Type of Publication

Thesis

Date:

10 /

2021

Status

Published

Improving deep learning face recognition for ID and travel document applications with quality assessment

Featured in:

MD Thesis

Authors:

João Tremoço

Abstract

Current face recognition methods are based on deep neural networks that require large amounts of data to be effective. The large datasets publicly available are mostly collections of wild celebrity face images. These datasets are not optimised for document security-related applications. Moreover, due to privacy concerns, ID-compliant face image datasets are small and hardly accessible. This scenario is not favourable, and there is room for optimisation. In this work, a novel face recognition approach focused on the mitigation of this problem is proposed. A strategy was devised to include sample quality in an angular margin loss function in order to optimise the training process for the scenario of ID and Travel documents. This was achieved by changing the margin parameter in ArcFace to an adaptive value dependant on each sample’s quality. The adaptive margin was formulated in such a way to increase with the increase in sample quality and as such, increase the loss value. To characterise sample quality, five different quality metrics closely related to ICAO standards were used: Blur, BRISQUE, FaceQNet, Face Illumination Quality and Pose Quality. Three specific benchmarks were designed to test the method’s performance across different scenarios: Unconstrained, constrained and strictly constrained.With the designed benchmarks, the developed method was tested and compared with the ArcFace and Softmax losses. Experiments made show that the adaptive margin method developed is superior to the standard angular margin loss function (ArcFace) for the ID-compliant scenario. More specifically, the face illumination quality based model proved to better perform in the constrained and strictly scenarios according to FNMR@FMR metrics. The results also indicate a superiority of the method in unconstrained face recognition, namely the blur score model shows the best results. Models with combinations of scores were also tested. They did not prove to be superior to the single score models, however a more regular result across benchmarks was achieved.

Citation
João Tremoço (2021), Improving deep learning face recognition for ID and travel document applications with quality assessment. MD Thesis. University of Coimbra, 2021.

Related Content

Content type: Thesis Presentation

Link: here

Upload Date:2024-10-13T13:46

Researcher Coordinator, VIS TEAM Leader
Master Student
No tagged content to show
No tagged content to show
No tagged content to show

RECENT PUBLICATIONS

Geometric implicit neural representations for signed distance functions

Authors: Luiz Schirmer, Tiago Novello, Vinícius da Silva, Guilherme Schardong, Daniel Perazzo, Hélio Lopes, Nuno Gonçalves, Luiz Velho
Featured in: Special Section on SIBGRAPI 2023 Tutorials

Towards Secure Biometric Solutions: Enhancing Facial Recognition while Protecting User Data

Authors: Jose Silva, Aniana Cruz, Bruno Sousa and Nuno Gonçalves
Featured in: 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM) 2025

StylePuncher: encoding a hidden QR code into images

Authors: Farhad Shadmand, Luiz Schirmer and Nuno Gonçalves
Featured in: 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM) 2025

suggested news

Best Paper Award @ICPRAM 2025
Nuno Gonçalves serves as jury member for PhD...
ACHILLES project launches official Website and Newsletter

RECENT PROJECTS

FACING2 – Face Image Understanding
VISUAL-ID – Unique Visual Identities in Graphics, Images and Faces
UniqueMark

Institute of Systems and Robotics Department of Electrical and Computers Engineering University of Coimbra