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Abstract. A persistent gap remains between standard Image Quality
Assessment (IQA) metrics and human perceptual judgments, typically
quantified via Mean Opinion Scores (MOS). This poses a key challenge in
applications where perceived quality impacts performance, such as facial
recognition. We introduce a new no-reference Face Image Quality As-
sessment (FIQA) metric, developed within a Full-to-No-Reference learn-
ing framework. The process begins with a full-reference fusion model
trained to regress classical IQA scores against human MOS on a la-
beled subset. This model is used to generate pseudo-MOS scores for the
full dataset. These labels then supervise a no-reference deep regressor
based on ResNet-18 features, producing a perceptually aligned metric
that estimates quality directly from distorted facial images. We tested
our approach in the context of steganographically degraded facial im-
ages, showing its effectiveness in scenarios involving subtle distortions
and limited human annotations.

Keywords: Face IQA · Steganography · No-Reference IQA · Pseudo-
MOS · Full-Reference Fusion · Deep Regression

1 Introduction

Image Quality Assessment (IQA) plays a critical role in domains such as bio-
metric authentication, multimedia processing, and medical imaging [26, 34]. It
broadly refers to the estimation of visual quality based on attributes like con-
trast, sharpness, noise, and the presence of artifacts. Within this domain, Facial
Image Quality Assessment (FIQA) focuses specifically on facial images, where
quality is not assessed in terms of visual aesthetics, but rather in terms of its
impact on the performance of face recognition systems [5, 52].

IQA methods fall into two categories: subjective and objective. Subjective
methods use human ratings to measure perceived quality, often summarized
as Mean Opinion Scores (MOS) [28]. These scores are reliable but expensive
to collect and not scalable. Objective methods rely on algorithms to estimate
quality, either by comparing to a reference image or by analyzing features of the
image itself.

Objective methods can be divided into full-reference (FR) and no-reference
(NR). FR methods compare a distorted image to a clean reference. They are



2 A. Neto and N. Gonçalves

often accurate but can only be used when a reference is available. NR methods
estimate quality without a reference and are more practical in real-world settings,
though they often struggle to generalize across distortions and content [1].

FIQA is a subdomain of IQA focused on facial images. It plays a key role in
biometric applications such as identity verification, where reference images are
typically unavailable, and is also relevant in non-biometric scenarios like surveil-
lance and forensic analysis. Consequently, most FIQA methods are no-reference
NR, relying on task-specific priors or learned representations to estimate image
quality [22].

A key challenge in IQA is the gap between objective metrics and human
perception. Classical metrics such as PSNR [17] (Peak Signal-to-Noise Ratio),
SSIM [58] (Structural Similarity Index), and VIF [49] (Visual Information Fi-
delity) provide automatic quality estimates but often show weak correlation with
human ratings across datasets [1]. This issue is more pronounced in facial im-
ages, where perceived quality is shaped by both image distortions and biases
from the observer.

Studies have shown that FIQA is affected by both demographic and non-
demographic biases. Perceived quality can vary with ethnicity, gender, or age,
often due to dataset imbalance and observer subjectivity [5,30,52]. For example,
darker skin tones tend to produce lower recognition accuracy, and female faces
are often rated with lower quality scores [26]. These effects highlight the need
for more inclusive and perceptually aligned quality metrics.

The International Civil Aviation Organization [42] (ICAO) and the Inter-
national Organization for Standardization (ISO) and the International Elec-
trotechnical Commission (IEC) 19794–5 standard [27] establish guidelines for
image quality in Machine-Readable Travel Documents (MRTDs). These guide-
lines ensure uniform image conditions (e.g., lighting, focus, and resolution) and
consistency across datasets. While these regulations establish a technical base-
line, they do not account for perceptual biases and demographic variability in
FIQA.

These biases raise ethical concerns. Legal frameworks, such as the European
Convention on Human Rights (Article 14) [13], the Universal Declaration of
Human Rights (Article 7) [41], the General Data Protection Regulation (Article
22) [55], the European Artificial Intelligence Act (2024) [56] and the United
States Bill of Rights [25], aim to prevent discriminatory decisions. Still, biases
persist, often introduced through human observers involved in labeling.

