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INTRODUCTION

The developments in home computers, united with the thousands upon

thousands of images/videos of individuals present on the Internet, allowed

for the proliferation of deepfaked media affecting the lives of private indi-

viduals and the dangerous spread of misinformation. Current state-of-the

art detection methods show impressive results. However the development

of improved generation methods overcomes them, as there are generaliza-

tion difficulties.

Following the logic of forensic approaches in both the color and fre-

quency space, this work investigates the use of the implicit space in the

problem of deepfake detection. Implicit representations have recently of-

fered new research avenues for image analysis, translating a scene usu-

ally in a coordinates-based representation, that allows for detailed recon-

structions of the original. Using Sinusoidal Representation Networks

(SIRENs) [9] the video frames of the Deepfake Detection Challenge

Dataset (DFDC) [2] were translated to the implicit space and analyzed.

This work uses Fréchet Video Distance (FVD) [10] between the orig-

inal DFDC videos and their respective SIREN reconstruction, to show a

significant difference in the average FVDs of the bonafide and deepfake

pairs. We expect that this work might open new avenues of research for

the deepfake detection problem.

METHOD

Implicit representation

An image is represented as a function I : Ω ⊂ R2 → C, where Ω is the

image’s domain and C is the color space. The image is then parameterized

with a coordinate-based neural network Iθ : R2 → C with parameters θ .

To train the neural image Iθ so that it approximates I, the model optimizes

the following objective:

∫
Ω

(I − Iθ )
2 dx.

The coordinate-based network is a sinusoidal multilayer perceptron

(MLP) fθ (p) : Rn → Rm, defined as a composition of d sinusoidal layers:

fθ (x) =Wd ◦ fd−1 ◦ · · · ◦ f0(x)+bd ,

where each layer fi(xi) = sin(Wixi + bi) = xi+1, with Wi ∈ Rni+1×ni be-

ing the weight matrices, and bi ∈ Rni+1 being the biases. The collection

of these parameters defines θ . The integer d denotes the depth of the

network, and ni refers to the width of the layers.

With the neural image defined by θ , the RGB values for any pixel of

a reconstructed image are given by the value of fθ at x coordinates.

Through the method used in [8], the neural images of each frame of

the subject’s face is obtained. The individual frames are then joined into

a reconstructed video.

Distance between original and reconstructed videos

This article proposes to show that there is a difference between how re-

liable the neural reconstruction of a video is for bonafide and deepfake

video cases, so that it can be used to detect the latter. This is measured

through Fréchet Video Distance (FVD).

FVD is proposed as an improvement on common video analysis ap-

proaches such as Peak Signal-to-Noise-Ratio (PSNR) or Structural Simi-

larity (SSIM) [11] claiming that these lack for the temporal coherence of

the video, aside from the video quality itself. It is based on the principal

of Fréchet Inception Distance (FID) [4], commonly used for image anal-

ysis, where the distance between the real world data distribution PR and

the distribution defined by the generative model PG is defined by:

d(PR,PG) = minX ,Y E|X −Y |2

where the minimization is over all random variables X and Y with dis-

tributions PR and PG respectively. With the data distribution being rep-

resented as a multivariate Gaussian using a suitable feature space, the

previous equation can be solved as:

d(PR,PG) = |µR −µG|
2 +Tr(ΣR +ΣG −2(ΣRΣG)

1
2 )

where µR and µG are the means and ΣR and ΣG are the co-variance ma-

trices of PR and PG. This representation is obtained from an Inflated 3D

ConvNet (I3D) [1], and the distance between videos is obtained. In our

work, we obtained the FVD through the implementation used in [3].

EXPERIMENTS AND RESULTS

Dataset

The Deepfake Detection Challenge (DFDC) [2] is a self-designated third

generation dataset featuring 23,654 videos from 960 actors hired for this

purpose, from which 104,500 fake videos are created using various deep-

fake creation methods.

These include a Deepfake Auto Encoder (DFAE) model with a shared

encoder but two isolated decoders, one for each identity, and a Neural

Talking Heads (NTH) [12] model comprised of a metalearning stage and

a fine-tuning stage.

It also includes deepfakes generated from FSGAN [6] which applies

an adversarial loss to generators for reenactment and inpainting, and trains

additional generators for face segmentation and Poisson blending and

StyleGAN [5] which is modified to produce a face swap between a given

fixed identity descriptor onto a video by projecting this descriptor on the

latent face space. Finally, certain videos from the previous categories are

processed with a sharpening filter to improve the quality of the final video

and certain videos receive vocal deepfakes as presented in [7].

