Type of Publication

Journal Articles

Date:

5 /

2023

Status

Published

DOI:

10.1109/TITS.2023.3268578

Probabilistic Approach for Road-Users Detection

Featured in:

IEEE Transactions on Intelligent Transportation Systems, 2023

Authors:

Gledson Melotti, Weihao Lu, Pedro Conde, Dezong Zhao, Alireza Asvadi, Nuno Gonçalves and Cristiano Premebida

Abstract

Object detection in autonomous driving applications implies that the detection and tracking of semantic objects are commonly native to urban driving environments, as pedestrians and vehicles. One of the major challenges in state-of-the-art deep-learning based object detection are false positives which oc- cur with overconfident scores. This is highly undesir- able in autonomous driving and other critical robotic- perception domains because of safety concerns. This paper proposes an approach to alleviate the problem of overconfident predictions by introducing a novel probabilistic layer to deep object detection networks in testing. The suggested approach avoids the tradi- tional Sigmoid or Softmax prediction layer which often produces overconfident predictions. It is demonstrated that the proposed technique reduces overconfidence in the false positives without degrading the perfor- mance on the true positives. The approach is validated on the 2D-KITTI objection detection through the YOLOV4 and SECOND (Lidar-based detector). The proposed approach enables interpretable probabilistic predictions without the requirement of re-training the network and therefore is very practical.

Citation
Gledson Melotti, Weihao Lu, Pedro Conde, Dezong Zhao, Alireza Asvadi, Nuno Gonçalves and Cristiano Premebida (2023). Probabilistic approach for road-users detection. IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2023.3268578.

Related Content

Researcher Coordinator, VIS TEAM Leader
PhD Student
No tagged content to show
No tagged content to show
No tagged content to show

RECENT PUBLICATIONS

VOIDFace: Towards an Effective Face Training Data Storage and Protection with Right to be Forgotten Property

Authors: Ajnas Muhammed; Iurii Medvedev; Nuno Gonçalves
Featured in: IEEE International Joint Conference on Biometrics (IJCB 2025)

Análise de marcadores biométricos e sinais vitais através de visão artificial: Ritmo Cardíaco

Authors: Rodrigo Rosado Gonçalves
Featured in: Bsc Thesis

How to Evaluate a Biometric Facial Image

Authors: Diana Gonçalves D’Amil
Featured in: Bsc Thesis

suggested news

Paper accepted to IJCB 2025
Prof. Nuno and VIS Team successfully organizes IbPRIA...
Four papers presented @ IbPRIA 2025

RECENT PROJECTS

FACING2 – Face Image Understanding
VISUAL-ID – Unique Visual Identities in Graphics, Images and Faces
UniqueMark

Institute of Systems and Robotics Department of Electrical and Computers Engineering University of Coimbra