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Abstract. The developments in home computers, united with the thou-
sands upon thousands of images/videos of individuals present on the 
Internet, allowed for the proliferation of deepfaked media affecting the 
lives of private individuals and the dangerous spread of misinformation. 
Current state-of-the art detection methods show impressive results. How-
ever the development of improved generation methods overcomes them, 
as there are generalization difficulties. This paper explores the viabil-
ity of use of implicit representations of facial videos on deepfake detec-
tion. Implicit representations offer computer vision tasks a new paradigm 
of research, possibly offering alternatives to the current methods based 
on the color space or frequency domain. This work investigates the use 
of Sinusoidal Representation Networks (SIRENs) to show a significant 
difference between Fréchet Video Distance (FVD) scores obtained from 
bonafide videos and their SIREN reconstruction and deepfake videos and 
their SIREN reconstruction. This result leads to the conclusion that the 
SIREN representation of a video can be used as input for a deepfake 
detection method, opening a new avenue of research. 

Keywords: Deepfakes · implicit representation · significance test · 
Fréchet Video Distance 

1 Introduction 

Deepfakes are introduced in 2017, showing image manipulations resulting from 
deep learning algorithms. While rudimentary at first, deepfakes are evolving ever 
closer to near undetectable manipulations in both images and videos. 

Although they may be used for entertainment or other nonharmful purposes, 
the concern is with the material made targeting private individuals or public 
figures. The advances of video deepfakes in conjunction with audio deepfakes 
may tarnish the good reputation of someone or be used to spread misinformation. 
As such, it is vital to keep up with the development of deepfake generations, 
innovating in the detection front as much as possible. 

Current deepfake analysis is confronted with challenges related to the variety 
of not only the different manipulations that are considered as deepfakes but also 
the models used to create said manipulations. These manipulations are identity 
swaps where a source identity receives the target’s facial information, expres-
sion swap where the target’s expression is manipulated according to the sources 
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information, attribute manipulation where the target’s attributes are modified 
and full face synthesis where a new identity is generated. These manipulations 
give different cues to be explored for deepfake detection and the different meth-
ods used for their creation give another set of cues to be explored, resulting in 
detection methods having difficulty with generalization. 

Early detection approaches relied on the flaws of the generative methods. 
These could be based on the search for visual-cues where poor quality deep-
fakes had visible errors or temporal inconsistencies between frames of a video 
allowed for easier detection. With the improvement of the generative methods, 
these visual cues become subtler or disappear altogether. The forensic approach 
continues on the frequency domain searching for artifacts left by the model in 
the frames, but these approaches have difficulties as soon as the video is com-
pressed, losing much of the information that allowed for accurate detection. In 
anticipation of a future where these ‘clues’ are no longer present, the search must 
be carried out elsewhere. 

Following the logic of forensic approaches in both the color and frequency 
space, this work investigates the use of the implicit space in the problem of 
deepfake detection. Implicit representations have recently offered new research 
avenues for image analysis, translating a scene usually in a coordinates-based rep-
resentation, that allows for detailed reconstructions of the original. Using Sinu-
soidal Representation Networks (SIRENs) [ 27] the video frames of the Deepfake 
Detection Challenge Dataset (DFDC) [ 3] were translated to the implicit space 
and analyzed. 

This work uses Fréchet Video Distance (FVD) [ 29] between the original 
DFDC videos and their respective SIREN reconstruction, to show a significant 
difference in the average FVDs of the bonafide and deepfake pairs. We expect 
that this work might open new avenues of research for the deepfake detection 
problem. 

2 Literature Review 

2.1 Deepfakes 

Deepfake generation begins with an auto-encoder approach, where images from 
persons A and B are used for the training of their respective auto-encoders, 
sharing the training weights between encoders while maintaining the decoders 
completely separate, as shown in [ 1]. When optimization is finished, the images 
of person A can be encoded with the shared encoder but then decoded with the 
person B decoder to produce the final image. 

Since this initial approach, deepfake generation methods have evolved to 
use Generative Adversarial Networks (GANs) [ 7], adopting different approaches 
depending on the desired manipulation. These manipulations are identity swap-
ping, expression swapping, attribute manipulation, and full identity synthesis. 

Recently, innovations in identity swapping have tried to solve problems with 
undesired attribute swapping between identities [ 26] or non-identity attributes 
being removed in the final result [ 24].
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The synthesis of new identities is a topic of interest not only in relation to 
deepfakes, but to facial biometrics as a whole. The generation of completely 
synthetic datasets makes it possible to solve the challenges of collecting data, 
the privacy of the participants, or the lack of balance between the demographics 
present [ 16]. Topics such as Presentation Attack Detection (PAD), have an inter-
est in the generation of deepfakes since these may be use to spoof a biometrics 
system [ 20]. 