SIREN reconstructions

The SIREN models were trained for 1000 epochs for each frame, resulting

in a reconstruction that shows no differences to the naked eye, for both

deepfake and bonafide videos, even for the ones scoring the highest FVD

scores, as shown in figures 1.

Figure 1: Comparison between an original frame (left) from a video, it’s

SIREN reconstruction (center) and their difference (right), for bonafide

cases in green and deepfake cases in red.

Although the reconstructions do not show visible differences when

analyzed, it is possible to find the areas in the image where the recon-

structions is not perfect. Analyzing these areas together with additional

information from the scene can give insights into the problem.
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This would greatly benefit from a labeling effort on the dataset to

properly analyze if and how different conditions affect the SIREN repre-

sentation for bonafide and deepfake cases.

Testing the hypothesis

The average FVD scores obtained show that SIREN reconstructions for

the bonafide videos have lower fidelity to their original video than in

the deepfake videos, achieving higher FVD scores, as shown in figure 1.

Higher FVD scores mean higher distance between video pairs i.e. worse

reconstructions.

To confirm that the data shows that SIREN reconstructions could be

used for deepfake detection, specifically that the neural reconstructions of

bonafide material have lower fidelity than deepfake reconstructions, a one

tail significance test is conducted. First the null hypothesis is defined as

there is no difference between the distribution of FVD scores for the orig-

inal and SIREN reconstruction of bonafide videos and deepfake videos,

or that the FVD scores for bonafide videos are lower then the deepfake

scores, i.e. SIRENS achieve better reconstructions on bonafide videos

than deepfake ones:

H0 : µFV Dbona f ide <= µFV Ddeep f ake

and present the alternative hypothesis that the bonafide video pairs score

higher FVDs, therefore have worse fidelity, than the deepfake video pairs:

Ha : µFV Dbona f ide > µFV Ddeep f ake

conducting the test with a significance level of α = 0.01, the p-value result

is equal to 1.145e−5 giving p < α , thus rejecting the null hypothesis.

Discussion

The data shows that SIREN reconstructions bonafide videos have lower

fidelity than the reconstructions of deepfake videos. This could suggest

that bonafide videos contain richer information, which is lost during ma-

nipulation.

The fact that the standard deviation for deepfake scores is lower, may

also indicates a process of homogenization of the information. The DFDC

is a large dataset, so as previously mentioned, its full translation into neu-

ral representations would, at this pace, take a not practical amount of time.

However by expanding this research over more videos from the dataset,

it would give a clearer idea of how different attributes from these videos

might affect the neural representation, or how certain deepfake generative

methods impact the image.

This result could contribute to the development of a system for de-

tecting deepfakes by learning how to distinguish between bonafide videos

and deepfake videos by analyzing the original video and its neural recon-

struction.

However, there is still work to be done in this area, particularly in

understanding the influence of certain factors like resolution, the context

of the video (e.g. how much of the frame does the face occupy), among

other elements.

CONCLUSION AND FUTURE WORK

Conclusion

This article presented the hypothesis of using implicit representations of

facial videos to distinguish between bonafide and deepfake videos. Car-

rying out this first analysis with videos reconstructed from the SIREN

representation, the FVD value between the original videos and their re-

constructions was measured. These values were use to test the hypothe-

sis that the bonafide reconstructions have lower fidelity to their original

material when compared to the reconstruction of deepfake videos. Car-

rying out a significance test at a significance level of 99%, we were able

to show that the null hypothesis was rejected. Although these are initial

results, the hypothesis that we can use implicit representations to detect

deepfakes seems promising.

Future work

Having reached these conclusions, it is necessary to consider how to pro-

ceed. The end result of this research is expected to achieve state-of-the-

art deepfake detection. There are still a number of obstacles to overcome,

with problems such as data volume. It is still required to test if all frames

from a video are required to achieve satisfactory results. This, among

a battery of ablation tests, will be conducted as to conceive the "ideal"

conditions to proceed with research.

While this paper revolves around videos reconstructed from their SIREN

representations, it is to show a discernible distinction between deepfakes

and bonafide material. Future work will be conducted as much as possible

with the implicit representation itself.
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