Type of Publication

Others

Date:

3 /

2024

Status

Published

DOI:

10.1016/j.eswa.2023.121585

Multi-source weighted source-free domain transfer method for rotating machinery fault diagnosis

Featured in:

Expert Systems with Applications

Authors:

Qinhe Gao, Tong Huang, Ke Zhao, Haldong Shao and Bo Jin

Abstract

The mainstream approach to addressing the issues of insufficient historical data and high annotation costs in the domain of rotating machinery is to build transfer learning models based on labeled multi-source data. However, the practical diagnosis of failure cases often relies on data privacy, thereby limiting the widespread application of current multi-source domain transfer approaches for the ‘data silos’ problem of. In view of the above problem, a multi-source weighted source-free domain transfer approach is designed for rotating machinery fault diagnosis, and the designed scheme can efficiently achieve data privacy and domain transfer. Specifically, the proposed approach achieves knowledge transfer from the source to the target during the training process of the unlabeled target data without accessing the source data. This is accomplished through the utilization of a designed reinforced information maximization strategy and improved self-training mechanism. Additionally, a weighted strategy is devised to automatically apply optimal values to all source domains based on their relevance to the target domain. The proposed framework demonstrates accuracy exceeding 96% across eight cross-domain diagnostic cases in two sets of rotating machinery data, with an average accuracy of 98.26%. These results underscore the exceptional ability of the proposed method to address cross-domain fault diagnosis in rotating machinery while ensuring privacy protection.

Citation
Qinhe Gao, Tong Huang, Ke Zhao, Haldong Shao and Bo Jin (2024). Multi-source weighted source-free domain transfer method for rotating machinery fault diagnosis. Expert Systems with Applications, 237, 121585. DOI: 10.1016/j.eswa.2023.121585

Related Content

Post-Doc Researcher
No tagged content to show
No tagged content to show
No tagged content to show

RECENT PUBLICATIONS

Geometric implicit neural representations for signed distance functions

Authors: Luiz Schirmer, Tiago Novello, Vinícius da Silva, Guilherme Schardong, Daniel Perazzo, Hélio Lopes, Nuno Gonçalves, Luiz Velho
Featured in: Special Section on SIBGRAPI 2023 Tutorials

Towards Secure Biometric Solutions: Enhancing Facial Recognition while Protecting User Data

Authors: Jose Silva, Aniana Cruz, Bruno Sousa and Nuno Gonçalves
Featured in: 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM) 2025

StylePuncher: encoding a hidden QR code into images

Authors: Farhad Shadmand, Luiz Schirmer and Nuno Gonçalves
Featured in: 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM) 2025

suggested news

Best Paper Award @ICPRAM 2025
Nuno Gonçalves serves as jury member for PhD...
ACHILLES project launches official Website and Newsletter

RECENT PROJECTS

FACING2 – Face Image Understanding
VISUAL-ID – Unique Visual Identities in Graphics, Images and Faces
UniqueMark

Institute of Systems and Robotics Department of Electrical and Computers Engineering University of Coimbra