With much of facial synthesis being based on StyleGANs [ 12] and it’s pre-
decessors, recent improvements have been made by exploiting the latent space 
from StyleGANs2 to compensate for a lack of robustness to the source frame’s 
facial expressions and head pose [ 19] or by moving away from GANs to the more 
recent diffusion models [ 37]. 

With such developments on the generation of deepfakes, there is an equivalent 
effort in deepfake detection research. Older methods based on spatio-temporal 
approaches are improved upon by searching for more minute inconsistencies such 
as the disturbance created by face movements [ 34]. Other approaches look for 
inconsistencies in biological signals with examples being inconsistencies with the 
gaze [ 21] or using remote photoplethysmography (rPPG) [ 33] as an alternative 
to the visual signals. 

The use of information found in the frequency domain, allows researchers to 
search for non-visual cues, usually artifacts left from the generative method to 
then base the detection method on this information alone [ 28] or in a multi-modal 
approach, fusing frequency level information with some other [ 30]. 

However, the fear of unseen deepfakes leads research into looking for greater 
generalization capabilities, or focusing on the explainability of models, to better 
understand how and why decisions are made [ 13]. Mining for specific clues related 
to the artifacts left by the manipulation approach has given good results for 
deepfake detection but tends to be model specific. By giving different backbones 
to the model [ 15] or by adapting the texture and spectrum analysis to the input 
image [ 14], the models generalize better. Other researchers claim that a hurdle 
for generalization is implicit identity leakage [ 4] and aim to reduce the impact 
of the identity factor on deepfake detection, while others [ 10] go the opposite 
direction, by comparing the explicit and implicit identities of face images. 

Another approach to deepfake detection is a proactive one. Assuming that a 
perfect detection model exists that would be able to detect any deepfake created 
by any method, the damage that said deepfake could do before being labeled as 
such would not be immediately countered. As such, researchers propose methods 
to prevent the creation of deepfakes through adversarial attacks. The standard 
approach is to insert noise into the image making it difficult for manipulation to 
occur, but this also makes any analysis of the “protected” image difficult as well. 
To combat this [ 38] uses an information-containing adversarial perturbation, 
that associates the image to a database and encodes into the distorted image, a 
message that links back to the unadulterated image present in the database. 

The concern is with images uploaded to the public through social media for 
example. These social media platforms usually compress media that is uploaded,
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causing the adversarial information to lose effect. While there are efforts to 
reduce the effect this compression might have [ 23, 32] uses a more direct approach 
in modeling the adversarial perturbations according the compression found on 
social media platforms, as to reduce the negative impact the compression might 
have on the adversarial attack. 

2.2 Implicit Representations 

Implicit Neural Representations have recently offered a new approach to study 
visual data by parameterizing a segment of media, such as an image or video 
segment through a neural network. Neural Radiance Fields (NeRFs) [ 17] which  
outputs a scene through a 5D function of spatial coordinates and viewing direc-
tions, was improved upon to create dynamic NeRFs [ 5] for the creation of facial 
avatars. 

Concurrent with NeRFs, SIRENs [ 27] are introduced as a continuous implicit 
representation, that not only boasts better representation, but is able to apply 
to its derivatives i.e. the derivative of a SIREN is a SIREN itself, which allows 
for further applications. The authors use SIRENs to solve a number of problems 
such as the Poisson Equation or the Helmholtz and Wave Equation, but most 
importantly for this paper, they point out the use of SIRENs for image fitting, 
achieving good results in reconstructing not only the neural image but also the 
first and second derivatives, and extend the applications to both video and audio. 

While there are a number of works related to improving talking head models 
through NeRFs with techniques such as audio guided synthesis [ 8] or motion-
assisted synthesis [ 36], as far as this review was able to find, there are no works 
that leverage implicit representations for deepfake detection. 

3 Method 

3.1 Implicit Representation 

An image is represented as a function .I : Ω ⊂ R2 → C, where  .Ω is the 
image’s domain and . C is the color space. The image is then parameterized with 
a coordinate-based neural network .Iθ : R2 → C with parameters . θ. To train the 
neural image .Iθ so that it approximates . I, the model optimizes the following 
objective: 

. 

∫
Ω

(I − Iθ)2 dx.

