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Abstract

Adversarial attacks pose a significant threat to the relia-
bility of biometric systems, particularly in security-critical
applications such as identity verification and access con-
trol. Ensuring robustness against such attacks is essential
for the safe deployment of face recognition technologies in
real-world scenarios. To advance this goal, the 2025 Adver-
sarial Attack Challenge for Secure Face Recognition was
organized as part of the International Joint Conference on
Biometrics (IJCB) 2025.

The competition focused on two main tracks: Detection,
where the objective was to determine whether a given face
image is clean or adversarial, and Resilience, which aimed
to evaluate recognition systems under adversarial pertur-
bations. Participants were provided with a standardized
dataset derived from CelebA and LFW, encompassing both
clean samples and adversarial images crafted using ten di-
verse attack methods targeting evasion and impersonation
scenarios. To ensure fairness and reproducibility, all mod-
els were trained solely on the data provided, with support
from a custom open source adversarial attack package tai-
lored for face recognition.

In addition to benchmarking adversarial robustness, the
challenge contributes to the research community by releas-
ing the data set and the extensible attack package, allowing
further investigation of secure and reliable face recognition
systems.

1. Introduction

Face recognition (FR) systems have become integral to
a wide range of real-world applications, including public
surveillance, border control, secure facility access, financial
authentication, and personal device unlocking. Their con-
venience, non-invasiveness, and increasing accuracy have
contributed to their rapid adoption across both governmen-
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tal and commercial sectors. As these systems become more
prevalent in security-critical environments, ensuring their
robustness and trustworthiness is of utmost importance.
Despite their impressive performance under benign con-
ditions, FR systems are notably susceptible to adversarial
attacks. Such attacks are carefully crafted perturbations to
input images, often imperceptible to the human eye, but ca-
pable of causing significant degradation in recognition per-
formance. These perturbations exploit the vulnerabilities
of deep learning models, leading to incorrect predictions or
misidentifications, as shown in Figure 1. Adversarial at-
tacks on FR systems are typically categorized into two main

types:

 Evasion attacks aiming to cause a failure in recogniz-
ing a legitimate user. For example, an authorized indi-
vidual’s image may be perturbed such that the system
fails to match it with their enrolled identity, thereby
denying access.

* Impersonation attacks that attempt to manipulate an
input image to be falsely recognized as a different in-
dividual. Such attacks can result in unauthorized users
being granted access by mimicking the facial features
of a target identity.

The existence of such vulnerabilities poses serious con-
cerns and hinders wider adoption of FR systems, espe-
cially in high-stakes scenarios where the consequences
of misidentification can be severe, ranging from pri-
vacy breaches to national security threats. Furthermore,
the transferability of adversarial examples across different
models and the potential for physical-world attacks exacer-
bate the threat landscape.

Most, if not all, FR systems focus on the extraction of a
biometric signature of the face that encodes the identity of
the person in a resilient and invariant fashion. Adversarial
attacks target the vulnerabilities of this embedding extrac-
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Attacked: -0.378 | Clean: -0.018

Attacked: -0.293 | Clean: 0.735

Attacked: -0.143 | Clean: 0.879

Figure 1. Examples of pair attacks. In each pair, the left image is the attacked one. The top row shows evasion attacks; the bottom row
shows impersonation attacks. Similarity scores by an off-the-shelf FR system compare clean and attacked pairs. The clean label refers to
the similarity before the attack, while the attack label refers to the similarity post-attack. Best seen in color.

tion stage. By introducing small, carefully computed pertur-
bations to the input image, an attacker can manipulate the
resulting embedding [31, 10]. These perturbations are often
imperceptible to the human eye but sufficient to cause sig-
nificant changes in the system’s decision. Many adversarial
attacks rely on access to the model gradients to optimize the
perturbation —these are known as white box attacks [11, 2].
However, in real-world applications, such access is often re-
stricted. Consequently, black-box attacks have emerged as
a potent threat, relying only on input-output queries to the
system or using surrogate models trained to mimic the be-
havior of the target system [26, 4]. The challenge addressed
in this paper focuses on black-box scenarios, reflecting the
realistic threat model faced by deployed FR systems. This
includes attacks that do not require access to the architec-
ture or parameters of the target model, making them harder
to defend against and more broadly applicable.

