Type of Publication

Journal Articles

Date:

12 /

2021

Status

Published

DOI:

10.1109/ACCESS.2021.3132581

CodeFace: a deep learning printer-proofsteganography for Face Portraits

Featured in:

IEEE Access, 2021

Authors:

Farhad Shadmand, Iurii Medvedev and Nuno Gonçalves

Abstract

Identity Documents (IDs) containing a facial portrait constitute a prominent form of personal identification. Photograph substitution in official documents (a genuine photo replaced by a non-genuine photo) or originally fraudulent documents with an arbitrary photograph are well known attacks, but unfortunately still efficient ways of misleading the national authorities in in-person identification processes. Therefore, in order to confirm that the identity document holds a validated photo, a novel face image steganography technique to encode secret messages in facial portraits and then decode these hidden messages from physically printed facial photos of Identity Documents (IDs) and Machine-Readable Travel Documents (MRTDs), is addressed in this paper. The encoded face image looks like the original image to a naked eye. Our architecture is called CodeFace. CodeFace comprises a deep neural network that learns an encoding and decoding algorithm to robustly include several types of image perturbations caused by image compression, digital transfer, printer devices, environmental lighting and digital cameras. The appearance of the encoded facial photo is preserved by minimizing the distance of the facial features between the encoded and original facial image and also through a new network architecture to improve the data restoration for small images. Extensive experiments were performed with real printed documents and smartphone cameras. The results obtained demonstrate high robustness in the decoding of hidden messages in physical polycarbonate and PVC cards, as well as the stability of the method for encoding messages up to a size of 120 bits.

Citation
Farhad Shadmand, Iurii Medvedev and Nuno Gonçalves (2021). CodeFace: A Deep Learning Printer-Proof Steganography for Face Portraits. IEEE Access, 9, 167282-167291. DOI 10.1109/ACCESS.2021.3132581

Related Content

Researcher Coordinator, VIS TEAM Leader
Researcher
PhD Student
News: Scientific Events
StampOne presented at the CVPR 2024...
June 18, 2024
No tagged content to show
No tagged content to show

RECENT PUBLICATIONS

MorFacing: A Benchmark for Estimation Face Recognition Robustness to Face Morphing Attacks

Authors: Iurii Medvedev and Nuno Gonçalves
Featured in: IEEE International Joint Conference on Biometrics (IJCB 2024)

Face Liveness Detection Competition (LivDet-Face)

Authors: Lambert Igene, Afzal Hossain, Stephanie Schuckers, Mohammad Zahir Uddin Chowdhury, Humaira Rezaie, Ayden Rollins, Jesse Dykes, Rahul Vijaykumar, Sebastien Marcel, Juan Tapia, Carlos Aravena, Daniel Schulz, Nima Karimian and Anafsheh Adami, Diogo Nunes, João Marcos, Nuno Gonçalves, Lovro Sikošek, Borut Batagelj, Nima Schei, David Pabon, Manuela Tiedemann, Vasiliy Pryadchenko, Aleksandr Alenin, Alhasan Alkhaddour, Anton Pimenov, Artem Tregubov, Igor Avdonin, Maxim Lazantsev and Mikhail Pozigun
Featured in: IEEE International Joint Conference on Biometrics Competitions, 2024

Social NSTransformers: Low-Quality Pedestrian Trajectory Prediction

Authors: Zihan Jiang, Yiqun Ma, Bingyu Shi, Xin Lu, Jian Xing, Nuno Gonçalves and Bo Jin
Featured in: IEEE Transactions on Artificial Intelligence

suggested news

Laser engraving of precious metal artifacts (UniqueMark® deterministic...
UniqueMark® and UniQode® Glitter patent published
Paper about protecting facial recognition systems against morphing...

RECENT PROJECTS

FACING2 – Face Image Understanding
VISUAL-ID – Unique Visual Identities in Graphics, Images and Faces
UniqueMark

Institute of Systems and Robotics Department of Electrical and Computers Engineering University of Coimbra