Neuroscience shows that face perception relies on the fusiform face area, a
brain region specialized for facial stimuli [32, 54]. This biological specialization
makes FIQA particularly sensitive to both stimulus features (e.g., age, gender,
ethnicity, attractiveness) and the demographic background of the observers.

Steganographically distorted facial images pose a harder problem. Steganog-
raphy hides data by slightly changing pixel values, often in ways that escape hu-
man detection [14]. Recent printed-proof techniques go further by ensuring that
hidden data can survive physical printing and scanning noises, making them use-
ful for secure document encoding. While these changes are visually minimal, they
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can damage biometric features and reduce recognition accuracy [9,47,48,50]. NR
methods are usually not designed to catch these small but critical degradations.

To handle these limitations, we propose a FIQA framework based on pseudo-
MOS. We first use a small set of facial images labeled with overall quality scores
to train a fusion model that combines FR metrics into a single predictor. This
model generates pseudo-MOS for the rest of the dataset. Using these labels, we
then train a NR deep regressor based on a ResNet-18 [20] pretrained on Ima-
geNet [12], allowing it to estimate perceptual quality without needing a reference
image.

Our approach bridges the gap between FR supervision and NR inference.
It offers a scalable solution for evaluating images with subtle distortions, like
steganography, and supports the development of quality assessment models tai-
lored to domain-specific tasks. In doing so, it combines the accuracy of FR
metrics with the practicality of NR models in a single IQA pipeline.

2 Related Work

Several fusion-based approaches have been proposed to better align IQA met-
rics with human perception. Liu et al. [35] introduced a multi-method fusion
framework in which multiple FR-IQA scores are linearly combined through re-
gression to better approximate human judgments. Similarly, Henniger et al. [21]
developed a Random Forest model trained on handcrafted image features drawn
from ISO face quality standards, improving predictive utility for biometric ap-
plications. These works show that fusing complementary quality cues improves
correlation with MOS compared to single-metric methods

In the absence of subjective labels, several methods have adopted weakly su-
pervised strategies based on pseudo-labels. Chen et al. [6] generated pseudo-MOS
scores by averaging multiple FR-IQA scores. RankIQA [36] used synthetic degra-
dations and ranking-based supervision to learn ordinal quality relationships. Wu
et al. [60] trained cascaded CNN regressors on pseudo-MOS to support NR-
IQA training. These methods show that pseudo-labeling can guide deep quality
models when ground-truth MOS is limited.

Recent NR-IQA methods leverage deep features from CNNs pretrained on
large datasets. Kang et al. [31] showed that CNNs can directly predict image
quality from patches. In FIQA, SER-FIQ [51] (Stochastic Embedding Robust-
ness for Face Image Quality) estimates quality by measuring the consistency
of face embeddings under dropout. MagFace [39] links embedding magnitude
to recognition performance to learn quality-aware features. FaceQnet [22] esti-
mates how well a face image will perform in recognition tasks, using a regression
model trained on features from a pre-trained network. QualFace [53] adapts face
recognition networks for document images and adds a quality estimation branch
aligned with ICAO and ISO/IEC standards. These approaches replace hand-
crafted indicators with learned representations optimized for face recognition.

Other studies emphasize that image quality is inherently task-specific. In
FIQA, quality is defined not by visual aesthetics but by its effect on recogni-
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tion performance. Standards such as ISO/IEC 19794–5 codify this operational
perspective, specifying conditions for acceptable biometric image acquisition.
Datasets such as PIPAL [29] and TID2013 [44], which include generative distor-
tions, further highlight the need for context-specific IQA evaluation. Our work
follows this trajectory by targeting steganographically degraded facial images,
an emerging use case not addressed in current FIQA literature.

3 Methodology

3.1 Dataset

Our dataset is derived from the publically available Face Research Lab Lon-
don [11] (FRLL) set, comprising 102 frontal ICAO-compliant facial images. Each
image was encoded using four printer-proof steganographic methods, described
ahead, each applied at nine different intensity levels, yielding a total of 3,672
distorted images.