Recent studies show that traditional defenses [1, 34],
such as input pre-processing or adversarial training, are of-
ten insufficient against unseen and adaptive attacks. This
highlights the pressing need for comprehensive evaluation
frameworks and standardized benchmarks that can assess
and improve the resilience of FR systems under adversarial
conditions. In response to these challenges, the 2025 Ad-
versarial Attack Challenge for Secure Face Recognition is
presented as part of the International Joint Conference on
Biometrics (IICB) 2025. The goal of this initiative is to fos-
ter progress in both detection and mitigation of adversarial
threats and to promote reproducible research by providing
common datasets, open source tools, and a competitive yet
collaborative evaluation mechanisms.

1.1. Purpose

The susceptibility of FR systems to adversarial attacks
necessitates the development of robust models capable of
withstanding such manipulations. Traditional evaluation
metrics, which often focus solely on accuracy under benign
conditions, fail to capture a model’s resilience to adversarial
perturbations. Therefore, there is a pressing need for bench-
marks that assess FR systems’ robustness against such ma-
nipulations.

An alternative defense against such attacks involves de-
tecting adversarial manipulations in input images and re-
jecting them as invalid inputs. This solution is easier to in-
tegrate into existing FR systems as a modular component.

However, the lack of large, publicly available standard-
ized datasets containing adversarial examples and adversar-
ial generation tools hinders the development and compari-
son of defense mechanisms. Establishing such resources is
crucial for advancing research in this domain and for fos-
tering the development of accurate and secure FR systems.
Moreover, although methods of evaluating FR systems’ per-
formance on adversarial data exist, they are not widespread
and often do not address the detection problem comprehen-
sively.

1.2. Contributions

The 2025 Adversarial Attack Challenge makes several
significant contributions to the field of adversarial robust-
ness in face recognition:

» Standardized Evaluation Framework: The chal-
lenge provided a controlled and reproducible envi-



ronment for evaluating adversarial detection and re-
silience, facilitating fair comparisons between differ-
ent approaches.

* Diverse and Realistic Datasets: Participants were
provided with datasets derived from CelebA and LFW,
containing a balanced mix of clean images and ad-
versarial examples generated using ten different attack
methods. This diversity ensured that the models were
tested against a wide range of adversarial scenarios.

» Attack Diversity: The provided package and training
dataset included ten different attacks. The private test
set included three unseen attacks as well. The mix of
attack sophistication and variety aimed to aid in gener-
alization capabilities for both attack detection and re-
silience.

¢ Open-Source Adversarial Attack Package: To sup-
port the development and evaluation of robust models,
the organizers released an open-source adversarial at-
tack package tailored for face recognition tasks. This
resource enabled participants to understand and simu-
late various attack strategies.

These contributions aim to advance the development of
secure and reliable face recognition systems capable of
withstanding adversarial threats.

1.3. Paper Structure

The remainder of this paper is organized as follows: Sec-
tion 2 briefly introduced some benchmarks already avail-
able in the field and explains why this challenge and bench-
mark tools are valuable in the biometrics field. Section 3
details the methodology used for creating and building the
challenge datasets. Section 4 presents the results and analy-
sis of the submitted solutions. Finally, Section 5 concludes
the paper and discusses future work.

2. Related Work

The growing vulnerability of face recognition (FR) sys-
tems to adversarial attacks has stimulated significant re-
search into understanding, evaluating, and mitigating such
threats. This section reviews key prior efforts, including
benchmarks, adversarial defense strategies, detection mech-
anisms, and evaluation frameworks.

Numerous studies have demonstrated the effectiveness
of adversarial attacks on deep learning models used for face
recognition. Goodfellow et al. [11] introduced the Fast
Gradient Sign Method (FGSM), laying the foundation for
gradient-based perturbations. Carlini and Wagner [2] later
proposed more powerful optimization-based attacks. These
methods have been adapted to FR systems to create pertur-
bations that are imperceptible to humans but cause identity
mismatches.

