally, T-points that
are very close to each other can result in the extraction of
similar, overlaid, or identical feature fragments. These issues
affect model performance. For instance, consider the sample
image shown in Fig. 15a. Using the proposed SEs, 68 out

FIGURE 13. The CNN model shows a consistent improvement in accuracy
as the number of observations in the dataset increases.

FIGURE 14. The CNN model shows a notable improvement as the dataset
grows, highlighting its capacity to leverage larger amounts of data.
In contrast, the SVM model achieves stable accuracy with a relatively
smaller number of observations.

of 69 T-points are identified (Fig. 15b). The coordinates
of these points are represented in the grayscale image (see
Fig. 15c), where feature fragments are extracted to classify
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FIGURE 15. T-points predictions. a) Unprocessed retina image. b) Vasculature mask of the sample image after skeletonization and T-points
detection using SE’s. c) Coordinates on the graycale image where feature fragments are extracted. d) Green points are identified as
bifurcations and red circles as not bifurcations by the classification model.

FIGURE 16. Explaining CNN model utilizing SHAP: evaluating nine
fragment samples. The regions in red represent positive impact pixels for
model accuracy; as same as blue regions shows negative impact regions.
Thus, the peripheral regions of the fragment play a key role in the
model’s accuracy.

each point as a bifurcation or not. As a demonstrative
example, the Fig. 15d illustrates the best-performing SVM
model classifying 50 points as bifurcations and the remaining
18 as non-bifurcations. In this image, some misclassification
errors can be observed through visual inspection, which may
be related to the proximity between T-points, model accuracy
and issues with vessel thicknesses.

TABLE 5. Confusion matrix associated to Fig. 15.

FIGURE 17. Unweighted adjacency matrix W between 201 nodes from
predicted bifurcation points, corresponding to Fig. 1, represented as a
binary image. Each white dot represents adjacency = 1 between each pair
of nodes.

The four regions within the yellow squares in Fig. 15d
are manually defined to highlight specific issues to be
addressed by the classifier. All T-points are detected using
SEs except the one in region 1, resulting in a 98.55%
detection rate of the method we propose. Region 2 illustrates
a misclassification error: visual observation indicates that
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FIGURE 18. Graph overlay on corresponding eye retina image. The green points represent predicted bifurcations and the yellow lines
represent the adjacency resulting in an unweighted graph – the network radiomics feature – This is performed in MATLAB R2023b.

this point is a bifurcation, but the classifier identified it
as not a bifurcation. Region 3 shows the identification of
two bifurcation points resulting from two T-points being
identified after wide vessel skeletonization (see Fig. 15b),
leading to the extraction of two partially overlapping feature
fragments and subsequent misclassification. Finally, region
4 demonstrates correct classifier identification of both
bifurcation and non-bifurcation in a region where T-points are
close together.

In summary, Table 5 presents the classification confusion
matrix associated to Fig. 15. The following performance
metrics are obtained: Acc = 80.88%, Pr = 86%, Re =

87.76%, and F1Score = 86.87%.
Aiming to understand the CNN classifier behavior on

fragment pixels through explainable AI, SHapley Additive
exPlanations (SHAP) method [5], [73] is applied to a set
of 9 sampled fragments from test data. This is a Post Hoc
explanation method that provides a means to interpret and
understand model behavior and which pixels are relevant
for the classifier [63], [88]. These values can indicate both
positive impacts (in red) and negative impacts (in blue), on the
output in peripheral pixel clusters of the fragments in Fig. 16.

C. VESSEL NETWORK ADJACENCY MATRIX EXTRACTION
After identifying bifurcation points, the adjacency matrix W
is calculated. In this matrix, each element aij denotes the
connection between the ith row and the jth column. Fig. 17
visually represents the adjacency matrix corresponding to
the 201 nodes identified in the retina image, illustrating
as white dots the presence of edges between estimated
nodes. This results in a symmetric square matrix extracted

by Algorithm 1. Additionally, each T-point is connected
to itself when classified as a bifurcation. These identified
bifurcations are then treated as nodes for constructing a graph
that represents the retinal vascular network. Fig. 18 illustrates
the generated graph derived from the adjacencymatrix, where
edges represent individual blood vessel segments.

V. CONCLUSION
This work addresses radiomics for retina images. It focuses
on identifying bifurcations using a ML classifier. To distin-
guish bifurcations from non-bifurcations, 18 SEs are defined
and 1003 local observations of 35 × 35 pixel fragments
are extracted at each T-point for classifier input. Various
ML classification algorithms have been trained, with CNN
demonstrating the best accuracy (94.95%). Widely used in
computer vision, the CNN model demonstrates improved
accuracy with larger datasets and, in this work, is partic-
ularly notable for its suitability in classifying small image
fragments. The Graph-BRFExtract Algorithm is employed
to quantify identified bifurcations by representing them as
an adjacency matrix, extending beyond traditional radiomics
features [13]. This matrix captures the topology and patterns
of the vascular network, offering valuable insights that
can support cardiovascular clinical decision-making. This
approach enables to overcome the closed box nature of ML
models, providing deeper insights into algorithms through
data-driven Explainable AI (XAI) and further research may
involve exploring properties of the retina vascular representa-
tion to discern characteristics of cardiovascular abnormalities
within the domain of topological network analysis. In this
context, the weights of connectivity between bifurcation
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points, equivalent to vessel thicknesses, may be considered.
In this study, we observed that the inherent heterogeneity
of the image acquisition process may present significant
challenges to the generalizability and reproducibility of the
proposedmethodology. Additionally, gray-scale intensity and
texture characteristics can be investigated to separate arterial
from venous vessels, enabling the distinction between these
two networks through segmentation techniques.
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