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INTRODUCTION

Modern machine-readable travel documents (MRTDs) and industrial au-

thentication systems increasingly integrate a combination of biometric

identifiers and security markings to prevent unauthorized replication or

tampering. Beyond MRTDs, security pattern technologies are widely em-

ployed in other domains, particularly in brand protection and tax vali-

dation. Their use is prevalent in industries like luxury goods, wine and

spirits, pharmaceuticals, and medical packaging.

This abstract introduces a set of advanced techniques for visual in-

formation embedding, drawing on the principles of steganography and

digital watermarking. These methods are built upon modern deep learn-

ing frameworks and are designed to meet stringent requirements for se-

curity, robustness, and imperceptibility. The proposed solutions enable

secure data integration within visual media and are applicable to high-

stakes scenarios such as identity verification, counterfeit prevention, and

brand authentication.

Steganography is the practice of embedding information within an-

other medium in a manner that conceals the very existence of the hidden

data. In digital image-based steganography, this typically involves two

independent image-to-image neural networks: an encoder and a decoder.

The encoder learns to embed a secret payload—such as text, another im-

age, or binary code—into a cover image, producing an encoded image

that remains perceptually similar to the original. The decoder, operating

independently, is trained to extract and reconstruct the hidden message

from the encoded image, even under conditions of distortion or noise.

The first highly robust steganography model in this field was StegaS-

tamp [8], which introduced a pioneering approach by simulating a wide

range of digital and physical distortions—including printer and scanner

noise—during the training process. Its architecture employed a special-

ized U-Net encoder with a bottleneck layer for embedding the payload.

However, while StegaStamp demonstrated resilience to various distor-

tions, it struggled to preserve the structural integrity of input images. This

limitation became particularly evident on semantically sensitive datasets,

such as frontal face images, where it exhibited poor perceptual perfor-

mance.

To overcome these challenges, we propose CodeFace [5] as a next-

generation steganography framework that significantly improves the per-

ceptual quality of encoded face images. Designed specifically for frontal

facial data, CodeFace integrates a face-aware pipeline combining face de-

tection and deep feature extraction to guide the encoding process. This

enables the model to minimize perceptual discrepancies between the orig-

inal and encoded images. We further deploy CodeFace as a security-

enhancing layer for face images in Machine-Readable Travel Documents

(MRTDs), offering both robustness and high visual fidelity in identity-

sensitive applications.

Subsequently, RiemStega [3] was introduced to further enhance the

performance of both the encoder and decoder components. This model

incorporates a novel covariance-based loss function that operates in a

Riemannian geometry space, encouraging the preservation of statistical

consistency between original and encoded image features. In addition,

RiemStega replaces the bottleneck structure used in StegaStamp’s U-Net

[4] with a self-attention mechanism, enabling more effective global fea-

ture interactions and improving the model’s ability to embed and recover

information with higher fidelity.

RoSteALS [1] is a lightweight and highly robust steganography

framework based on generative adversarial networks (GANs), compris-

ing only 300k parameters. Despite its compact architecture, the model

exhibits strong resilience against various digital noise simulations, mak-

ing it well-suited for purely digital communication scenarios. However,

a key limitation of RoSteALS lies in its decoder’s inability to accurately

recover hidden messages from printed and re-scanned images, thereby re-

stricting its applicability in print-based or physical media steganography.

Finally, we introduced StampOne [7], a steganography framework

that bridges the gap between robust and non-robust models by placing

greater emphasis on enhancing print-ability and resilience to real-world

distortions. StampOne proposes a novel Reinforcement High-Frequency

Strategy, designed to improve the robustness of embedded messages

against transformations introduced by printing and scanning processes.

The model incorporates a dedicated analysis-and-conversion module that

preprocessed input data before encoding and decoding. This module aims

to optimize the spectral distribution of features—specifically by enhanc-

ing high-frequency components and ensuring balanced frequency repre-

sentations, thereby improving both visual fidelity and message recover-

ability in the final encoded images.

KEY CHALLENGES AND DESIGN TRADE-OFFS IN

STEGANOGRAPHY STAMPS

The methods presented in this dissertation are grounded in the intersection

of steganography, digital watermarking, and deep learning. By harnessing

the advanced feature extraction and representational power of neural net-

works, we propose techniques that strive to optimize the trade-offs among

several key performance criteria:

• Perceptual Quality: Maintaining a high degree of visual similar-

ity between the encoded and original images, thereby concealing

the presence of embedded information and preserving the natural

appearance of the cover image.

• Robustness: Ensuring reliable extraction of the hidden payload

under a wide range of digital and physical perturbations, including

compression artifacts, additive noise, geometric distortions, and

surface damage such as scratches or folds.

• Capacity: Maximizing the volume of information that can be em-

bedded without degrading perceptual quality, while maintaining

decoder reliability.

• Security: Providing strong protection against unauthorized decod-

ing or tampering by designing models that resist reverse engineer-

ing, brute-force extraction, and adversarial attacks.