Although prior efforts have explored adversarial exam-
ple detection as a defense strategy, challenges remain. Met-
zen et al.[21] proposed auxiliary networks to detect pertur-
bations, while Pang et al. [25] introduced confidence-based
rejection mechanisms. In the context of face recognition,
Li et al. [17] analyzed both input-level and feature-level in-
dicators of adversarial manipulation. In the context of FR,
both evasion and impersonation attacks have been widely
studied. Sharif et al. [31] demonstrated physical attacks
using adversarial accessories (e.g., eyeglass frames), while
Dong et al. [10] developed decision-based black-box attacks
that can fool FR systems with limited information. How-
ever, these methods often struggle to generalize across dif-
ferent attack types or transfer effectively between datasets.
This highlights the need for a dedicated benchmark that
rigorously evaluates detection performance under realistic,
black-box, face-specific threat models.

2.1. Benchmarks and Evaluation Frameworks

Several benchmarks have been introduced to evaluate the
adversarial robustness of face recognition (FR) systems:

FATE [24] benchmark by NIST conducts large-scale as-
sessments of real-world FR performance, including presen-
tation attack detection, but does not explicitly address ad-
versarial machine learning.

RobFR [38] provides a structured benchmark for eval-
uating model robustness across a range of digital adver-
sarial attacks and threat models. FACESEC [33] enables
fine-grained robustness evaluation by considering attacker
knowledge, perturbation types (digital and physical), and
defense strategies. TALFW [42] extends the LFW dataset
with transferable adversarial examples to support black-box
and cross-model evaluations. AloT-Face [40] targets ad-
versarial robustness in resource-constrained, edge-deployed
FR scenarios.

While each of these efforts contributes valuable insights,
most focus on either adversarial resilience or attack di-
versity, without integrating adversarial detection as a stan-
dalone evaluation goal. Moreover, many lack openly avail-
able datasets or attack-generation pipelines, limiting repro-
ducibility and practical adoption.

To address this gap, the Adversarial Attack Challenge
was designed to unify both detection and resilience eval-
uation tracks within a standardized black-box framework.
It introduces a publicly available dataset, broad attack di-
versity, and an extensible open-source toolkit—together
enabling reproducible, transferable, and generalizable re-
search on adversarial robustness, with a particular emphasis
on detection under practical conditions.

2.2. Defense Strategies for FR Systems

Adversarial training remains the most widely studied de-
fense, wherein models are trained on adversarial examples



to improve robustness [20]. In FR, this has been adapted to
embedding-space learning [41], though it can be computa-
tionally expensive and vulnerable to adaptive attacks.

Other defenses include input preprocessing (e.g., JPEG
compression, denoising), robust loss functions [39], and en-
semble methods. Yet many of these approaches degrade
performance on clean images or fail under unseen attack
types, highlighting the importance of thorough benchmark-
ing under diverse and realistic conditions.

3. Methodology

The 2025 Adversarial Attack Challenge was structured
into two complementary tracks designed to evaluate differ-
ent aspects of adversarial robustness in face recognition sys-
tems:

e Detection Track: Participants developed models to
accurately classify face images as clean or adversarial.
The adversarial samples included both evasion attacks,
aiming to prevent recognition, and impersonation at-
tacks, aiming to falsely match another identity. This
track assessed the models’ ability to detect adversarial
manipulations across varying perturbation levels and
attack types.

* Resilience Track: In this track, participants trained
face recognition models intended to maintain high ver-
ification performance even when subjected to adver-
sarial attacks. The focus was on developing models
that are robust to adversarial perturbations, ensuring
reliable recognition in the presence of both evasion and
impersonation attacks.

The adversarial attacks used in this challenge were
crafted under a black-box threat model, wherein the at-
tacker does not have access to the target face recognition
(FR) model’s architecture, parameters, or internal gradi-
ents. This setting reflects a realistic security scenario, as
many deployed systems operate as closed APIs or propri-
etary software. In such cases, adversaries must rely solely
on input-output behavior to design effective attacks.