The coordinate-based network is a sinusoidal multilayer perceptron (MLP) 
.fθ(p) : Rn → Rm, defined as a composition of . d sinusoidal layers: 

. fθ(x) = Wd ◦ fd−1 ◦ · · · ◦ f0(x) + bd,

where each layer  .fi(xi) = sin(Wixi + bi) = xi+1, with  .Wi ∈ Rni+1×ni being 
the weight matrices, and .bi ∈ Rni+1 being the biases. The collection of these
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parameters defines . θ. The integer . d denotes the depth of the network, and . ni

refers to the width of the layers. 
With the neural image defined by . θ, the RGB values for any pixel of a 

reconstructed image are given by the value of .fθ at . x coordinates. 
Through the method used in [ 25], the neural images of each frame of the sub-

ject’s face is obtained. The individual frames are then joined into a reconstructed 
video. 

3.2 Distance Between Original and Reconstructed Videos 

This article proposes to show that there is a difference between how reliable 
the neural reconstruction of a video is for bonafide and deepfake video cases, so 
that it can be used to detect the latter. This is measured through Fréchet Video 
Distance (FVD). 

FVD is proposed as an improvement on common video analysis approaches 
such as Peak Signal-to-Noise-Ratio (PSNR) or Structural Similarity (SSIM) [ 31] 
claiming that these lack for the temporal coherence of the video, aside from the 
video quality itself. It is based on the principal of Fréchet Inception Distance 
(FID) [ 9], commonly used for image analysis, where the distance between the 
real world data distribution .PR and the distribution defined by the generative 
model .PG is defined by: 

. d(PR, PG) = minX,Y E|X − Y |2

where the minimization is over all random variables .X and . Y with distributions 
.PR and .PG respectively. With the data distribution being represented as a mul-
tivariate Gaussian using a suitable feature space, the previous equation can be 
solved as: 

. d(PR, PG) = |μR − μG|2 + Tr(ΣR + ΣG − 2(ΣRΣG)
1
2 )

where .μR and .μG are the means and .ΣR and .ΣG are the co-variance matrices of 
.PR and .PG. This representation is obtained from an Inflated 3D ConvNet (I3D) 
[ 2], and the distance between videos is obtained. In our work, we obtained the 
FVD through the implementation used in [ 6]. 

3.3 Computational Effort 

While implicit representations offer a lightweight alternative to vision problems, 
obtaining the representation itself comes with a computational cost. This paper 
was conducted using two NVIDIA GeForce RTX 2080 Ti, obtaining the SIREN 
representation for one .256 × 256 facial image using one of these GPUs takes 
approximately 10 s. 

With the current setup, a single ten second video, at 30 FPS, takes roughly 
50 min to process. At the scale of over 120,000 videos, with the 2 GPUs used, 
it would take over 5 years to just obtain the data to train a potential model.
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While reducing the number of frames that are represented is a possible solution, 
it carries the risk of information loss. Section 5 addresses this topic in order to 
mitigate the heavy computational power needed for the training. 

4 Experiments and Results 

4.1 Dataset 

The Deepfake Detection Challenge (DFDC) [ 3] is a self-designated third genera-
tion dataset featuring 23,654 videos from 960 actors hired for this purpose, from 
which 104,500 fake videos are created using various deepfake creation methods. 

These include a Deepfake Auto Encoder (DFAE) model with a shared encoder 
but two isolated decoders, one for each identity, and a Neural Talking Heads 
(NTH) [ 35] model comprised of a metalearning stage and a fine-tuning stage. 

It also includes deepfakes generated from FSGAN [ 18] which applies an adver-
sarial loss to generators for reenactment and inpainting, and trains additional 
generators for face segmentation and Poisson blending and StyleGAN [ 11] which  
is modified to produce a face swap between a given fixed identity descriptor onto 
a video by projecting this descriptor on the latent face space. Finally, certain 
videos from the previous categories are processed with a sharpening filter to 
improve the quality of the final video and certain videos receive vocal deepfakes 
with the method presented in [ 22]. 

As previously mentioned, processing the whole dataset would require a large 
computational effort. As such the results were obtained from a total of 2048 
videos, randomly selected from the dataset, split evenly between bonafides and 
deepfakes with a .256 × 256 window over the facial region. While ideally, the 
selection of deepfake videos would be made as to get an even distribution of 
videos generated by the methods mentioned previously, this is currently not 
possible as the dataset does not provide that information. The random selection 
expects a somewhat even distribution but cannot guarantee it (Fig. 1). 

Fig. 1. Example of the .256× 256 windows over a bonafide video frame (in green) and 
two deepfakes generated from it (in red) from the DFDC dataset. (Color figure online)
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4.2 SIREN Reconstructions 

The SIREN models were trained for 1000 epochs for each frame, resulting in a 
reconstruction that shows no differences to the naked eye, for both deepfake and 
bonafide videos, even for the ones scoring the highest FVD scores, as shown in 
Figs. 2. 

