Type of Publication

Others

Date:

7 /

2024

Status

Published

DOI:

10.1016/j.eswa.2023.123008

Application of complete ensemble empirical mode decomposition based multi-stream informer (CEEMD-MsI) in PM2.5 concentration long-term prediction

Featured in:

Expert Systems with Applications

Authors:

Qinghe Zheng, Xinyu Tian, Zhiguo Yu, Bo Jin, Nan Jiang, Yao Ding, Mingqiang Yang, Abdussalam Elhanashi, Sergio Saponara and Kidiyo Kpalma

Abstract

Nowadays, air pollution has become one of the most serious environmental problems facing humanity and an inescapable obstacle limiting the sustainable development of cities and society. Although air quality sensing and management systems based on artificial intelligence and signal analysis are evolving as essential parts of intelligent cities, the mixture of local emission sources and regional transport of air pollutants still makes PM2.5 long-term prediction challenging, especially under complex geographical and climatic conditions. In this paper, the complete ensemble empirical mode decomposition based multi-stream informer (CEEMD-MsI) is proposed to predict the hourly PM2.5 concentration, and extensive testing and comparisons are carried out in four typical cities in Shandong, China. Firstly, CEEMD is used for signal pre-processing to construct the intrinsic mode functions (IMFs) based multi-channel representations. Then MsI is specifically designed to learn both temporal and spatial features, and complete the PM2.5 concentration prediction. To the best of our knowledge, this is the first attempt to predict long-term PM2.5 concentrations using a deep learning model driven by data collected from monitoring stations spanning long distances and diverse terrains. Finally, test results demonstrate that CEEMD-MsI achieves the best PM2.5 prediction performance by comparing it with state-of-the-art methods.

Citation
Qinghe Zheng, Xinyu Tian, Zhiguo Yu, Bo Jin, Nan Jiang, Yao Ding, Mingqiang Yang, Abdussalam Elhanashi, Sergio Saponara and Kidiyo Kpalma (2024). Application of complete ensemble empirical mode decomposition based multi-stream informer (CEEMD-MsI) in PM2. 5 concentration long-term prediction. Expert Systems with Applications, 245, 123008. DOI: 10.1016/j.eswa.2023.123008

Related Content

Post-Doc Researcher
No tagged content to show
No tagged content to show
No tagged content to show

RECENT PUBLICATIONS

MorFacing: A Benchmark for Estimation Face Recognition Robustness to Face Morphing Attacks

Authors: Iurii Medvedev and Nuno Gonçalves
Featured in: IEEE International Joint Conference on Biometrics (IJCB 2024)

Face Liveness Detection Competition (LivDet-Face)

Authors: Lambert Igene, Afzal Hossain, Stephanie Schuckers, Mohammad Zahir Uddin Chowdhury, Humaira Rezaie, Ayden Rollins, Jesse Dykes, Rahul Vijaykumar, Sebastien Marcel, Juan Tapia, Carlos Aravena, Daniel Schulz, Nima Karimian and Anafsheh Adami, Diogo Nunes, João Marcos, Nuno Gonçalves, Lovro Sikošek, Borut Batagelj, Nima Schei, David Pabon, Manuela Tiedemann, Vasiliy Pryadchenko, Aleksandr Alenin, Alhasan Alkhaddour, Anton Pimenov, Artem Tregubov, Igor Avdonin, Maxim Lazantsev and Mikhail Pozigun
Featured in: IEEE International Joint Conference on Biometrics Competitions, 2024

Social NSTransformers: Low-Quality Pedestrian Trajectory Prediction

Authors: Zihan Jiang, Yiqun Ma, Bingyu Shi, Xin Lu, Jian Xing, Nuno Gonçalves and Bo Jin
Featured in: IEEE Transactions on Artificial Intelligence

suggested news

Laser engraving of precious metal artifacts (UniqueMark® deterministic...
UniqueMark® and UniQode® Glitter patent published
Paper about protecting facial recognition systems against morphing...

RECENT PROJECTS

FACING2 – Face Image Understanding
VISUAL-ID – Unique Visual Identities in Graphics, Images and Faces
UniqueMark

Institute of Systems and Robotics Department of Electrical and Computers Engineering University of Coimbra