Although most adversarial attack algorithms are initially
designed for white-box settings—where full model access
is assumed—numerous studies have demonstrated the phe-
nomenon of transferability, whereby adversarial examples
generated for one model can also fool other, unseen mod-
els [26, 10]. All adversarial examples were generated un-
der this black-box assumption. To achieve this, we used a
publicly available, open-source surrogate FR model, specif-
ically the ArcFace model from InsightFace [5], to craft
the attacks. The core premise is to test attack transfer-
ability—the ability of adversarial examples created on one
model to fool other unknown models. This model was not
part of the evaluation process and served solely as a stand-in

attacker proxy, ensuring that the challenge remains faithful
to the black-box assumption while leveraging established
attack generation pipelines.

3.1. Attack Generation

To support a robust and diverse evaluation, adversarial
examples were created using ten distinct attack algorithms,
each selected for its methodological diversity and relevance
to FR adversarial research. These attacks were applied to
clean face images from CelebA and LFW datasets to pro-
duce a balanced corpus of adversarial samples for both
training and development phases.

This set of attacks was chosen to span a variety of op-
timization strategies, perturbation norms, and black-box
compatibility, thereby encouraging the development of de-
fense methods that generalize beyond a narrow subset of
attacks. Table 1 provides a detailed summary of these at-
tacks.

3.1.1 Rationale for Attack Selection

The ten adversarial attacks were selected to cover a broad
and complementary spectrum of properties relevant to face
recognition robustness evaluation:

Attack Paradigms. The suite includes: Gradient-based
attacks—IFGSM [20], MIFGSM [8], DI?’FGSM [35], and
TI-FGSM [9]—which rely on iterative first-order optimiza-
tion; Optimization-based methods, such as Carlini & Wag-
ner (C&W) [2] and LBFGS [32], which frame adversar-
ial generation as a constrained loss minimization problem;
Decision-based techniques like DeepFool [23], which iter-
atively push samples across classification boundaries; and
Score-based or heuristic black-box attacks, including Evo-
lutionary [10] and JSMA [28], which rely on output scores
or estimated saliency maps.

Perturbation Characteristics. The attacks span mul-
tiple L, norm constraints—Lg, Lo, and L—resulting in
diverse perturbation magnitudes and visual artifacts. This
variation ensures models are tested against a range of distor-
tion types, from imperceptible noise to perceptually salient
changes.

Transferability Focus. Several attacks (MIFGSM [8],
DI?’FGSM [35], TI-FGSM [9]) are specifically designed
to enhance cross-model transferability, which is critical in
black-box scenarios where the attacker has no access to the
model internals.

This combination of methodological breadth, norm di-
versity, and emphasis on transferability was intended to pro-
mote the development of defense systems that generalize
beyond narrow threat models and encourage participants to
build defense models capable of withstanding adaptive and
diverse adversarial threats. In doing so, the evaluation envi-
ronment simulates real-world attack scenarios and promotes



Table 1. Summary of Adversarial Attack Methods Used in the Challenge

Attack (Reference)

Description

C&W (Carlini & Wagner) [3]

Optimization-based attack minimizing perturbation under L2, Lo, or Lo norms; highly ef-
fective at evading defenses.

DeepFool [22]

Iteratively finds minimal perturbation to cross a classifier’s decision boundary; fast and subtle.

DIZFGSM [36]

Improves transferability of gradient-based attacks by applying random resizing and padding
to inputs.

Evolutionary [27]

Gradient-free black-box attack using evolutionary algorithms such as genetic or differential
evolution.

IFGSM (BIM) [16]

Iterative version of FGSM with small step size and pixel clipping; effective under white-box
settings.

JSMA [29] Targeted attack that modifies salient pixels based on Jacobian-derived saliency maps.

LBFGS [3] Early optimization-based attack using L-BFGS to find minimal perturbations that cause mis-
classification.

MIFGSM [7] Extends IFGSM by adding a momentum term to gradient updates, improving stability and
transferability.

PI-FGSM [15] Applies adversarial noise in small localized patches to enhance control and reduce detection.

TI-FGSM [6] Uses convolutional smoothing to make gradient updates robust to translation, increasing attack

transferability.

the development of resilient, general-purpose FR systems.

