Type of Publication

Thesis

Date:

9 /

2022

Status

Published

Dealing with Overfitting in the Context of Liveness Detection using FeatherNets with RGB images

Featured in:

MD Thesis

Authors:

Miguel Correia

Abstract

Facial Anti Spoofing (FAS) or liveness detection, has gained a large interest with the increasing use of facial recognition in day-to-day activities and its requirement for security. From the variety of different approaches that have been developed, the use of machine learning solutions has become the more popular approach due to the improvement of these types of solutions for other problems as well as the increased number of available datasets for liveness detection. These models however carry shortcomings like overfitting, where the model adapts perfectly to the training set, becoming unusable when used with the testing set, defeating the purpose of machine learning. This thesis focuses on how to approach overfitting without altering the model used by focusing on the input and output information of the model.The input approach focuses on the information obtained from the different modalities present in the datasets used, as well as how varied the information of these datasets is, not only in number of spoof types but as the ambient conditions when the videos were captured. The output approaches were focused on both the loss function, which has an effect on the actual ”learning” of the machine learning, used on the model which is calculated from the model’s output and is then propagated backwards, and the interpretation of said output to define what predictions are considered as bonafide or spoof. Throughout this work, the authors were able to reduce the overfitting effect with a difference between the best epoch and the average of the last fifty epochs from 36.57% to 3.63%.

Citation
Miguel Correia (2022), Dealing with Overfitting in the Context of Liveness Detection using FeatherNets with RGB images. MD Thesis. University of Coimbra, 2022.

Related Content

Researcher Coordinator, VIS TEAM Leader
Researcher
No tagged content to show
No tagged content to show
No tagged content to show

RECENT PUBLICATIONS

RiemStega: Covariance-based loss for print-proof transmission of data in images

Authors: Aniana Cruz; Guilherme Schardong; Luiz Schirmer; João Marcos, Farhad Shadmand; Nuno Gonçalves
Featured in: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025

MorFacing: A Benchmark for Estimation Face Recognition Robustness to Face Morphing Attacks

Authors: Iurii Medvedev and Nuno Gonçalves
Featured in: IEEE International Joint Conference on Biometrics (IJCB 2024)

Face Liveness Detection Competition (LivDet-Face)

Authors: Lambert Igene, Afzal Hossain, Stephanie Schuckers, Mohammad Zahir Uddin Chowdhury, Humaira Rezaie, Ayden Rollins, Jesse Dykes, Rahul Vijaykumar, Sebastien Marcel, Juan Tapia, Carlos Aravena, Daniel Schulz, Nima Karimian and Anafsheh Adami, Diogo Nunes, João Marcos, Nuno Gonçalves, Lovro Sikošek, Borut Batagelj, Nima Schei, David Pabon, Manuela Tiedemann, Vasiliy Pryadchenko, Aleksandr Alenin, Alhasan Alkhaddour, Anton Pimenov, Artem Tregubov, Igor Avdonin, Maxim Lazantsev and Mikhail Pozigun
Featured in: IEEE International Joint Conference on Biometrics Competitions, 2024

suggested news

Laser engraving of precious metal artifacts (UniqueMark® deterministic...
UniqueMark® and UniQode® Glitter patent published
Paper about protecting facial recognition systems against morphing...

RECENT PROJECTS

FACING2 – Face Image Understanding
VISUAL-ID – Unique Visual Identities in Graphics, Images and Faces
UniqueMark

Institute of Systems and Robotics Department of Electrical and Computers Engineering University of Coimbra