The dataset was partitioned into four subsets, as follows:

– MOS set (15 identities, 540 images): a core set of demographically diverse
subjects, shown in Fig. 1, with subjective MOS annotations. It is split into:
• MOS train set (12 identities): used to train the FR fusion model, regress-

ing FR-IQA metrics to human MOS.
• MOS test set (3 identities): held out from the framework and used only

for final evaluation.
– Pseudo-MOS set (87 identities, 3,132 images): no subjective scores were col-

lected for these images. Pseudo-MOS are generated for this set using the
trained fusion model.

– NR train set: includes both the MOS train set and the pseudo-MOS set. It
is used to train the NR regressor.

The printer-proof steganography methods used were based on Generative
Adversarial Networks (GANs) [23] to encode and decode information, illustrated
in Fig. 2, we can obtain various results depending on the method used:

– StegaStamp [50]: claims to be the first steganography model capable of de-
coding data from printed images. The authors show robust results in decod-
ing data under physical transmission by adding printer noise in the training
process.

– Code Face [47]: encoder and decoder networks are trained using end-to-end
GANs. It introduces a new security system for encoding and decoding facial
images that are printed in common IDs and MRTDs.

– RiemStega [10]: proposes a new loss function that extends the loss function
based on the L2 distance between images to the Riemannian manifold of
symmetric and positive definite matrices.
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(a) MOS train set (b) MOS test
set

Fig. 1. Reference images from the MOS set, comprising the selected subjects from the
FRLL dataset.

– StampOne [48]: focuses on high-level robust steganography, such as [47,50],
it balances between high-quality encoded images and decoding accuracy.
It mitigates distortion-related issues like JPEG compression, camera sensors
and printer’s Gaussian noise by incorporating gradient transform and wavelet
transform to normalize and balance frequencies of the inputs.

(a) StegaStamp (b) CodeFace (c) RiemStega (d) StampOne

Fig. 2. Steganographically distorted facial images from each method.

We followed the ITU-R BT.500–15 [28] recommendation and adopted the
Single Stimulus (SS) method. The test was implemented using a custom Django
web application seen in Fig. 3. Prior to the test session, participants signed an
informed consent form and filled out a registration form providing demographic
and environmental information such as age, gender, education, country of origin
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and ethnicity, and others. Each image was shown individually, with no time limit.
Ratings were submitted using a labeled slider, and automatic saving ensured
session robustness.

Each image in the MOS set was evaluated approximately 30 times by human
observers, resulting in over 14,000 ratings. We had around 200 participants,
each session lasted about 22 minutes and included roughly 70 evaluations. Fol-
lowing the session, outlier observers were identified and removed using both
Kurtosis-based and correlation-based post-screening methods described in ITU-
R BT.500–15 [28], resulting in the exclusion of four participants.

Fig. 3. Django-based webapp created for the Single Stimulus test.

3.2 Debiasing of Subjective Scores

To correct for demographic bias in the subjective scores, we followed a proce-
dure inspired by prior work on bias correction in perceptual tasks [8], where we
applied a residualization method based on linear modeling. An ordinary least
squares (OLS) regression was fit to the MOS values, using observer and image
attributes, and their pairwise interactions as categorical predictors. The fitted
bias components were subtracted from the original scores, and the residuals
were mean-centered to preserve the global score distribution. As shown in Ta-
ble 1, several factors exhibit statistically significant effects on the MOS prior to
residualization, notably observer and subject ethnicity. After applying the resid-
ualization procedure, these effects disappear, as confirmed by an ANOVA test
showing no significant impact from any individual factor. The corrected MOS
labels are then used as ground truth in all supervised stages of the pipeline to
ensure fairness and reduce the influence of socially conditioned priors.

3.3 Correlation of FR-IQA Metrics with Human Perception

We compute 40 FR-IQA scores for each distorted image in the dataset and
compare them against the corresponding MOS, as seen in Fig. 4. Several metrics
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Table 1. ANOVA [46] results for observer and image attributes. Before debiasing,
several factors show statistically significant effects on MOS, p-value < 0.05. After
residualization, all main effects show no significant impact, confirming the effectiveness
of the debiasing procedure.