3.1.2 Attacks Used for Evaluation

To rigorously assess the generalization capability of sub-
mitted models, the private test set was constructed using a
distinct set of unseen attacks, ensuring evaluation against
genuinely novel and previously unencountered adversarial
threats. In line with the challenge’s goal of assessing real-
world resilience, the evaluation focused on attacks with
high transferability or those that mimic different types of
image degradation. The four attacks used are described in
Table 2.

The combination of these four methods—spanning non-
gradient, occlusion, and advanced gradient-based strate-
gies—provided a comprehensive and challenging testbed
for the final evaluation.

3.2. Datasets

The datasets provided to participants and used for evalu-
ation were derived from two well-known publicly available
face datasets: CelebA and LFW. A separate private test set
was constructed for the final, sequestered evaluation.

¢ CelebA (CelebFaces Attributes Dataset) [19]: A
large-scale face attributes dataset comprising over
200,000 celebrity images, each annotated with 40 bi-
nary attributes. For this challenge, a curated subset of
CelebA was used to generate image pairs for training
face recognition models and subsequently creating ad-
versarial examples. Its diversity in terms of identities,
pose, illumination, and expression makes it a valuable
resource for training generalizable FR systems.

e LFW (Labeled Faces in the Wild) [14]: A standard
benchmark dataset for unconstrained face verification,
containing 13,233 images of 5,749 individuals. It is

widely used for evaluating the performance of face
verification algorithms. In this challenge, LFW was
utilized to create genuine and imposter pairs for both
clean and adversarial scenarios, particularly for the Re-
silience track.

After duplicate identity removal, the training data was
supplied to participants included clean images sourced from
these datasets, alongside their adversarially perturbed coun-
terparts generated using the ten attack methods detailed in
Section 3.1. For the Resilience track, pre-defined genuine
and impostors pairs were provided. For the Detection track,
images were labeled as either ’clean’ or "adversarial’.

Private Test Set. A carefully constructed private test set
focused on good quality images, similar to VISA applica-
tions, was used for the definitive evaluation. This set con-
tained 11,000 clean image pairs and 100,000 negative image
pairs. From this set, 44,000 evasion attacks were performed
using 4 different methods mentioned earlier and 220,000
impersonation attacks using two methods were performed.
The exact distribution and parameters of the attacks in the
private test set were not disclosed to participants to ensure
a blind and fair evaluation of model generalization.

4. Challenge Results and Analysis

This section outlines the evaluation protocols and
presents the results of the 2025 Adversarial Attack Chal-
lenge. We analyze the performance of the submitted so-
lutions, incorporating methodological insights to better un-
derstand the factors contributing to their effectiveness. A
total of ten requests were made to access the data and the
top five teams were selected to publish their results in this
evaluation.



Table 2. Summary of Adversarial Attack Methods Used in the Private Evaluation Set

Attack (Reference) Description

Most Significant Bit (MSB)

Manipulates the most significant bits of pixel values, introducing visible, structured artifacts. In-

cluded to test robustness against non-gradient, direct data corruption.

Grid Occlusion

Overlays a grid of black lines, simulating structured occlusion. Evaluates resilience to patterned
missing facial information.

SI-FGSM [18]

Improves gradient-based attack transferability by computing gradients over multiple scaled-down

input images, enhancing robustness to scale variations.

PI-FGSM [15]

Applies adversarial noise in localized patches, testing the model’s ability to handle spatially con-

strained and adaptable perturbations.

4.1. Evaluation Metrics

To ensure a fair and comprehensive evaluation, standard-
ized metrics were adopted to align with international proto-
cols for presentation attack detection (e.g., ISO/IEC 30107-
3) and face recognition system performance. Separate met-
ric suites were defined for each challenge track, as summa-
rized in Table 3

Table 3. Evaluation Metrics for the Detection and Resilience

Tracks.

