Type of Publication

Conference Papers

Date:

11 /

2018

Status

Published

DOI:

10.1109/ITSC.2018.8569666

Multimodal CNN Pedestrian Classification: A Study on Combining Lidar and Camera Data

Featured in:

21st IEEE International Conference on Intelligent Transportation Systems, Hawaii, USA

Authors:

Gledson Melotti, Cristiano Premebida, Nuno Gonçalves, Urbano Nunes and Diego Faria

Abstract

This paper presents a study on pedestrian classification based on deep learning using data from a monocular camera and a 3D LIDAR sensor, separately and in combination. Early and late multi-modal sensor fusion approaches are revisited and compared in terms of classification performance. The problem of pedestrian classification finds applications in advanced driver assistance system (ADAS) and autonomous driving, and it has regained particular attention recently because, among other reasons, safety involving self-driving vehicles. Convolutional Neural Networks (CNN) is used in this work as classifier in distinct situations: having a single sensor data as input, and by combining data from both sensors in the CNN input layer. Range (distance) and intensity (reflectance) data from LIDAR are considered as separate channels, where data from the LIDAR sensor is feed to the CNN in the form of dense maps, as the result of sensor coordinate transformation and spatial filtering; this allows a direct implementation of the same CNN-based approach on both sensors data. In terms of late-fusion, the outputs from individual CNNs are combined by means of learning and non-learning approaches. Pedestrian classification is evaluated on a `binary classification’ dataset created from the KITTI Vision Benchmark Suite, and results are shown for each sensor-modality individually, and for the fusion strategies.

Citation
Gledson Melotti, Cristiano Premebida, Nuno Gonçalves, Urbano Nunes and Diego Faria (2018, November). Multimodal CNN pedestrian classification: a study on combining LIDAR and camera data. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 3138-3143). IEEE. DOI: 10.1109/ITSC.2018.8569666

Related Content

Researcher Coordinator, VIS TEAM Leader
PhD Student
No tagged content to show
No tagged content to show
No tagged content to show

RECENT PUBLICATIONS

Geometric implicit neural representations for signed distance functions

Authors: Luiz Schirmer, Tiago Novello, Vinícius da Silva, Guilherme Schardong, Daniel Perazzo, Hélio Lopes, Nuno Gonçalves, Luiz Velho
Featured in: Special Section on SIBGRAPI 2023 Tutorials

Towards Secure Biometric Solutions: Enhancing Facial Recognition while Protecting User Data

Authors: Jose Silva, Aniana Cruz, Bruno Sousa and Nuno Gonçalves
Featured in: 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM) 2025

StylePuncher: encoding a hidden QR code into images

Authors: Farhad Shadmand, Luiz Schirmer and Nuno Gonçalves
Featured in: 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM) 2025

suggested news

Best Paper Award @ICPRAM 2025
Nuno Gonçalves serves as jury member for PhD...
ACHILLES project launches official Website and Newsletter

RECENT PROJECTS

FACING2 – Face Image Understanding
VISUAL-ID – Unique Visual Identities in Graphics, Images and Faces
UniqueMark

Institute of Systems and Robotics Department of Electrical and Computers Engineering University of Coimbra