Factor p-value p-value (residualized)

Observer gender 0.022 0.9930
Observer ethnicity 8.44× 10−4 1
Subject gender 1.60× 10−3 0.9722
Subject ethnicity 7.36× 10−3 1
Observer gender × Subject gender 0.6417 0.6417
Observer ethnicity × Subject ethnicity 0.0582 0.0582

exhibit strong linear trends with MOS, while others are poorly aligned or even
negatively correlated. For a detailed description of these metrics, we refer the
reader to [1].

3.4 Fusion of FR-IQA Metrics for Pseudo-MOS Estimation

To identify which metrics align best with human perception, we compute both
the Pearson Linear Correlation Coefficient (PLCC) and the Spearman Rank-
Order Correlation Coefficient (SRCC) [61] which respectively quantify the lin-
earity and monotonicity of the relationship between metric scores and MOS. To
determine the appropriate number of metrics to retain for fusion, we applied Sin-
gular Value Decomposition (SVD) and the Picard criterion [18]. Metrics are first
ranked by the average of their PLCC and SRCC with MOS. After normalizing
the feature matrix, SVD revealed that six components capture 95% of the total
variance, as shown in Fig. 5a, indicating an optimal dimensionality of k = 6.

To validate this truncation point, we examined the Picard plot in Fig. 5b,
which compares singular values with the target projections. The stable ratio in
the tail confirms that six components provide a good balance between expres-
siveness and stability. This supports a compact, informative subset of FR-IQA
metrics.

After selecting the top k = 6 FR-IQA metrics, we trained a diverse set
of supervised regressors to map these features to subjective MOS scores. The
models included both linear and non-linear types:

– Linear models: Linear Regression [19], Ridge Regression [24], Bayesian
Ridge [3], ElasticNet [63].

– Kernel-based: Support Vector Regression [2] (SVR).
– Ensembles: Random Forest [4], Extra Trees [16], Gradient Boosting [15],

HistGradientBoosting [43].
– Boosted Trees: XGBoost [7], LightGBM [33], CatBoost [45].

Each regressor was trained using five-fold cross-validation with an exhaustive
grid search over predefined hyperparameter spaces. The best model, CatBoost,
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Fig. 4. Scatter plots illustrating the relationship between MOS and 40 individual full-
reference IQA metrics. The red line represents a smoothed local trend curve.
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Fig. 5. SVD-based analysis of the FR metric space. The cumulative explained variance
(a) guides the choice of dimensionality, while the Picard criterion (b) illustrates stability
near k = 6.

optimal configuration was: depth = 8, iterations = 500, learning rate = 0.05, and
L2 regularization = 1. This trained regressor is then applied to the unlabeled
portion of the dataset (3,132 distorted images), generating pseudo-MOS.

3.5 Training a No-Reference IQA Model from Pseudo-MOS

To enable NR quality prediction, we train a deep regression model end-to-end
using pseudo-MOS scores as targets. The architecture is based on a ResNet-
18 backbone [20] pretrained on ImageNet [12], with its final classification layer
replaced by a lightweight multi-layer perceptron (MLP) regressor [3]. All layers
are fine-tuned during training to learn perceptual quality representations specific
to our task. The training set consists of distorted facial images paired with either
pseudo-MOS, from the FR fusion, or real MOS labels, when available. The model
is optimized using MSE and evaluated on the, disjoint, MOS test set of labeled
images. Once trained, the model infers image quality solely from the distorted
input, enabling NR assessment aligned with human perception.

4 Results

4.1 Full-Reference Fusion Metric Performance

To interpret feature contributions, we used SHAP [37] (SHapley Additive exPla-
nations) values derived from CatBoost’s internal structure. SHAP values quan-
tify how much a feature pushes the model’s output away from the expected value.
As shown in Fig. 6, MS-SSIM [59] (Multiscale SSIM) and UQI [58] (Universal
Quality Index) had the largest positive impact on predictions, while PSNR-
B [38], VIF [49], (PSNR-Blocking), PSNR [62] and SNR [17] (Signal-to-Noise
Ratio) contributed with moderate influence. The color encoding further high-
lights how high and low feature values affect the model output.
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Fig. 6. SHAP summary plot for k = 6, generated from the best CatBoost model.