Track Metric Description

Detection | APCER | Attack Presentation Classification Error Rate
BPCER | Bona Fide Presentation Classification Error Rate
F1-Score 1 Harmonic mean of precision and recall
AUC-ROC 1 Area Under the ROC Curve

Resilience | EER (%) | Equal Error Rate under adversarial attack
ASR (%) | Attack Success Rate of adversarial examples
Robustness Score T | (1 — EER) x (1 — ASR)

4.2. Performance in the Detection Track

The Detection track required participants to classify
whether input images were clean or adversarial. Fi-
nal rankings were determined using a composite scor-
ing scheme that aggregated performance across four key
metrics: APCER, BPCER, F1-Score, and AUC-ROC. As
shown in Table 4, each team received a rank (1 to 5) for
each individual metric, and the Combined Score was com-
puted as the sum of these ranks. Lower combined scores
indicate superior overall performance.

Table 4. Final ranked performance of submissions in the Detection
Track. Each cell shows the metric value and the corresponding
rank (in parentheses). The table is sorted by the Combined Score,
where lower is better.

Team ID APCER | BPCER| F1-Scoret AUC-ROC T | Combined Score |
BioLab-0 0.0019 (2) 0.0347 (3)  0.9670 (1) 0.9995 (1) 7
BioLab-1 0.0016 (1) 0.1698 (5)  0.8597 (4) 0.9992 (2) 12
Team-Roma 0.0873 (4) 0.0043 (2) 0.9502 (2) 0.9888 (4) 12
Polish Samurai | 0.0049 (3) 0.1521(4) 0.8708 (3) 0.9967 (3) 13
SaeidUCC 1.0000 (5)  0.0000 (1)  0.0000 (5) 0.4661 (5) 16

Most submitted solutions demonstrated strong general-
ization capabilities in detecting adversarial inputs across
both unseen attack types and image domains, although
some performance trade-offs were observed.

Team BioLab-0 achieved the best overall balance, secur-
ing the highest F1-Score (0.9670) and AUC-ROC (0.9995).

. APCER vs. BPCER Curves for All Solutions
10

—— BiolLab-1
BioLab-2
—— Polish Samurai
—— SaeidUCC
——— Team-Roma

0

APCER (Attack Presentation Classification Error Rate)

107 107
BPCER (Bona Fide Presentation Classification Error Rate)

Figure 2. APCER-BPCER plot for the tested solutions, illustrating
the trade-off between missing attacks and falsely flagging clean
images.

Their winning solution, PerturbationNet, was a custom-
designed lightweight CNN incorporating small kernel sizes
and dilated convolutions to capture the fine-grained artifacts
characteristic of adversarial perturbations. Uniquely, they
formulated the problem as a multi-class classification task,
training the model to recognize each of the ten attack types
individually. The final binary decision (clean vs. adversar-
ial) was derived by summing the scores assigned to the at-
tack classes. This multi-class-to-binary strategy, combined
with a carefully tuned and relatively mild data augmentation
pipeline, likely contributed to the model’s superior general-
ization and top-ranking F1 performance.

At the extremes of the trade-off, team BioLab-1 pro-
duced the most sensitive detector with the lowest APCER
(0.16%). This submission is a variant of the same Perturba-
tionNet architecture, but with a different number of training
epochs and different operation threshold to account for 32-
bit inference instead of 16-bit of the first submission.

Conversely, team Team-Roma submitted a highly spe-
cific model with the lowest BPCER (0.43%). Their
solution used a ResNetl8 [12] backbone but aug-
mented the input with multiple pre-processed versions
of the image, including different JPEG compression lev-
els, grayscaling, and morphological operations, named



Resnet18MoreThanRGB. This multi-feature input likely
helped the model build a more robust representation of what
constitutes a "clean’ image, thereby minimizing false alarms
and ensuring a better user experience.

A deeper, per-attack analysis of the AUC scores provides
crucial insight into the specific strengths and weaknesses
of the detection models. The most striking result is the
universal difficulty models faced with the Grid Occlusion
attack. While most gradient-based and bit-manipulation
attacks were almost perfectly detected (AUC approaching
1.0) by the top models, the structured occlusion proved to
be a significant challenge. This single attack type is largely
responsible for the performance differences observed in Ta-
ble 4.