These objectives guide the design of the proposed frameworks, en-

abling the development of practical, scalable, and secure steganography

systems suitable for real-world deployment.

PERFORMANCE COMPARING BETWEEN

MODELS

Table 1 (A) presents the perceptual quality evaluation of encoded im-

ages. Among the compared models—CodeFace, StegaStamp, and Stam-
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Table 1: (A) Quantitative evaluation of encoded image quality using perceptual similarity metrics. (B) Decoding performance on 40 printed encoded

images, captured using a Samsung S22 Ultra smartphone. Models M1 and M2 correspond to the StampOne architecture employing Attention-VNet

and UNetPlus backbones, respectively. Model M3 represents a non-robust baseline constructed with two independent Attention-VNet networks.

The first four rows present results from high-robustness models, while the final two rows provide non-robust references, serving as a benchmark for

evaluating decoder reliability under real-world print-capture conditions.

(A) Encoded images quality (B) Bit acc (%) - VGGFace2 [2]

Methods SSIM (⇑) LPIPS (⇓) ColorHisto (⇓) 6×6 cm 5×5 cm 4×4 cm 3×3 cm 2×2cm

StegaStamp [8] 0.93 ± 0.001 4.92 ± 1.6 6.11 ± 10.5 78 72 70 65 48

CodeFace [6] 0.95 ± 0.0002 3.06 ± 0.9 7.32 ± 6.1 55 55 50 38 15

StampOne (M1) 0.98 ± 0.00002 1.25 ± 0.4 5.38 ± 4.9 100 100 100 95 62

StampOne (M2) 0.96 ± 0.00007 2.74 ± 2.38 6.30 ± 4.07 88 85 72 63 43

Non-robust (M3) 0.92 ± 0.001623 1.04± 1.69 2.80 ± 60.8 0 0 0 0 0

RoSteALS [1] 0.95 ± 0.0006 0.04 ± 0.0003 0.09 ± 0.003 0 0 0 0 0

Table 2: Impact of three types of image under different noise types. 1000 images from COCO test dataset are used for the decoder performance

evaluation. Bit accuracy (%) during decoding from encoded images is evaluated under various types and levels of noise. M1 and M2 represent

StampOne models utilizing the Attention−VNet and UNetPlus architectures, respectively. On the other hand, M3 refers to a non-robust model

constructed through the utilization of two instances of Attention−VNet.

JPEG (%) Gaussian (Std 0 to 1) Resolution (Pixel)

Methods 70 60 50 0.08 0.06 0.04 (60 × 60) (80 × 80 ) (100 × 100 )

StegaStamp [8] 100 100 100 100 100 100 55 80 91

CodeFace [6] 80 88 88 55 75 86 2 11 36

RoSteALS [1] 87 90 94 23 35 53 96 97 98

StampOne (M1) 100 100 100 98 100 100 74 98 100

StampOne (M2) 97 99 100 88 96 99 72 94 99

Non-robust (M3) 0 0 0 13 46 84 0 0 22

pOne—StampOne demonstrates superior overall performance, particu-

larly when using the Attention-VNet and UNetPlus backbones, as indi-

cated in the table. Further evaluations of StampOne with alternative ar-

chitectures are provided in the supplementary material.

In terms of SSIM, StampOne consistently achieves the highest scores

among all robust models, indicating strong structural preservation. Al-

though RoSteALS achieves slightly better results in the Color Histogram

and LPIPS metrics, it fails to recover any messages from printed encoded

images, limiting its practical applicability. In contrast, StampOne main-

tains both high perceptual quality and robustness to real-world printing

conditions.

For print-based evaluation, a set of forty frontal face images from

the VGGFace2 dataset was encoded and printed at various physical sizes,

ranging from 2 × 2 cm to 6 × 6 cm (width × height), using a stan-

dard consumer-grade Brother L3270CDW color printer. To simulate

real-world deployment conditions, decoding was conducted under un-

controlled lighting environments, with video recordings captured using

a Samsung S22 Ultra smartphone.

The decoding performance of our proposed models—employing At-

tentionVNet and UNetPlus architectures—was benchmarked against es-

tablished methods, including StegaStamp and CodeFace. As presented

in Table 1(B), the Attention-VNet–based model consistently achieved the

highest recovery accuracy from printed images, demonstrating superior

robustness and confirming its effectiveness for printer-resilient stegano-

graphic applications. Additional cross-device results obtained using dif-

ferent smartphones are included in the supplementary material.

To assess decoder performance under real-world distortions, we con-

ducted a series of experiments involving various noise conditions, includ-

ing JPEG compression, Gaussian noise, resolution reduction, and contrast

and brightness variations. Decoder effectiveness was quantified by the

percentage of successfully recovered messages from the encoded images.

The results, summarized in Table 2, indicate that StampOne consis-

tently outperforms competing models across most distortion scenarios.

Notably, StegaStamp exhibits comparable robustness to StampOne under

specific conditions, particularly JPEG compression and Gaussian noise,

highlighting its resilience in digitally degraded environments.
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