Fig. 2. Comparison between an original frame (left) from a video, it’s SIREN recon-
struction (center) and their difference (right), for bonafide cases in green and deepfake 
cases in red. (Color figure online) 

Although the reconstructions do not show visible differences when analyzed, 
it is possible to find the areas in the image where the reconstructions is not 
perfect. Analyzing these areas together with additional information from the 
scene can give insights into the problem. 

This would greatly benefit from a labeling effort on the dataset to prop-
erly analyze if and how different conditions affect the SIREN representation for 
bonafide and deepfake cases. 

4.3 Testing the Hypothesis 

The average FVD scores obtained show that SIREN reconstructions for the 
bonafide videos have lower fidelity to their original video than in the deepfake 
videos, achieving higher FVD scores, as shown in Fig. 3. Higher FVD  scores  mean  
higher distance between video pairs i.e. worse reconstructions. 

To confirm that the data shows that SIREN reconstructions could be used 
for deepfake detection, specifically that the neural reconstructions of bonafide 
material have lower fidelity than deepfake reconstructions, a one tail significance 
test is conducted. First the null hypothesis is defined as there is no difference
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Fig. 3. Average FVD scores between bonafide videos and their SIREN reconstruction 
and deepfake videos and their reconstructions. The averages are given for .2N video 
pairs of each category with the final values being .μ = 596.95 and .σ = 372.23 for 
bonafide pairs and .μ = 538.09 and .σ = 245.29 for deepfake pairs. 

between the distribution of FVD scores for the original and SIREN reconstruc-
tion of bonafide videos and deepfake videos, or that the FVD scores for bonafide 
videos are lower then the deepfake scores, i.e. SIRENS achieve better reconstruc-
tions on bonafide videos than deepfake ones: 

. H0 : μFV Dbonafide <= μFV Ddeepfake

and present the alternative hypothesis that the bonafide video pairs score higher 
FVDs, therefore have worse fidelity, than the deepfake video pairs: 

. Ha : μFV Dbonafide > μFV Ddeepfake

conducting the test with a significance level of .α = 0.01, the p-value result is 
equal to .1.145e − 5 giving .p < α, thus rejecting the null hypothesis. 

4.4 Discussion 

The data shows that SIREN reconstructions bonafide videos have lower fidelity 
than the reconstructions of deepfake videos. This could suggest that bonafide 
videos contain richer information, which is lost during manipulation. 

The fact that the standard deviation for deepfake scores is lower, may also 
indicates a process of homogenization of the information. The DFDC is a large 
dataset, so as previously mentioned, its full translation into neural represen-
tations would, at this pace, take a not practical amount of time. However by
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expanding this research over more videos from the dataset, it would give a clearer 
idea of how different attributes from these videos might affect the neural repre-
sentation, or how certain deepfake generative methods impact the image. 

This result could contribute to the development of a system for detecting 
deepfakes by learning how to distinguish between bonafide videos and deepfake 
videos by analyzing the original video and its neural reconstruction. 

However, there is still work to be done in this area, particularly in under-
standing the influence of certain factors like resolution, the context of the video 
(e.g. how much of the frame does the face occupy), among other elements. 

5 Conclusion and Future Work 

5.1 Conclusion 

This article presented the hypothesis of using implicit representations of facial 
videos to distinguish between bonafide and deepfake videos. Carrying out this 
first analysis with videos reconstructed from the SIREN representation, the FVD 
value between the original videos and their reconstructions was measured. These 
values were use to test the hypothesis that the bonafide reconstructions have 
lower fidelity to their original material when compared to the reconstruction of 
deepfake videos. Carrying out a significance test at a significance level of 99%, 
we were able to show that the null hypothesis was rejected. Although these are 
initial results, the hypothesis that we can use implicit representations to detect 
deepfakes seems promising. 

5.2 Future Works 

Having reached these conclusions, it is necessary to consider how to proceed. 
The end result of this research is expected to achieve state-of-the-art deepfake 
detection. There are still a number of obstacles to overcome, with problems such 
as data volume. It is still required to test if all frames from a video are required 
to achieve satisfactory results. This, among a battery of ablation tests, will be 
conducted as to conceive the “ideal” conditions to proceed with research. 

While this paper revolves around videos reconstructed from their SIREN 
representations, it is to show a discernible distinction between deepfakes and 
bonafide material. Future work will be conducted as much as possible with the 
implicit representation itself. 
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