Team-Roma’s results offer a compelling case study.
Their model’s overall AUC was 0.9888, but its AUC against
Grid Occlusion was only 0.7730. This specific vulnerability
explains why their APCER was higher than other top mod-
els; their system was less capable of identifying this particu-
lar unseen attack. Conversely, the BioLab and Polish Samu-
rai models demonstrated fundamentally stronger discrimi-
native power against Grid Occlusion (AUC' > 0.93), even
if their chosen decision thresholds led to higher BPCER
values. This analysis reinforces two key insights: first,
that even high-performing detectors can exhibit architec-
tural blind spots when faced with adversarial patterns out-
side their training distribution; and second, that structured
occlusion remains a potent and underappreciated adversar-
ial strategy—particularly when omitted from training data.

4.3. Performance in the Resilience Track

In the Resilience track, the goal was to develop FR mod-
els that maintained high verification accuracy under attack.
The final ranking was determined by the Robustness Score,
which combines EER and ASR.

As shown in Table 6, team Team-Roma was the clear
winner, achieving the highest Robustness Score (0.5123).
Their solution employed a FaceNet model [30] with an
InceptionResNet backbone, pretrained on the large-scale
CASIA-WebFace dataset. Crucially, they used Gaussian
blurring as a preprocessing defense to mitigate adversarial
noise. This classic strategy proved highly effective, com-
bining a powerful feature extractor with a simple yet potent
defense that disrupts gradient-based perturbations.

The submissions from Gradient Ascent took a more
complex, two-stage approach. They first used a
transformer-based image restoration model [37] to denoise
the input image. The restored image was then passed to
an IR-SE50 recognition model (a ResNet50 with Squeeze-
and-Excitation blocks) [13] for embedding. While sophis-
ticated, this pipeline was less effective than Team-Roma’s
simpler method, suggesting that the denoising process may
not have fully removed the adversarial structures targeted in

FMR vs. FNMR Curves for All Solutions

—— Gradient Ascent-0
Gradient Ascent-1

—— SaeidUCC

—— Team-Roma

--- EERLine (FMR = FNMR)

False Non-Match Rate (FNMR)

04 06
False Match Rate (FMR)

Figure 3. FMR-FNMR plot for the tested solutions under adver-
sarial conditions. The ideal system operates closer to the origin.

the evaluation.

Interestingly, the submission from SaeidUCC, which
utilized a Siamese network with PGD-based adversarial
training [20], struggled in comparison. While adversarial
training is a theoretically strong defense, this result high-
lights that its success is highly dependent on implementa-
tion details and its alignment with the specific attacks en-
countered during evaluation.

4.3.1 Per-Attack Resilience Analysis

To understand the factors driving overall performance, we
conducted a detailed analysis of each model’s resilience
against the specific attack types. The results, presented in
Table 5, reveal critical insights into the current state of ad-
versarial defenses for face recognition.

The breakdown reveals several key findings. First, the
foundational strength of Team-Roma’s solution is evident
in its exceptionally low Bona Fide EER of just 4.11%. This
superior performance on clean data provided a significant
advantage, as the model started from a much more accurate
baseline before any attacks were introduced.

Second, the results expose a universal vulnerability to
the non-gradient-based Grid Occlusion and Most Signif-
icant Bit (MSB) attacks. This indicates that current de-
fense strategies are largely ineffective against these struc-
tured, non-gradient perturbations.

Third, all models demonstrated significantly better re-
silience against the gradient-based FGSM variants. Team-
Roma’s simple Gaussian blur defense was remarkably ef-
fective against the SI-FGSM impersonation attack, achiev-
ing a near-perfect Robustness Score of 89.69% by keeping
both ASR and EER exceptionally low. This suggests that
while classic defenses can handle certain transferable gra-
dient attacks, they are not all-encompassing.



Table 5. Detailed Resilience Track performance, broken down by attack type. Each cell shows Attack Success Rate / Equal Error Rate /
Robustness Score, all in percent (%). The best-performing cell in each row, determined by the highest Robustness Score (RS), is highlighted

in bold.