When comparing the fusion metric with the individual FR metrics, Table 2
shows that the fusion metric outperformed all individual metrics in terms of
PLCC, SRCC, MSE and MAE. This demonstrates the effectiveness of our ap-
proach in combining multiple FR metrics to improve overall performance.

Table 2. Performance of our Fusion metric and the selected FR-IQA metrics. Higher
PLCC and SRCC indicates better correlation with MOS. Lower MSE and MAE indi-
cate more accurate quality estimates.

Metric PLCC SRCC MSE MAE

Fusion (CatBoost) 0.8881 0.8893 65.07 6.160
MS-SSIM 0.7712 0.8489 2542 47.27
PSNR 0.8009 0.8132 420.7 16.57
PSNR-B 0.7996 0.8126 434.8 16.84
SNR 0.7931 0.8047 493.9 18.08
VIF 0.7723 0.7671 2584 47.75
UQI 0.6866 0.8085 2540 47.24

4.2 No-Reference Regression Model Performance

We refer to our NR-IQA model as pMOS-Face (pseudo-MOS for Face), reflect-
ing its use of pseudo-MOS labels generated from the FR fusion model and its
evaluation on faces. This framework can be adapted to other datasets, provided
that a small set of images with human labels is available for training the FR
fusion model. Fig. 7 shows two evaluation scenarios: in Fig. 7(a), the model’s
predictions are compared against the pseudo and ground-truth MOS used during
training, yielding a PLCC of 0.9285, SRCC of 0.9345, MSE of 120.2, and MAE
of 9.158. Fig. 7(b) shows the predictions compared against the MOS test set,
resulting in a PLCC of 0.9679, SRCC of 0.9691 and MSE of 35.34 and MAE
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of 4.743. These results confirm both generalization to unseen human labels and
alignment with the pseudo-supervision used for training.
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(a) Training plot.
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Fig. 7. Evaluation of our NR-IQA model. Panel (a) shows performance on the training
set with pseudo and ground-truth MOS; panel (b) shows performance on the disjoint
test set with ground-truth MOS.

The results indicate that our model is more effective in predicting perceptual
quality than classical NR-IQA metrics such as NIQE [40] and PIQE [57], as well
as task-specific approaches like SER-FIQ [51] and MagFace [39]. This highlights
the robustness of our weakly supervised strategy for NR-IQA on steganograph-
ically degraded facial images. Quantitative results are reported in Table 3.

Table 3. Performance of our pMOS-Face compared to standard NR-IQA baselines.

Metric PLCC SRCC MSE MAE

pMOS-Face (ours) 0.9285 0.9345 120.6 9.158
NIQE 0.7536 0.7431 6859 82.62
PIQE 0.2993 0.3114 3297 57.05
SER-FIQ -0.1648 -0.1542 123.5 9.230
MagFace -0.6095 -0.6362 4437 66.24

When considering a more generalized use, where observer bias is not ac-
counted for, our NR-IQA model shows a major improvement over the baselines.
This is particularly relevant for task specific applications, where the model can
be trained on a small set of images with human labels and then applied to larger
datasets without the need for additional supervision. This approach allows for a
more scalable and efficient solution not only for FIQA but also for other domains
where reference images are not available.
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5 Conclusion and Future Work

We proposed a Full-to-No-Reference framework for FIQA that predicts image
quality in the absence of reference images by leveraging a pseudo-MOS supervi-
sion strategy. Our method first trains a FR fusion model to regress human per-
ceptual judgments on a labeled subset (10% of the dataset), generating pseudo-
MOS labels for a larger unlabeled dataset. These forged labels are then used
to train a deep NR regressor, enabling quality prediction from distorted images
alone. This two-stage pipeline effectively bridges the gap between fully super-
vised FR-IQA and reference-free NR-IQA approaches.

Beyond the development of our NR IQA metric, the proposed framework
offers a flexible foundation for constructing a variety of task-specific models. By
enabling scalable, perceptually grounded supervision with limited ground-truth
annotations, our approach can facilitate quality-aware training in applications
such as GANs, forensic imaging, and domain-adapted biometric pipelines.
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