Attack Scenario

Team-Roma

ASR| —EER | —RS 1

Gradient Ascent-0

ASR | —EER | —RS 1

Gradient Ascent-1

ASR | —EER | —RS 1

SaeidUCC

ASR | —EER | —RS 1

(%) (%) (%) (%)
Bona Fide N/A/4.11/N/A N/A /1290 / N/A N/A/13.11/N/A N/A139.24 / N/A
Evasion Attacks
Grid Occlusion 71.09/24.17/21.92 73.15/30.09 /18.77 72.95/30.35/18.84 53.83/42.82/26.40
Most Significant Bit 81.75/22.89/14.07 99.95/50.65 7/ 0.02 99.95/50.63/0.03 94.98 /55.49 /2.23
PI-FGSM 40.63/11.68 /52.44 27.57/16.65 / 60.37 30.52/17.51/57.32 41.15/39.74 1 35.46
SI-FGSM 14.00/ 6.46 / 80.45 20.81/15.03/67.29 21.90/15.43/66.05 41.30/39.78 /1 35.35
Impersonation Attacks
PI-FGSM 19.84/7.09 /74.47 13.87/13.04/74.89 14.07/13.36 / 74.45 46.82/41.09/31.33
SI-FGSM 6.10/ 4.48 / 89.69 10.86/12.45/78.04 11.18/12.65/77.58 47.08/41.15/31.15

Table 6. Performance of submissions in the Resilience Track. Best
performance for each metric is in bold.

Team ID EER (%) ASR(%)| Robustness Score 1
Team-Roma 25.93 30.84 0.5123
Gradient Ascent-0 34.35 35.44 0.4239
Gradient Ascent-1 34.71 35.78 0.4193
SaeidUCC 49.62 52.50 0.2393

Table 7. Top-performers in the Detection and Resilience tracks.
Rank Team Name Participants
Detection Track

Achievement

Combined Scores:

Ist & 2nd  BioLab T1& 12

Lorenzo Pellegrini, Nicolo Di
Domenico, Guido Borghi

3rd Team-Roma Niklas Bunzel, Lukas Graner, Combined Score: 12
Nicholas Goller
Resilience Track
. Robustness Score:
1st Team-Roma Niklas Bunzel, Lukas Graner,

Nicholas Gller 05123

Robustness Scores:

2nd & 3rd  Gradient Ascent Monson Verghese, Shruti Bhilare, 0.4239 & 0.4193

Avik Hati

Finally, the results consistently indicate that evasion
attacks were more damaging than impersonation at-
tacks. Across all teams, Robustness Scores were consis-
tently higher for impersonation scenarios, confirming that
it is generally easier for an attacker to disrupt a legitimate
match than to impersonate a specific identity. This asym-
metry has important implications for the design of future
defense strategies and the prioritization of threat models.

The top-performing teams in both the Detection and Re-
silience tracks are highlighted for their noteworthy achieve-
ments. In the Detection track, BioLab (Pellegrini er al.)
and Team-Roma (Bunzel ef al.) delivered strong results in
identifying adversarial threats, demonstrating effective de-
tection of both known and novel perturbations. In the Re-
silience track, Team-Roma led the field, with Gradient As-
cent (Verghese et al.) also presenting promising approaches
to robustness—despite the inherent challenges posed by
non-differentiable attacks.

5. Conclusion

The 2025 Adversarial Attack Challenge for Secure Face
Recognition successfully established a unified benchmark
for evaluating system robustness, providing a public dataset
and open-source tools to foster reproducible research. The
results from both the Detection and Resilience tracks re-
vealed a significant gap between performance on known
threats and generalization to novel attacks. In detection,
while models effectively identified familiar perturbations,
they struggled with unseen, structured attacks like Grid Oc-
clusion. Similarly, the Resilience track showed that all sys-
tems were highly vulnerable to non-gradient perturbations,
even as some classic defenses proved effective against spe-
cific gradient-based attacks, highlighting that current strate-
gies are not yet universally robust.

The challenge’s primary contributions—the public
benchmark dataset and open-source attack suite—are in-
tended to accelerate research in this critical area. Our find-
ings point to two clear priorities for future work: expanding
adversarial training to address diverse, non-differentiable
attacks, and developing hybrid systems that integrate robust
detection with resilient recognition. These advancements
are critical for building secure and trustworthy face recog-
nition systems ready for real-world deployment.
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